Download citation
Download citation
link to html
In the centrosymmetric title compound, [Co2(C12H10O2P)4(C5H5N)4(H2O)2], each approximately octa­hedral Co atom features two trans-coordinated pyridine mol­ecules, one water mol­ecule, a terminally coordinated monodentate diphenyl­phosphinate ligand, and two bidentate diphenyl­phosphinate ligands that bridge the two Co atoms across a centre of inversion to form a dimeric binuclear complex. The discrete mol­ecules are linked by double hydrogen bonds between the terminally coordinated diphenyl­phosphinate ligand and the water mol­ecule to form a continuous chain along the crystallographic b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106000680/sq1241sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106000680/sq1241Isup2.hkl
Contains datablock I

CCDC reference: 299626

Comment top

Phosphinate ligands have a rich coordination chemistry, often forming polymeric species (Vioux et al., 2004). Coordinating solvents can be used to dissolve these phosphinate-bridged coordination polymers in a process that breaks the coordination chains, to form oligomeric or monomeric solvent adducts in solution (Siqueira et al., 2006). We have investigated the possibility of forming the pyridine adduct of the diphenylphosphinate-bridged coordination polymer of CoII. However, due to the presence of opportunist water, the title compound, (I), a molecular species incorporating both pyridine and water, was formed, and we present its crystal structure here.

One half molecule of (I) is found in the asymmetric unit; the entire molecule is generated by the crystallographic centre of inversion, which lies at the midpoint between the two Co atoms (Fig. 1). Two diphenylphosphinate ligands bridge the two Co atoms to form an eight-membered ring. The octahedral coordination sphere is completed by two trans pyridine ligands, a water molecule, and a monodentate terminally coordinated diphenylphosphinate ligand.

The very long Co···Co distance in (I) (Table 1) precludes metallic bonding. This distance is slightly longer than that in the parent coordination polymer [4.704 (5) Å; Liu et al., 1992]. The very slightly different Co—O distances involved in the bridging diphenylphosphinate ligand in (I) are considerably longer than those for the parent polymer [1.905 (16)–1.927 (16) Å], which is likely due to the change from tetrahedral to octahedral geometry of the Co centre. The PO distances are almost equal, showing a delocalization of the negative charge. The monodentate diphenylphosphinate ligand has a slightly longer P—O bond for the O atom coordinated to the Co centre than for the non-coordinated O atom, consistent with a partial localization of the negative charge on the O atom that forms the formally covalent bond. These values correspond well to the few examples found in the Cambridge Structural Database (Version?; Allen, 2002), where the average terminal PO distance is 1.500 (13) Å and the coordinated P O distance is 1.514 (15) Å for 14 observations.

The pyridine molecules are coordinated to the Co centre of (I), with the Co—N distances identical to within experimental error and the N—Co—N angle close to the ideal value of 180°. The rings are rotated by 66.96 (7)° with respect to one another but are almost perpendicular to the CoO4 plane, with angles of 86.71 (5)° for pyridine N11 and 89.51 (5)° for pyridine N21.

A water molecule, presumably as a contamination of the methanol preparation solvent, completes the coordination sphere of the Co centre in (I), preventing the formation of a polymeric chain as found for similar solvent adducts of coordinating polymers (Siqueira et al., 2006). Double hydrogen bonds between the terminally coordinated diphenylphosphinate ligand and the water molecule across a centre of inversion (Table 2) link the discrete molecules to form a continuous chain along the crystallographic b axis (Fig. 2). The water molecule also participates in an intramolecular hydrogen bond to the terminal O atom of the neighbouring diphenylphosphinate ligand, presumably stabilizing the monodentate coordination mode.

Experimental top

Co(O2PPh2)2 was suspended in methanol and pyridine added dropwise until the blue solid disappeared and the solution was clear light-pink in colour. Red crystals of (I) formed on slow evaporation of the solution.

Refinement top

All H atoms on the phenyl and pyridine rings were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the water molecule were found in the difference Fourier map and allowed to refine freely.

Computing details top

Data collection: COSMO, APEX2 and BIS (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 30% probability level. Symmetry-equivalent phenyl groups are shown as sticks. [Symmetry code: (i) −x, 2 − y, 1 − z.]
[Figure 2] Fig. 2. A view of the hydrogen bonding in (I) (dashed lines). [Symmetry codes: (i) −x, 2 − y, 1 − z; (ii) −x, 1 − y, 1 − z; (iii) x, y − 1, z.]
Bis(µ-diphenylphosphinato-κ2O:O')bis[aqua(diphenylphosphinato- κO)bis(pyridine-κN)cobalt(II)] top
Crystal data top
[Co2(C12H10O2P)4(C5H5N)4(H2O)2]Z = 1
Mr = 1338.97F(000) = 694
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7871 (4) ÅCell parameters from 8177 reflections
b = 11.8221 (4) Åθ = 3.0–25.9°
c = 12.7061 (5) ŵ = 0.67 mm1
α = 91.609 (2)°T = 294 K
β = 90.390 (2)°Rectangular plate, red
γ = 92.774 (2)°0.25 × 0.15 × 0.07 mm
V = 1617.77 (10) Å3
Data collection top
Make? Model? CCD area-detector
diffractometer
9046 independent reflections
Radiation source: fine-focus sealed tube6553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 29.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004; values rescaled by 0.95)
h = 1514
Tmin = 0.745, Tmax = 0.950k = 1616
30066 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.0829P]
where P = (Fo2 + 2Fc2)/3
9046 reflections(Δ/σ)max = 0.001
405 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Co2(C12H10O2P)4(C5H5N)4(H2O)2]γ = 92.774 (2)°
Mr = 1338.97V = 1617.77 (10) Å3
Triclinic, P1Z = 1
a = 10.7871 (4) ÅMo Kα radiation
b = 11.8221 (4) ŵ = 0.67 mm1
c = 12.7061 (5) ÅT = 294 K
α = 91.609 (2)°0.25 × 0.15 × 0.07 mm
β = 90.390 (2)°
Data collection top
Make? Model? CCD area-detector
diffractometer
9046 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004; values rescaled by 0.95)
6553 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.950Rint = 0.027
30066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
9046 reflectionsΔρmin = 0.34 e Å3
405 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.042427 (17)0.793703 (16)0.543293 (15)0.03148 (7)
O10.07581 (12)0.62860 (10)0.45988 (11)0.0438 (3)
H1A0.084 (2)0.580 (2)0.503 (2)0.094 (9)*
H1B0.023 (2)0.5913 (19)0.4148 (18)0.076 (7)*
P10.04492 (3)0.94060 (3)0.32883 (3)0.03181 (9)
P20.12272 (4)0.59588 (3)0.71552 (3)0.03532 (10)
O110.04267 (10)0.84765 (9)0.40690 (8)0.0399 (2)
O120.02099 (9)1.05784 (9)0.36801 (8)0.0381 (2)
O210.12801 (10)0.71190 (9)0.66979 (8)0.0399 (2)
O220.09488 (11)0.49954 (10)0.64168 (9)0.0466 (3)
N110.22510 (11)0.83720 (12)0.48892 (10)0.0397 (3)
N210.13946 (12)0.74678 (11)0.59669 (10)0.0398 (3)
C120.24886 (15)0.94110 (16)0.45808 (13)0.0466 (4)
H120.18610.99770.46470.056*
C130.36176 (18)0.9686 (2)0.41697 (16)0.0663 (6)
H130.37441.04210.39650.080*
C140.45519 (19)0.8859 (2)0.40667 (18)0.0773 (7)
H140.53220.90190.37890.093*
C150.43188 (18)0.7796 (2)0.43840 (19)0.0761 (7)
H150.49350.72190.43260.091*
C160.31711 (16)0.75796 (18)0.47908 (16)0.0578 (5)
H160.30310.68510.50060.069*
C220.18620 (17)0.78306 (17)0.68899 (14)0.0562 (5)
H220.14110.83260.73000.067*
C230.2995 (2)0.7503 (2)0.72717 (18)0.0817 (7)
H230.32940.77770.79230.098*
C240.3664 (2)0.6779 (3)0.6682 (2)0.0896 (8)
H240.44350.65620.69130.108*
C250.3174 (2)0.6377 (2)0.5743 (2)0.0817 (7)
H250.35900.58540.53350.098*
C260.20596 (17)0.67546 (18)0.54086 (17)0.0613 (5)
H260.17530.64970.47550.074*
C1110.06784 (13)0.90225 (13)0.22533 (12)0.0360 (3)
C1120.14454 (15)0.80533 (15)0.23096 (14)0.0486 (4)
H1120.13520.75590.28580.058*
C1130.23587 (18)0.78191 (19)0.15419 (17)0.0666 (6)
H1130.28730.71680.15830.080*
C1140.25071 (18)0.8536 (2)0.07287 (16)0.0651 (6)
H1140.31310.83810.02300.078*
C1150.17361 (19)0.9479 (2)0.06522 (16)0.0661 (6)
H1150.18180.99550.00880.079*
C1160.08285 (17)0.97290 (16)0.14153 (13)0.0519 (4)
H1160.03151.03790.13630.062*
C1210.19261 (13)0.94414 (13)0.26142 (12)0.0364 (3)
C1220.23789 (16)0.84600 (16)0.21651 (15)0.0523 (4)
H1220.19340.77730.22340.063*
C1230.34754 (18)0.8492 (2)0.16203 (18)0.0661 (5)
H1230.37620.78310.13150.079*
C1240.41535 (17)0.9506 (2)0.15253 (17)0.0640 (6)
H1240.48990.95270.11610.077*
C1250.37245 (16)1.04800 (18)0.19685 (16)0.0574 (5)
H1250.41861.11600.19090.069*
C1260.26103 (14)1.04625 (15)0.25035 (14)0.0452 (4)
H1260.23181.11310.27890.054*
C2110.27268 (14)0.56336 (14)0.77409 (12)0.0387 (3)
C2120.34052 (17)0.46441 (16)0.74599 (16)0.0565 (5)
H2120.30820.41330.69780.068*
C2130.45587 (18)0.4413 (2)0.7893 (2)0.0740 (6)
H2130.50120.37530.76890.089*
C2140.50391 (18)0.5142 (2)0.86130 (19)0.0714 (6)
H2140.58120.49760.89060.086*
C2150.43786 (18)0.6117 (2)0.89028 (17)0.0669 (6)
H2150.47050.66160.93950.080*
C2160.32386 (16)0.63651 (17)0.84745 (15)0.0539 (5)
H2160.28010.70340.86780.065*
C2210.01321 (14)0.60411 (14)0.82419 (13)0.0400 (4)
C2220.05977 (15)0.51357 (16)0.84572 (15)0.0505 (4)
H2220.05320.44790.80360.061*
C2230.14225 (17)0.5214 (2)0.92992 (16)0.0621 (5)
H2230.19040.46040.94420.074*
C2240.15388 (19)0.6175 (2)0.99232 (16)0.0691 (6)
H2240.21070.62221.04780.083*
C2250.0807 (2)0.70803 (19)0.97257 (16)0.0681 (6)
H2250.08720.77321.01540.082*
C2260.00178 (18)0.70071 (16)0.88905 (15)0.0537 (4)
H2260.05060.76150.87590.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03972 (10)0.02566 (11)0.02907 (11)0.00004 (8)0.00007 (8)0.00363 (8)
O10.0582 (7)0.0329 (7)0.0404 (7)0.0017 (5)0.0068 (5)0.0019 (6)
P10.04062 (18)0.0272 (2)0.02746 (19)0.00090 (14)0.00116 (14)0.00179 (15)
P20.0457 (2)0.0279 (2)0.0325 (2)0.00080 (15)0.00630 (16)0.00445 (16)
O110.0534 (6)0.0337 (6)0.0332 (6)0.0016 (5)0.0041 (5)0.0082 (5)
O120.0487 (5)0.0295 (6)0.0356 (6)0.0009 (4)0.0027 (4)0.0024 (4)
O210.0555 (6)0.0287 (6)0.0360 (6)0.0024 (5)0.0080 (5)0.0066 (5)
O220.0650 (7)0.0338 (6)0.0411 (6)0.0040 (5)0.0115 (5)0.0007 (5)
N110.0424 (6)0.0401 (8)0.0365 (7)0.0011 (5)0.0007 (5)0.0031 (6)
N210.0449 (7)0.0360 (7)0.0389 (7)0.0020 (6)0.0000 (5)0.0059 (6)
C120.0475 (8)0.0493 (11)0.0436 (9)0.0062 (7)0.0014 (7)0.0059 (8)
C130.0594 (11)0.0765 (15)0.0657 (13)0.0227 (10)0.0013 (10)0.0176 (11)
C140.0504 (11)0.112 (2)0.0707 (15)0.0126 (12)0.0115 (10)0.0149 (14)
C150.0497 (10)0.0930 (19)0.0834 (16)0.0168 (11)0.0098 (10)0.0011 (14)
C160.0522 (9)0.0550 (12)0.0652 (12)0.0083 (8)0.0039 (9)0.0057 (10)
C220.0594 (10)0.0657 (13)0.0441 (10)0.0059 (9)0.0054 (8)0.0060 (9)
C230.0708 (13)0.117 (2)0.0587 (14)0.0092 (14)0.0219 (11)0.0173 (14)
C240.0629 (13)0.114 (2)0.0963 (19)0.0292 (14)0.0099 (13)0.0356 (17)
C250.0624 (12)0.0748 (17)0.110 (2)0.0253 (11)0.0011 (13)0.0028 (15)
C260.0539 (10)0.0578 (13)0.0721 (14)0.0093 (9)0.0020 (9)0.0093 (10)
C1110.0425 (7)0.0334 (8)0.0318 (8)0.0015 (6)0.0014 (6)0.0030 (6)
C1120.0573 (9)0.0438 (10)0.0433 (10)0.0091 (8)0.0032 (7)0.0047 (8)
C1130.0594 (11)0.0690 (14)0.0677 (14)0.0203 (10)0.0020 (10)0.0228 (11)
C1140.0567 (10)0.0878 (17)0.0497 (11)0.0090 (10)0.0130 (9)0.0222 (11)
C1150.0778 (13)0.0751 (15)0.0462 (11)0.0147 (11)0.0172 (10)0.0001 (10)
C1160.0673 (11)0.0461 (11)0.0420 (10)0.0008 (8)0.0105 (8)0.0045 (8)
C1210.0412 (7)0.0379 (9)0.0303 (8)0.0039 (6)0.0003 (6)0.0033 (6)
C1220.0557 (10)0.0435 (11)0.0578 (11)0.0065 (8)0.0065 (8)0.0040 (9)
C1230.0612 (11)0.0648 (14)0.0733 (14)0.0195 (10)0.0144 (10)0.0080 (11)
C1240.0439 (9)0.0837 (16)0.0661 (13)0.0143 (10)0.0156 (9)0.0127 (12)
C1250.0482 (9)0.0569 (13)0.0675 (13)0.0015 (8)0.0084 (9)0.0157 (10)
C1260.0470 (8)0.0417 (10)0.0473 (10)0.0016 (7)0.0057 (7)0.0070 (8)
C2110.0451 (8)0.0362 (9)0.0353 (8)0.0014 (6)0.0015 (6)0.0094 (7)
C2120.0575 (10)0.0452 (11)0.0663 (13)0.0060 (8)0.0043 (9)0.0018 (9)
C2130.0574 (11)0.0683 (15)0.0949 (18)0.0217 (10)0.0033 (11)0.0165 (13)
C2140.0477 (10)0.0944 (19)0.0730 (15)0.0036 (11)0.0110 (10)0.0275 (14)
C2150.0601 (11)0.0871 (17)0.0544 (12)0.0109 (11)0.0175 (9)0.0023 (11)
C2160.0552 (10)0.0567 (12)0.0496 (11)0.0005 (8)0.0085 (8)0.0021 (9)
C2210.0445 (8)0.0371 (9)0.0387 (8)0.0017 (7)0.0060 (6)0.0092 (7)
C2220.0500 (9)0.0478 (11)0.0547 (11)0.0080 (8)0.0059 (8)0.0100 (9)
C2230.0489 (9)0.0760 (15)0.0636 (13)0.0137 (9)0.0032 (9)0.0253 (11)
C2240.0633 (12)0.0883 (17)0.0547 (12)0.0131 (11)0.0127 (10)0.0177 (12)
C2250.0866 (14)0.0638 (14)0.0520 (12)0.0139 (11)0.0140 (10)0.0028 (10)
C2260.0671 (11)0.0425 (10)0.0511 (11)0.0017 (8)0.0061 (9)0.0051 (8)
Geometric parameters (Å, º) top
Co1—O12.2076 (12)C112—C1131.394 (2)
Co1—O112.0687 (11)C112—H1120.9300
Co1—O12i2.0615 (10)C113—C1141.368 (3)
Co1—O212.0957 (10)C113—H1130.9300
Co1—N112.1736 (12)C114—C1151.364 (3)
Co1—N212.1740 (12)C114—H1140.9300
Co1—Co1i5.0718 (4)C115—C1161.389 (2)
O1—H1A0.81 (3)C115—H1150.9300
O1—H1B0.93 (2)C116—H1160.9300
P1—O111.5004 (11)C121—C1221.390 (2)
P1—O121.4944 (11)C121—C1261.395 (2)
P1—C1211.8133 (15)C122—C1231.374 (3)
P1—C1111.8182 (14)C122—H1220.9300
P2—O211.5081 (11)C123—C1241.383 (3)
P2—O221.4982 (12)C123—H1230.9300
P2—C2211.8085 (16)C124—C1251.369 (3)
P2—C2111.8139 (16)C124—H1240.9300
O12—Co1i2.0615 (10)C125—C1261.384 (2)
N11—C161.334 (2)C125—H1250.9300
N11—C121.336 (2)C126—H1260.9300
N21—C221.325 (2)C211—C2121.386 (2)
N21—C261.327 (2)C211—C2161.389 (2)
C12—C131.379 (2)C212—C2131.382 (3)
C12—H120.9300C212—H2120.9300
C13—C141.373 (3)C213—C2141.362 (3)
C13—H130.9300C213—H2130.9300
C14—C151.365 (3)C214—C2151.366 (3)
C14—H140.9300C214—H2140.9300
C15—C161.377 (3)C215—C2161.370 (3)
C15—H150.9300C215—H2150.9300
C16—H160.9300C216—H2160.9300
C22—C231.389 (3)C221—C2261.389 (2)
C22—H220.9300C221—C2221.391 (2)
C23—C241.358 (4)C222—C2231.385 (2)
C23—H230.9300C222—H2220.9300
C24—C251.366 (4)C223—C2241.367 (3)
C24—H240.9300C223—H2230.9300
C25—C261.371 (3)C224—C2251.388 (3)
C25—H250.9300C224—H2240.9300
C26—H260.9300C225—C2261.378 (2)
C111—C1121.384 (2)C225—H2250.9300
C111—C1161.385 (2)C226—H2260.9300
O11—Co1—O12i98.71 (4)C25—C26—H26118.2
O12i—Co1—O2190.72 (4)C112—C111—C116118.56 (15)
O11—Co1—O21170.41 (4)C112—C111—P1121.04 (12)
O12i—Co1—N1191.74 (5)C116—C111—P1120.32 (12)
O11—Co1—N1192.90 (5)C111—C112—C113119.87 (18)
O21—Co1—N1188.52 (5)C111—C112—H112120.1
O12i—Co1—N2189.33 (5)C113—C112—H112120.1
O11—Co1—N2187.26 (5)C114—C113—C112120.78 (18)
O21—Co1—N2191.15 (5)C114—C113—H113119.6
N11—Co1—N21178.88 (5)C112—C113—H113119.6
O12i—Co1—O1174.84 (5)C115—C114—C113119.79 (17)
O11—Co1—O186.42 (5)C115—C114—H114120.1
O21—Co1—O184.18 (5)C113—C114—H114120.1
N11—Co1—O187.34 (5)C114—C115—C116120.10 (19)
N21—Co1—O191.56 (5)C114—C115—H115120.0
O12i—Co1—Co1i45.76 (3)C116—C115—H115120.0
O11—Co1—Co1i55.87 (3)C111—C116—C115120.88 (18)
O21—Co1—Co1i133.65 (3)C111—C116—H116119.6
N11—Co1—Co1i79.51 (4)C115—C116—H116119.6
N21—Co1—Co1i101.48 (4)C122—C121—C126118.63 (15)
O1—Co1—Co1i138.80 (4)C122—C121—P1120.75 (12)
Co1—O1—H1A108.3 (19)C126—C121—P1120.59 (12)
Co1—O1—H1B128.3 (14)C123—C122—C121120.85 (18)
H1A—O1—H1B98 (2)C123—C122—H122119.6
O11—P1—O12118.11 (6)C121—C122—H122119.6
O12—P1—C121108.51 (7)C122—C123—C124120.06 (19)
O11—P1—C121109.05 (7)C122—C123—H123120.0
O12—P1—C111107.87 (7)C124—C123—H123120.0
O11—P1—C111108.42 (7)C125—C124—C123119.83 (18)
C121—P1—C111103.96 (7)C125—C124—H124120.1
O21—P2—O22117.37 (6)C123—C124—H124120.1
O22—P2—C221110.22 (7)C124—C125—C126120.67 (18)
O21—P2—C221108.40 (7)C124—C125—H125119.7
O22—P2—C211107.74 (7)C126—C125—H125119.7
O21—P2—C211107.05 (7)C125—C126—C121119.95 (17)
C221—P2—C211105.36 (7)C125—C126—H126120.0
P1—O11—Co1142.74 (7)C121—C126—H126120.0
P1—O12—Co1i158.85 (7)C212—C211—C216117.81 (16)
P2—O21—Co1134.88 (7)C212—C211—P2120.68 (14)
C16—N11—C12116.99 (14)C216—C211—P2121.51 (13)
C16—N11—Co1120.53 (12)C213—C212—C211120.4 (2)
C12—N11—Co1122.36 (10)C213—C212—H212119.8
C22—N21—C26116.81 (15)C211—C212—H212119.8
C22—N21—Co1121.65 (12)C214—C213—C212120.7 (2)
C26—N21—Co1121.43 (11)C214—C213—H213119.6
N11—C12—C13123.25 (17)C212—C213—H213119.6
N11—C12—H12118.4C213—C214—C215119.59 (19)
C13—C12—H12118.4C213—C214—H214120.2
C14—C13—C12119.0 (2)C215—C214—H214120.2
C14—C13—H13120.5C214—C215—C216120.5 (2)
C12—C13—H13120.5C214—C215—H215119.8
C15—C14—C13118.09 (18)C216—C215—H215119.8
C15—C14—H14121.0C215—C216—C211120.99 (19)
C13—C14—H14121.0C215—C216—H216119.5
C14—C15—C16119.91 (19)C211—C216—H216119.5
C14—C15—H15120.0C226—C221—C222118.61 (16)
C16—C15—H15120.0C226—C221—P2120.47 (13)
N11—C16—C15122.7 (2)C222—C221—P2120.91 (13)
N11—C16—H16118.6C223—C222—C221119.92 (18)
C15—C16—H16118.6C223—C222—H222120.0
N21—C22—C23122.9 (2)C221—C222—H222120.0
N21—C22—H22118.6C224—C223—C222120.93 (19)
C23—C22—H22118.6C224—C223—H223119.5
C24—C23—C22119.2 (2)C222—C223—H223119.5
C24—C23—H23120.4C223—C224—C225119.81 (18)
C22—C23—H23120.4C223—C224—H224120.1
C23—C24—C25118.3 (2)C225—C224—H224120.1
C23—C24—H24120.9C226—C225—C224119.5 (2)
C25—C24—H24120.9C226—C225—H225120.2
C24—C25—C26119.2 (2)C224—C225—H225120.2
C24—C25—H25120.4C225—C226—C221121.18 (19)
C26—C25—H25120.4C225—C226—H226119.4
N21—C26—C25123.6 (2)C221—C226—H226119.4
N21—C26—H26118.2
O12—P1—O11—Co133.52 (13)O12—P1—C111—C112124.45 (13)
C121—P1—O11—Co1157.94 (10)O11—P1—C111—C1124.54 (16)
C111—P1—O11—Co189.48 (11)C121—P1—C111—C112120.48 (14)
O12i—Co1—O11—P149.99 (11)O12—P1—C111—C11652.31 (16)
N11—Co1—O11—P142.21 (11)O11—P1—C111—C116178.70 (13)
N21—Co1—O11—P1138.89 (11)C121—P1—C111—C11662.77 (16)
O1—Co1—O11—P1129.37 (11)C116—C111—C112—C1131.2 (3)
Co1i—Co1—O11—P133.04 (9)P1—C111—C112—C113175.66 (14)
O11—P1—O12—Co1i56.6 (2)C111—C112—C113—C1140.1 (3)
C121—P1—O12—Co1i68.1 (2)C112—C113—C114—C1151.5 (3)
C111—P1—O12—Co1i179.88 (18)C113—C114—C115—C1162.0 (3)
O22—P2—O21—Co129.33 (12)C112—C111—C116—C1150.6 (3)
C221—P2—O21—Co196.29 (10)P1—C111—C116—C115176.20 (15)
C211—P2—O21—Co1150.51 (9)C114—C115—C116—C1110.9 (3)
O12i—Co1—O21—P2140.01 (9)O12—P1—C121—C122179.77 (12)
O11—Co1—O21—P229.6 (3)O11—P1—C121—C12250.34 (14)
N11—Co1—O21—P2128.26 (9)C111—P1—C121—C12265.15 (14)
N21—Co1—O21—P250.67 (9)O12—P1—C121—C1262.06 (14)
O1—Co1—O21—P240.79 (9)O11—P1—C121—C126131.94 (12)
Co1i—Co1—O21—P2157.78 (6)C111—P1—C121—C126112.56 (13)
O12i—Co1—N11—C16140.74 (14)C126—C121—C122—C1230.2 (3)
O11—Co1—N11—C16120.44 (14)P1—C121—C122—C123177.57 (15)
O21—Co1—N11—C1650.07 (14)C121—C122—C123—C1240.9 (3)
O1—Co1—N11—C1634.17 (14)C122—C123—C124—C1250.5 (3)
Co1i—Co1—N11—C16174.94 (14)C123—C124—C125—C1260.6 (3)
O12i—Co1—N11—C1243.34 (13)C124—C125—C126—C1211.4 (3)
O11—Co1—N11—C1255.47 (13)C122—C121—C126—C1250.9 (2)
O21—Co1—N11—C12134.02 (13)P1—C121—C126—C125178.70 (13)
O1—Co1—N11—C12141.74 (13)O22—P2—C211—C2121.28 (16)
Co1i—Co1—N11—C120.97 (12)O21—P2—C211—C212125.81 (14)
O12i—Co1—N21—C2228.19 (14)C221—P2—C211—C212118.94 (15)
O11—Co1—N21—C22126.94 (14)O22—P2—C211—C216179.28 (14)
O21—Co1—N21—C2262.51 (14)O21—P2—C211—C21653.63 (15)
O1—Co1—N21—C22146.72 (14)C221—P2—C211—C21661.62 (15)
Co1i—Co1—N21—C2272.60 (14)C216—C211—C212—C2130.8 (3)
O12i—Co1—N21—C26155.54 (15)P2—C211—C212—C213178.63 (16)
O11—Co1—N21—C2656.79 (15)C211—C212—C213—C2141.1 (3)
O21—Co1—N21—C26113.75 (15)C212—C213—C214—C2150.7 (3)
O1—Co1—N21—C2629.55 (15)C213—C214—C215—C2160.0 (3)
Co1i—Co1—N21—C26111.13 (14)C214—C215—C216—C2110.2 (3)
C16—N11—C12—C130.4 (3)C212—C211—C216—C2150.2 (3)
Co1—N11—C12—C13175.66 (14)P2—C211—C216—C215179.25 (15)
N11—C12—C13—C140.1 (3)O22—P2—C221—C226165.00 (13)
C12—C13—C14—C150.3 (3)O21—P2—C221—C22635.29 (16)
C13—C14—C15—C160.2 (4)C211—P2—C221—C22679.03 (15)
C12—N11—C16—C150.6 (3)O22—P2—C221—C22216.04 (16)
Co1—N11—C16—C15175.56 (16)O21—P2—C221—C222145.75 (13)
C14—C15—C16—N110.3 (4)C211—P2—C221—C22299.93 (14)
C26—N21—C22—C230.5 (3)C226—C221—C222—C2230.5 (3)
Co1—N21—C22—C23176.98 (16)P2—C221—C222—C223179.44 (14)
N21—C22—C23—C240.1 (4)C221—C222—C223—C2240.4 (3)
C22—C23—C24—C251.6 (4)C222—C223—C224—C2251.2 (3)
C23—C24—C25—C262.8 (4)C223—C224—C225—C2261.0 (3)
C22—N21—C26—C250.7 (3)C224—C225—C226—C2210.1 (3)
Co1—N21—C26—C25175.70 (17)C222—C221—C226—C2250.6 (3)
C24—C25—C26—N212.5 (4)P2—C221—C226—C225179.59 (16)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O220.81 (3)2.02 (3)2.8072 (18)163 (3)
O1—H1B···O22ii0.93 (2)1.84 (2)2.7464 (17)165 (2)
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co2(C12H10O2P)4(C5H5N)4(H2O)2]
Mr1338.97
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)10.7871 (4), 11.8221 (4), 12.7061 (5)
α, β, γ (°)91.609 (2), 90.390 (2), 92.774 (2)
V3)1617.77 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.25 × 0.15 × 0.07
Data collection
DiffractometerMake? Model? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004; values rescaled by 0.95)
Tmin, Tmax0.745, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
30066, 9046, 6553
Rint0.027
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.06
No. of reflections9046
No. of parameters405
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: COSMO, APEX2 and BIS (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Co1—O12.2076 (12)Co1—Co1i5.0718 (4)
Co1—O112.0687 (11)P1—O111.5004 (11)
Co1—O12i2.0615 (10)P1—O121.4944 (11)
Co1—O212.0957 (10)P2—O211.5081 (11)
Co1—N112.1736 (12)P2—O221.4982 (12)
Co1—N212.1740 (12)
O11—Co1—O12i98.71 (4)O21—Co1—N2191.15 (5)
O12i—Co1—O2190.72 (4)O11—Co1—O186.42 (5)
O11—Co1—O21170.41 (4)O21—Co1—O184.18 (5)
O12i—Co1—N1191.74 (5)N11—Co1—O187.34 (5)
O11—Co1—N1192.90 (5)N21—Co1—O191.56 (5)
O21—Co1—N1188.52 (5)O11—P1—O12118.11 (6)
O12i—Co1—N2189.33 (5)O21—P2—O22117.37 (6)
O11—Co1—N2187.26 (5)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O220.81 (3)2.02 (3)2.8072 (18)163 (3)
O1—H1B···O22ii0.93 (2)1.84 (2)2.7464 (17)165 (2)
Symmetry code: (ii) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds