Download citation
Download citation
link to html
The CeIII ion in the title complex, [Ce(NO3)3(C13H12N4O)2], is 12-coordinated by six chelating nitrate O atoms and six donors (2 O and 4 N atoms) of two N'-[1-(2-pyrid­yl)ethyl­idene]isonicotinohydrazide ligands, exhibiting a bicapped penta­gonal-anti­prism-type coordination geometry. The title complex possesses C2 point symmetry and is located on a twofold crystallographic axis. Each mol­ecule is linked with four surrounding mol­ecules by four N-H...N hydrogen bonds, resulting in an extended two-dimensional layer parallel to the ab plane, while [pi]-[pi] inter­actions between pyridine rings from neighboring complex mol­ecules connect the two-dimensional layers into a three-dimensional cerium-organic supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109023385/sk3327sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109023385/sk3327Isup2.hkl
Contains datablock I

CCDC reference: 742233

Comment top

Multiple lanthanide complexes have been studied in view of their different coordination numbers and different coordination configurations. Numerous nitrate-containing lanthanide complexes are archived in the Cambridge Structural Database (Version 5.30 of November 2008; Allen, 2002). A large variation in the coordination number and coordination configuration of metal atom for these lanthanide nitrate complexes is reported. [Nd(6-Et)2(NO3)].(NO3)2.4EtOH (Gan et al., 2003) and [Dy(L)(NO3)(CH3)2SO] (L = 2,6-diacetylpyridinebisbenzoylhydrazone; Tamboura et al., 2003) are eight-coordinated lanthanide complexes with nitrate groups. Lanthanide nitrate complexes with coordination number 9 have also been reported (Platas et al., 1999; Fukuda et al., 2002; Tamboura et al., 2003; Hudson et al., 2003; Diamantopoulou et al., 2003; Drew et al., 2004; Lu et al., 2004; and Dröse & Gottfriedsen, 2008). Ten-coordinated lanthanide nitrate complexes include [La(NO3)3(CH3CN)4], [La(NO3)3(CH3CN)3(H2O)], [La(NO3)3(terpy)(CH3CN)], [La(NO3)3(terpy)(H2O)] (terpy is terpyridine; Fréchette & Bensimon, 1995), [Ln(terpy)(acac)(NO3)2(H2O)] (acac is acetylacetonate; Fukuda et al., 2002), [Cu2Gd(L)2(NO3)2(MeOH)2]NO3.MeOH (L is ???; Shiga et al., 2003) and Ce(NO3)3(phen)2 (Lin & Feng, 2003). Typical 11-coordinated lanthanide nitrate complexes are [La(NO3)4(terpy)(CH3CN)]-, [La(NO3)4(terpy) (H2O)]- (Fréchette & Bensimon, 1995), [H2terpy][Sm(terpy)(NO3)4]NO3 (Drew et al., 1998) and (C5H6N).[Ce(NO3)4(terpy)].C5H5N (Grigoriev et al., 2001).

We report here the structure of a 12-coordinated cerium nitrate complex with N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide (Fig. 1). The molecule exhibits C2 point symmetry with atoms Ce1, N6 and O6 located on a crystallographic twofold rotation axis. The Ce3+ ion is coordinated by 12 donors (Fig. 2), of which atoms O2, O3, O2A, O3A, O5 and O5A [where the suffix A denotes the symmetry operation (-x, y, -z + 1/2)] are from three bidentate nitrate groups; two carbonyl O atoms (O1 and O1A) and four N atoms (N1, N2, N1A and N2A) from two symmetry-related N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligands complete the coordination. The environment around the Ce atom can be described as a bicapped pentagonal antiprism with atoms O3A, O2A, O5A, O5 and N2, and atoms O1, O2, N1A, N2A and O1A forming the two pentagonal bases, atom N1 of the pyridine group and atoms O3 and O3A [should this be just O3; O3A is already defined as a basal atom?] of a coordinated nitrate group being the two capping atoms. The dihedral angle between the two pentagonal bases is 4.11 (9)°. The Ce—O(NO3) bond distances in the title complex range from 2.620 (2) to 2.684 (2) Å with a mean value of 2.642 Å. The corresponding mean values in the 12-coordinated compound [Ce(NO3)3(C13H11N3O)2].C3H6O.2H2O (Christidis et al., 1999), the 11-coordinated complex Ce(NO3)4(L) and the ten-coordinated 2[LH3]3+[Ce(NO3)5(OH2)]-[Ce(NO3)5(EtO)]2-.2NO3-.OH- (L = 2,4,6-tri-tert-butylpyridine-1,3,5-triazine; Chan et al., 1996) are 2.675, 2.599 and 2.595 Å, respectively. This indicates that the Ce—O(NO3) bond distance gets longer with higher coordination number. The Ce—O(carbonyl) bond distance of in complex (I) is 2.603 (2) Å. This indicates that the Ce—O(carbonyl) bond is slightly stronger than the Ce—O(NO3) bonds in the title complex. This was also observed in other lanthanide complexes (Shiga et al., 2003; Fukuda et al., 2002; Tamboura et al., 2003).

The three nitrate groups are essentially planar; two are related by a twofold rotation axis, while the third (N6/O5/O5A/O6) exhibits C2 symmetry. The two hydrazone ligands are close to being coplanar. The dihedral angle between the two pyridine rings in the same hydrazone ligand is 6.5 (2)°. The two hydrazone ligands are related by the twofold rotation axis; the dihedral angles between the two corresponding pyridine rings in the two symmetry-related hydrazone ligands are 84.20 (9) and 82.80 (9)°, respectively.

As illustrated in Fig. 3, every cerium complex molecule connects four adjacent complex molecules via four N—H···N hydrogen bonds [N3—H3B···N4ii, N3iii—H3Biii···N4, N3iv—H3Biv···N4v and N3vi—H3Bvi···N4iv; symmetry codes: (ii) -x + 1/2, y + 1/2, -z + 1/2; (iii) -x + 1/2, y - 1/2, -z + 1/2; (iv) -x 1/2 - z; (v) x - 1/2, y + 1/2, z; (vi) x - 1/2, y - 1/2, z] to give an extended two-dimensional layer parallel to the ab plane.

The N1/C1–C5 pyridine ring in the molecule at (x, y, z) and the N4/C8–C12 pyridine ring of the molecule at (-x, -y, -z) are almost parallel, with a dihedral angle of 6.5 (2)° between them. The interplanar spacing is about 3.503 Å and the ring-centroid separation is 3.680 (2) Å. This indicates a ππ interaction (shown as dashed lines in Fig. 4) between the two pyridine rings, resulting in an extended one-dimensional chain along the c axis and linking the two-dimensional layers into a three-dimensional metal–organic supramolecular network.

Up to now, the highest coordination number in the known lanthanide nitrate complexes is 12. It is worth noting that almost all of the lanthanide nitrate complexes with coordination number 12 contain one of the two lanthanide ions La3+ and Ce3+. This may be because La3+ and Ce3+ ions possess a 4fn-15d16s2 electronic configuration. This type of complex possess the structural units Ln(NO3)6 or Ln(L)m(NO3)3 (where m = 1 or 2). Examples of complexes with the structural unit Ln(NO3)6 are [bis(8-quinolyloxyethyl)ether.H3O]3[La(NO3)6] (Tang et al., 1996), 3[H2terpy]2+.2[La(NO3)6]3-.3H2O (Drew et al., 1998) and [Me4cyclam(OHO)2]2[Ln(NO3)6](NO3).H2O (Lu et al., 2004). Examples of complexes with the structural unit Ln(L)m(NO3)3 are Ce(NO3)3(C15H11N3)(CH4O)2 (Grigoriev et al., 2001), La(NO3)3L (Shestakova et al., 2001) and (La(NO3)3(C6H14O6).4H2O (Su et al., 2007).

Describing the coordination polyhedra of the lanthanide atoms in the 12-coordinate complexes is quite difficult. An irregular icosahedron is the ambiguous interpretation in some publications concerning these complexes. The coordination geometry of the Ce atom in (I) is a bicapped pentagonal antiprism. All known lanthanide nitrate complexes with coordination number 12 have a discrete structure.

The IR spectrum of the title complex exhibits two bands, at 3391 and 1635 cm-1, respectively, due to ν(NH) and ν(CO) stretches. They show the existence of the NH group in the hydrazone ligand, which means that the hydrazone moiety in complex (I) behaves as a neutral ligand and coordinates to the Ce ion in the keto form via the carbonyl O, hydrazine N and pyridine N atoms.

The absorption bands at 1479, 1316 and 1037 cm-1 are assigned to the ν(N O) (ν1), νasym(NO2) (ν5) and νsym(NO2) (ν2) vibrations, respectively, of the chelating bidentate nitrate ion (Aruna & Alexander, 1996). The larger separation of 163 cm-1 between the two highest-frequency bands (ν1 and ν5) indicates strong interaction of the O atoms of the nitrate with the lanthanide ions and is typical of bidentate coordination. The bands observed at 1595 and 1550 cm-1 are assigned to the ν(CN) vibration (Jagst et al., 2005). The band due to the ν(N—N) mode appears at 1009 cm-1 (Tamboura et al., 2004). These are consistent with the crystal structure of (I).

Thermogravimetric analysis of complex (I) shows unique weight losses between 510 and 514 K to give a loss of 83.9%, corresponding to the loss of two hydrazone ligands and three nitrate ions per formula unit. The product of thermal decomposition is Ce2O3. Compared with the high thermal stability of most of lanthanide nitrate complexes (Aruna & Alexander, 1996), the thermal stability of the title lanthanide nitrate complex is quite low.

Related literature top

For related literature, see: Aruna & Alexander (1996); Chan et al. (1996); Christidis et al. (1999); Diamantopoulou et al. (2003); Drew et al. (2004); Drew et al. (1998); Dröse & Gottfriedsen (2008); Fréchette & Bensimon (1995); Fukuda et al. (2002); Gan et al. (2003); Grigoriev et al. (2001); Hudson et al. (2003); Jagst et al. (2005); Lin & Feng (2003); Lu et al. (2004); Platas et al. (1999); Shestakova et al. (2001); Shiga et al. (2003); Su et al. (2007). Tamboura et al. (2003); Tamboura et al. (2004); Tang et al. (1996)

Experimental top

N'-[1-(2-Pyridyl)ethylidene]isonicotinohydrazide (25 mg, 0.10 mmol) was added to a solution of Ce(NO3)3.6H2O (44 mg, 0.10 mmol) in a mixed solvent of dry methanol and DMF (1:1 v/v, 10 ml) with stirring. After stirring for 30 min, the reaction mixture was filtered and left at room temperature. Yellow prism-shaped crystals suitable for X-ray diffraction were obtained by slow evaporation after standing for 10 d (yield 58%). Analysis found: C 38.59, H 3.07, N 19.18%; calculated for C26H24CeN11O11: C 38.71, H 3.00, N 19.10%.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N)].

Computing details top

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS98 (Sheldrick, 2008); program(s) used to refine structure: SHELXL98 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97/2 (Sheldrick,2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted for clarity. The suffix A corresponds to symmetry code (i) in Table 1.
[Figure 2] Fig. 2. The coordination geometry of the bicapped pentagonal antiprism for the Ce atom in (I). The suffix A corresponds to symmetry code (i) in Table 1.
[Figure 3] Fig. 3. The extended two-dimensional network of complex (I) parallel to the ab plane, formed by N—H···N hydrogen bonds.
[Figure 4] Fig. 4. The one-dimensional chain along the c axis, formed by ππ stacking.
Trinitratobis{N'-[1-(2- pyridyl)ethylidene]isonicotinohydrazide}cerium(III) top
Crystal data top
[Ce(NO3)3(C13H12N4O)2]F(000) = 1612
Mr = 806.68Dx = 1.815 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3384 reflections
a = 21.842 (11) Åθ = 3.1–27.5°
b = 10.591 (4) ŵ = 1.62 mm1
c = 15.105 (5) ÅT = 293 K
β = 122.317 (15)°Prism, yellow
V = 2953 (2) Å30.28 × 0.17 × 0.15 mm
Z = 4
Data collection top
Rigaku Weissenberg IP
diffractometer
3384 independent reflections
Radiation source: fine-focus sealed tube3226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 2828
Tmin = 0.686, Tmax = 1.000k = 1313
14241 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0201P)2 + 6.58P]
where P = (Fo2 + 2Fc2)/3
3384 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 1.22 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Ce(NO3)3(C13H12N4O)2]V = 2953 (2) Å3
Mr = 806.68Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.842 (11) ŵ = 1.62 mm1
b = 10.591 (4) ÅT = 293 K
c = 15.105 (5) Å0.28 × 0.17 × 0.15 mm
β = 122.317 (15)°
Data collection top
Rigaku Weissenberg IP
diffractometer
3384 independent reflections
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
3226 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 1.000Rint = 0.029
14241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.13Δρmax = 1.22 e Å3
3384 reflectionsΔρmin = 0.68 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.00000.169370 (17)0.25000.02224 (6)
N10.06659 (12)0.3096 (2)0.05478 (17)0.0313 (5)
N20.04560 (11)0.15931 (19)0.11317 (16)0.0265 (4)
N30.10016 (10)0.06968 (19)0.14198 (16)0.0257 (4)
H3B0.13100.07500.12330.031*
N40.26894 (12)0.3030 (2)0.31543 (18)0.0355 (5)
O10.05450 (9)0.03546 (15)0.22400 (14)0.0279 (4)
C10.03472 (13)0.3141 (2)0.00099 (19)0.0279 (5)
C20.05971 (15)0.3917 (3)0.0874 (2)0.0357 (6)
H20.03630.39360.12380.043*
C30.11981 (16)0.4663 (3)0.1191 (2)0.0409 (6)
H30.13700.52000.17630.049*
C40.15378 (15)0.4600 (3)0.0650 (2)0.0396 (6)
H40.19510.50770.08580.047*
C50.12539 (15)0.3813 (3)0.0212 (2)0.0382 (6)
H50.14850.37800.05800.046*
C60.02743 (13)0.2278 (2)0.03232 (19)0.0268 (5)
C70.10064 (12)0.0258 (2)0.20144 (18)0.0234 (5)
C80.15974 (12)0.1214 (2)0.23835 (18)0.0236 (4)
C90.20184 (13)0.1350 (2)0.1957 (2)0.0290 (5)
H90.19440.08360.14090.035*
C100.25539 (14)0.2267 (3)0.2365 (2)0.0336 (6)
H100.28340.23570.20740.040*
C110.22718 (16)0.2902 (3)0.3546 (2)0.0402 (6)
H110.23530.34350.40880.048*
C120.17234 (15)0.2015 (3)0.3188 (2)0.0340 (6)
H120.14440.19590.34830.041*
C130.06213 (15)0.2231 (3)0.0308 (2)0.0345 (6)
H13A0.09150.14860.01270.052*
H13B0.09190.29650.01590.052*
H13C0.02520.22130.10400.052*
N50.15466 (11)0.0960 (2)0.42569 (17)0.0316 (5)
O20.14177 (9)0.16985 (18)0.35122 (14)0.0330 (4)
O30.10161 (10)0.0560 (2)0.42774 (15)0.0395 (4)
O40.21661 (11)0.0641 (3)0.49221 (18)0.0586 (6)
N60.00000.4546 (3)0.25000.0504 (10)
O50.04861 (12)0.3947 (2)0.24731 (16)0.0440 (5)
O60.00000.5724 (3)0.25000.0857 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.01959 (9)0.02176 (10)0.02872 (10)0.0000.01515 (8)0.000
N10.0319 (11)0.0321 (11)0.0296 (10)0.0042 (9)0.0162 (9)0.0024 (9)
N20.0243 (9)0.0263 (10)0.0325 (10)0.0058 (8)0.0176 (8)0.0057 (9)
N30.0237 (9)0.0274 (10)0.0316 (10)0.0056 (8)0.0185 (8)0.0036 (9)
N40.0287 (11)0.0349 (12)0.0391 (12)0.0088 (9)0.0155 (10)0.0011 (10)
O10.0249 (8)0.0244 (8)0.0412 (10)0.0020 (6)0.0224 (8)0.0025 (7)
C10.0292 (12)0.0250 (12)0.0273 (12)0.0019 (9)0.0136 (10)0.0011 (10)
C20.0368 (14)0.0357 (14)0.0337 (13)0.0002 (11)0.0184 (11)0.0057 (12)
C30.0414 (15)0.0360 (15)0.0367 (14)0.0061 (12)0.0152 (12)0.0108 (12)
C40.0327 (13)0.0370 (14)0.0403 (15)0.0089 (11)0.0138 (12)0.0067 (12)
C50.0355 (14)0.0413 (15)0.0391 (14)0.0092 (12)0.0208 (12)0.0044 (13)
C60.0275 (11)0.0260 (11)0.0265 (11)0.0024 (9)0.0141 (9)0.0035 (10)
C70.0202 (10)0.0231 (11)0.0264 (11)0.0015 (8)0.0121 (9)0.0046 (9)
C80.0207 (10)0.0237 (11)0.0252 (11)0.0007 (8)0.0115 (9)0.0030 (9)
C90.0304 (12)0.0300 (12)0.0310 (12)0.0041 (10)0.0194 (10)0.0000 (10)
C100.0304 (12)0.0350 (14)0.0416 (14)0.0042 (11)0.0232 (11)0.0049 (12)
C110.0437 (16)0.0396 (15)0.0371 (14)0.0130 (12)0.0215 (13)0.0110 (13)
C120.0364 (13)0.0372 (14)0.0369 (14)0.0078 (11)0.0252 (12)0.0052 (12)
C130.0393 (14)0.0359 (14)0.0334 (13)0.0033 (11)0.0228 (12)0.0015 (12)
N50.0278 (10)0.0393 (12)0.0279 (10)0.0006 (9)0.0149 (9)0.0032 (10)
O20.0302 (9)0.0403 (10)0.0323 (9)0.0061 (8)0.0192 (8)0.0010 (8)
O30.0369 (10)0.0465 (11)0.0390 (10)0.0061 (9)0.0229 (9)0.0057 (9)
O40.0330 (11)0.0873 (18)0.0431 (12)0.0155 (11)0.0120 (10)0.0088 (12)
N60.098 (3)0.0250 (16)0.043 (2)0.0000.047 (2)0.000
O50.0582 (13)0.0399 (11)0.0441 (11)0.0076 (10)0.0342 (11)0.0034 (10)
O60.180 (5)0.0254 (16)0.108 (3)0.0000.115 (4)0.000
Geometric parameters (Å, º) top
Ce1—O1i2.6032 (17)C3—C41.367 (4)
Ce1—O12.6032 (17)C3—H30.9300
Ce1—O22.620 (2)C4—C51.383 (4)
Ce1—O2i2.620 (2)C4—H40.9300
Ce1—O52.621 (2)C5—H50.9300
Ce1—O5i2.621 (2)C6—C131.503 (3)
Ce1—O3i2.684 (2)C7—C81.494 (3)
Ce1—O32.684 (2)C8—C91.383 (3)
Ce1—N22.734 (2)C8—C121.385 (4)
Ce1—N2i2.734 (2)C9—C101.386 (3)
Ce1—N1i2.904 (2)C9—H90.9300
Ce1—N12.904 (2)C10—H100.9300
N1—C51.337 (3)C11—C121.384 (4)
N1—C11.350 (3)C11—H110.9300
N2—C61.287 (3)C12—H120.9300
N2—N31.399 (3)C13—H13A0.9600
N3—C71.349 (3)C13—H13B0.9600
N3—H3B0.8600C13—H13C0.9600
N4—C111.334 (4)N5—O41.225 (3)
N4—C101.335 (4)N5—O31.250 (3)
O1—C71.229 (3)N5—O21.272 (3)
C1—C21.385 (4)N6—O61.248 (5)
C1—C61.483 (3)N6—O5i1.256 (3)
C2—C31.380 (4)N6—O51.256 (3)
C2—H20.9300
O1i—Ce1—O167.12 (7)C5—N1—C1117.1 (2)
O1i—Ce1—O2114.00 (6)C5—N1—Ce1122.25 (18)
O1—Ce1—O266.21 (6)C1—N1—Ce1120.40 (16)
O1i—Ce1—O2i66.21 (6)C6—N2—N3117.2 (2)
O1—Ce1—O2i114.00 (6)C6—N2—Ce1130.01 (16)
O2—Ce1—O2i179.78 (8)N3—N2—Ce1112.66 (14)
O1i—Ce1—O5169.34 (6)C7—N3—N2114.72 (18)
O1—Ce1—O5122.32 (6)C7—N3—H3B122.6
O2—Ce1—O569.21 (7)N2—N3—H3B122.6
O2i—Ce1—O5110.58 (7)C11—N4—C10117.2 (2)
O1i—Ce1—O5i122.32 (6)C7—O1—Ce1118.80 (15)
O1—Ce1—O5i169.34 (6)N1—C1—C2122.3 (2)
O2—Ce1—O5i110.58 (7)N1—C1—C6116.8 (2)
O2i—Ce1—O5i69.21 (7)C2—C1—C6120.9 (2)
O5—Ce1—O5i48.87 (10)C3—C2—C1119.3 (3)
O1i—Ce1—O3i65.02 (6)C3—C2—H2120.4
O1—Ce1—O3i71.12 (6)C1—C2—H2120.4
O2—Ce1—O3i132.21 (6)C4—C3—C2119.0 (3)
O2i—Ce1—O3i47.93 (6)C4—C3—H3120.5
O5—Ce1—O3i121.14 (7)C2—C3—H3120.5
O5i—Ce1—O3i107.32 (7)C3—C4—C5118.6 (3)
O1i—Ce1—O371.12 (6)C3—C4—H4120.7
O1—Ce1—O365.02 (6)C5—C4—H4120.7
O2—Ce1—O347.93 (6)N1—C5—C4123.8 (3)
O2i—Ce1—O3132.21 (6)N1—C5—H5118.1
O5—Ce1—O3107.32 (7)C4—C5—H5118.1
O5i—Ce1—O3121.14 (7)N2—C6—C1115.5 (2)
O3i—Ce1—O3126.84 (9)N2—C6—C13125.4 (2)
O1i—Ce1—N2117.54 (6)C1—C6—C13119.1 (2)
O1—Ce1—N258.18 (6)O1—C7—N3122.1 (2)
O2—Ce1—N269.31 (6)O1—C7—C8120.9 (2)
O2i—Ce1—N2110.70 (6)N3—C7—C8117.0 (2)
O5—Ce1—N273.11 (6)C9—C8—C12118.4 (2)
O5i—Ce1—N2111.19 (6)C9—C8—C7123.6 (2)
O3i—Ce1—N270.55 (7)C12—C8—C7118.0 (2)
O3—Ce1—N2107.34 (7)C8—C9—C10118.6 (2)
O1i—Ce1—N2i58.18 (6)C8—C9—H9120.7
O1—Ce1—N2i117.54 (6)C10—C9—H9120.7
O2—Ce1—N2i110.70 (6)N4—C10—C9123.5 (2)
O2i—Ce1—N2i69.31 (6)N4—C10—H10118.2
O5—Ce1—N2i111.19 (6)C9—C10—H10118.2
O5i—Ce1—N2i73.11 (6)N4—C11—C12123.4 (3)
O3i—Ce1—N2i107.34 (7)N4—C11—H11118.3
O3—Ce1—N2i70.55 (7)C12—C11—H11118.3
N2—Ce1—N2i175.54 (8)C11—C12—C8118.9 (2)
O1i—Ce1—N1i107.11 (6)C11—C12—H12120.6
O1—Ce1—N1i123.93 (6)C8—C12—H12120.6
O2—Ce1—N1i67.18 (6)C6—C13—H13A109.5
O2i—Ce1—N1i112.69 (6)C6—C13—H13B109.5
O5—Ce1—N1i64.08 (6)H13A—C13—H13B109.5
O5i—Ce1—N1i60.38 (7)C6—C13—H13C109.5
O3i—Ce1—N1i160.40 (6)H13A—C13—H13C109.5
O3—Ce1—N1i61.03 (7)H13B—C13—H13C109.5
N2—Ce1—N1i126.90 (7)O4—N5—O3121.2 (2)
N2i—Ce1—N1i55.90 (6)O4—N5—O2121.4 (2)
O1i—Ce1—N1123.93 (6)O3—N5—O2117.4 (2)
O1—Ce1—N1107.11 (6)N5—O2—Ce198.56 (13)
O2—Ce1—N1112.69 (6)N5—O3—Ce196.02 (15)
O2i—Ce1—N167.18 (6)O6—N6—O5i120.33 (17)
O5—Ce1—N160.38 (7)O6—N6—O5120.33 (17)
O5i—Ce1—N164.08 (6)O5i—N6—O5119.3 (3)
O3i—Ce1—N161.03 (7)O6—N6—Ce1180.000 (1)
O3—Ce1—N1160.40 (6)O5i—N6—Ce159.67 (17)
N2—Ce1—N155.90 (6)O5—N6—Ce159.67 (17)
N2i—Ce1—N1126.90 (7)N6—O5—Ce195.90 (18)
N1i—Ce1—N1118.48 (9)
O1i—Ce1—N1—C574.2 (2)Ce1—O1—C7—C8147.53 (16)
O1—Ce1—N1—C5147.7 (2)N2—N3—C7—O13.2 (3)
O2—Ce1—N1—C5141.5 (2)N2—N3—C7—C8177.45 (19)
O2i—Ce1—N1—C538.3 (2)O1—C7—C8—C9163.2 (2)
O5—Ce1—N1—C594.4 (2)N3—C7—C8—C916.2 (3)
O5i—Ce1—N1—C538.8 (2)O1—C7—C8—C1216.0 (3)
O3i—Ce1—N1—C591.6 (2)N3—C7—C8—C12164.6 (2)
O3—Ce1—N1—C5149.2 (2)C12—C8—C9—C101.0 (4)
N2—Ce1—N1—C5176.7 (2)C7—C8—C9—C10179.8 (2)
N2i—Ce1—N1—C51.0 (2)C11—N4—C10—C91.3 (4)
N1i—Ce1—N1—C566.0 (2)C8—C9—C10—N40.2 (4)
O1i—Ce1—N1—C1112.22 (18)C10—N4—C11—C121.1 (4)
O1—Ce1—N1—C138.68 (19)N4—C11—C12—C80.1 (5)
O2—Ce1—N1—C132.1 (2)C9—C8—C12—C111.2 (4)
O2i—Ce1—N1—C1148.1 (2)C7—C8—C12—C11179.6 (2)
O5—Ce1—N1—C179.26 (19)O4—N5—O2—Ce1176.9 (2)
O5i—Ce1—N1—C1134.9 (2)O3—N5—O2—Ce12.3 (2)
O3i—Ce1—N1—C194.81 (19)O1i—Ce1—O2—N527.23 (15)
O3—Ce1—N1—C124.4 (3)O1—Ce1—O2—N575.82 (14)
N2—Ce1—N1—C19.67 (17)O5—Ce1—O2—N5141.77 (15)
N2i—Ce1—N1—C1174.60 (16)O5i—Ce1—O2—N5115.16 (14)
N1i—Ce1—N1—C1107.57 (19)O3i—Ce1—O2—N5104.50 (15)
O1i—Ce1—N2—C6124.2 (2)O3—Ce1—O2—N51.26 (13)
O1—Ce1—N2—C6157.1 (2)N2—Ce1—O2—N5139.11 (15)
O2—Ce1—N2—C6128.7 (2)N2i—Ce1—O2—N536.11 (15)
O2i—Ce1—N2—C651.0 (2)N1i—Ce1—O2—N572.10 (14)
O5—Ce1—N2—C655.1 (2)N1—Ce1—O2—N5175.26 (13)
O5i—Ce1—N2—C623.9 (2)O4—N5—O3—Ce1176.9 (2)
O3i—Ce1—N2—C677.8 (2)O2—N5—O3—Ce12.2 (2)
O3—Ce1—N2—C6158.5 (2)O1i—Ce1—O3—N5151.31 (16)
N1i—Ce1—N2—C692.1 (2)O1—Ce1—O3—N578.41 (15)
N1—Ce1—N2—C610.2 (2)O2—Ce1—O3—N51.27 (13)
O1i—Ce1—N2—N360.06 (16)O2i—Ce1—O3—N5178.97 (13)
O1—Ce1—N2—N327.14 (13)O5—Ce1—O3—N539.79 (16)
O2—Ce1—N2—N347.00 (14)O5i—Ce1—O3—N591.72 (16)
O2i—Ce1—N2—N3133.24 (14)O3i—Ce1—O3—N5115.77 (15)
O5—Ce1—N2—N3120.63 (16)N2—Ce1—O3—N537.42 (16)
O5i—Ce1—N2—N3151.87 (14)N2i—Ce1—O3—N5146.73 (16)
O3i—Ce1—N2—N3106.50 (16)N1i—Ce1—O3—N585.69 (15)
O3—Ce1—N2—N317.27 (16)N1—Ce1—O3—N58.3 (3)
N1i—Ce1—N2—N383.69 (16)O1i—Ce1—N6—O5i11.52 (13)
N1—Ce1—N2—N3174.09 (18)O1—Ce1—N6—O5i168.48 (13)
C6—N2—N3—C7158.5 (2)O2—Ce1—N6—O5i148.64 (12)
Ce1—N2—N3—C725.1 (2)O2i—Ce1—N6—O5i31.36 (12)
O1i—Ce1—O1—C7179.7 (2)O5—Ce1—N6—O5i180.0
O2—Ce1—O1—C748.36 (17)O3i—Ce1—N6—O5i72.75 (13)
O2i—Ce1—O1—C7131.54 (17)O3—Ce1—N6—O5i107.25 (13)
O5—Ce1—O1—C75.9 (2)N2—Ce1—N6—O5i142.07 (12)
O5i—Ce1—O1—C726.2 (4)N2i—Ce1—N6—O5i37.93 (12)
O3i—Ce1—O1—C7109.57 (18)N1i—Ce1—N6—O5i85.39 (13)
O3—Ce1—O1—C7101.31 (18)N1—Ce1—N6—O5i94.61 (13)
N2—Ce1—O1—C731.22 (16)O1i—Ce1—N6—O5168.48 (13)
N2i—Ce1—O1—C7150.23 (16)O1—Ce1—N6—O511.52 (13)
N1i—Ce1—O1—C784.52 (18)O2—Ce1—N6—O531.36 (12)
N1—Ce1—O1—C759.43 (18)O2i—Ce1—N6—O5148.64 (12)
C5—N1—C1—C21.9 (4)O5i—Ce1—N6—O5180.0
Ce1—N1—C1—C2172.02 (19)O3i—Ce1—N6—O5107.25 (13)
C5—N1—C1—C6176.0 (2)O3—Ce1—N6—O572.75 (13)
Ce1—N1—C1—C610.1 (3)N2—Ce1—N6—O537.93 (12)
N1—C1—C2—C30.8 (4)N2i—Ce1—N6—O5142.07 (12)
C6—C1—C2—C3176.9 (2)N1i—Ce1—N6—O594.61 (13)
C1—C2—C3—C41.0 (4)N1—Ce1—N6—O585.39 (13)
C2—C3—C4—C51.6 (4)O6—N6—O5—Ce1180.0
C1—N1—C5—C41.2 (4)O5i—N6—O5—Ce10.0
Ce1—N1—C5—C4172.6 (2)O1i—Ce1—O5—N636.6 (4)
C3—C4—C5—N10.5 (5)O1—Ce1—O5—N6172.49 (8)
N3—N2—C6—C1175.0 (2)O2—Ce1—O5—N6146.17 (13)
Ce1—N2—C6—C19.4 (3)O2i—Ce1—O5—N633.77 (12)
N3—N2—C6—C132.7 (4)O5i—Ce1—O5—N60.0
Ce1—N2—C6—C13172.88 (18)O3i—Ce1—O5—N686.23 (12)
N1—C1—C6—N21.6 (3)O3—Ce1—O5—N6116.54 (11)
C2—C1—C6—N2179.5 (2)N2—Ce1—O5—N6140.07 (12)
N1—C1—C6—C13176.3 (2)N2i—Ce1—O5—N641.20 (13)
C2—C1—C6—C131.6 (4)N1i—Ce1—O5—N672.23 (11)
Ce1—O1—C7—N333.1 (3)N1—Ce1—O5—N680.15 (12)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N4ii0.862.272.905 (3)131
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ce(NO3)3(C13H12N4O)2]
Mr806.68
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.842 (11), 10.591 (4), 15.105 (5)
β (°) 122.317 (15)
V3)2953 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.28 × 0.17 × 0.15
Data collection
DiffractometerRigaku Weissenberg IP
diffractometer
Absorption correctionMulti-scan
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.686, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14241, 3384, 3226
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.13
No. of reflections3384
No. of parameters224
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.22, 0.68

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXSAN (Molecular Structure Corporation, 1999), SHELXS98 (Sheldrick, 2008), SHELXL98 (Sheldrick, 2008), ORTEX (McArdle, 1995), SHELXL97/2 (Sheldrick,2008).

Selected geometric parameters (Å, º) top
Ce1—O12.6032 (17)Ce1—O32.684 (2)
Ce1—O22.620 (2)Ce1—N22.734 (2)
Ce1—O52.621 (2)Ce1—N12.904 (2)
O1i—Ce1—O167.12 (7)O5—Ce1—N273.11 (6)
O1—Ce1—O266.21 (6)O3—Ce1—N2107.34 (7)
O1—Ce1—O2i114.00 (6)O1—Ce1—N2i117.54 (6)
O2—Ce1—O2i179.78 (8)O2—Ce1—N2i110.70 (6)
O1—Ce1—O5122.32 (6)O5—Ce1—N2i111.19 (6)
O2—Ce1—O569.21 (7)O3—Ce1—N2i70.55 (7)
O1—Ce1—O5i169.34 (6)N2—Ce1—N2i175.54 (8)
O2—Ce1—O5i110.58 (7)O1—Ce1—N1i123.93 (6)
O5—Ce1—O5i48.87 (10)O2—Ce1—N1i67.18 (6)
O1—Ce1—O3i71.12 (6)O5—Ce1—N1i64.08 (6)
O2—Ce1—O3i132.21 (6)O3—Ce1—N1i61.03 (7)
O5—Ce1—O3i121.14 (7)N2—Ce1—N1i126.90 (7)
O1—Ce1—O365.02 (6)O1—Ce1—N1107.11 (6)
O2—Ce1—O347.93 (6)O2—Ce1—N1112.69 (6)
O5—Ce1—O3107.32 (7)O5—Ce1—N160.38 (7)
O3i—Ce1—O3126.84 (9)O3—Ce1—N1160.40 (6)
O1—Ce1—N258.18 (6)N2—Ce1—N155.90 (6)
O2—Ce1—N269.31 (6)N1i—Ce1—N1118.48 (9)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N4ii0.862.272.905 (3)131.0
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds