Download citation
Download citation
link to html
The synthesis of 3-[5-(4-chloro­phen­yl)-1-(4-methoxy­phen­yl)-1H-pyrazol-3-yl]propionic acid, C19H17ClN2O3, (I), and its corresponding methyl ester, methyl 3-[5-(4-chloro­phen­yl)-1-(4-methoxy­phen­yl)-1H-pyrazol-3-yl]propionate, C20H19ClN2O3, (II), is regiospecific. However, correct identification of the regioisomer formed by spectroscopic techniques is not trivial and single-crystal X-ray analysis provided the only means of unambiguous structure determination. Compound (I) crystallizes with Z' = 2. The propionic acid groups of the two crystallographically unique mol­ecules form a hydrogen-bonded dimer, as is typical of carboxylic acid groups in the solid state. Conformational differences between the meth­oxy­benzene and pyrazole rings give rise to two unique mol­ecules. The structure of (II) features just one mol­ecule in the asymmetric unit and the crystal packing makes greater use than (I) of weak C-H...A inter­actions, despite the lack of any functional groups for classical hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010900941X/sk3306sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010900941X/sk3306Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010900941X/sk3306IIsup3.hkl
Contains datablock II

CCDC references: 730104; 730105

Comment top

Non-steroidal anti-inflammatory drugs (NSAIDs) are the oldest and most widely accepted way to treat mild to moderate pain. One possible side-effect of NSAIDs is bronchial constriction in patients (Charlier & Michaux, 2003; Young, 1999) and so they are not therapeutically advisable for asthma patients. In addition, prolonged treatment may result in gastric irritation and renal impairment. In order to increase the analgesic efficacy and reduce the side effects, we are investigating the synthesis and properties of a range of bifunctional NSAID precursors containing amino acid groups. In the process of synthesizing a precursor to the NSAID tepoxalin, we found that a mixture of regioisomers were possible, identified as I and II in the scheme. Efforts to identify unambiguously the correct regioisomer by NMR spectroscopy, using one-dimensional nuclear Overhauser effect or heteronuclear multiple bond correlation experiments, were not successful, leaving single-crystal X-ray diffraction as the only possible means of unambiguous identification. We report here the structure of the tepoxalin precursor 3-[5-(4-chlorophenyl)-1-(4-methoxyphenyl)-1H-pyrazol-3-yl]propionic acid, (I), and the corresponding methyl ester, (II).

The asymmetric unit of (I) is shown in Fig. 1. The compound crystallizes in space group P1 with two crystallographically unique molecules in the asymmetric unit and no solvent of crystallization. The compound is unambiguously regioisomer I. Discussion is restricted to the molecule containing atoms Cl1 to H19 (hereafter `molecule A') with relevant results for the molecule containing atoms Cl51 to H69 (hereafter `molecule B') presented in square brackets. The propionic acid groups of the two crystallographically unique molecules form a hydrogen-bonded dimer with a graph set motif R22(8), as is typical of carboxylic acid groups in the solid state (Bernstein et al., 1995).

The conformational differences that give rise to two unique molecules can be easily appreciated by considering an overlay of the two unique molecules, formed by fitting together the five atoms of each pyrazole ring (r.m.s. deviation 0.0062 Å; Fig. 2). From this it is clear that although there are some small differences between the conformations of the propionic acid and chlorobenzene rings in molecules A and B the most striking difference is found in the methoxybenzene group. Although it first seems that the differences are due to methoxy group orientation, we show by careful systematic numbering that it is the angle between the methyoxybenzene and pyrazole rings which gives rise to two different conformations. The methoxy group is essentially coplanar with the benzyl ring to which it is bonded, and a mean plane fitted through all six ring C atoms and the two methoxy atoms has an r.m.s. deviation of 0.0350 Å [0.0288 Å]. This plane is rotated by 53.51 (5)° [37.32 (8)°] from the central pyrazole ring. In molecule A, the N1—N2—C4—C5 torsion angle is -130.75 (16)°, yet using the same numbering system for B the N51—N52—C54—C55 torsion angle is 36.4 (2)°. The related compound 1-(4-methoxyphenyl)-5-phenylpyrazole (Spivey et al., 2000) also features two molecules in the asymmetric unit. In both cases the methoxy group is coplanar with the benzyl ring to which it is bonded, but the torsion angles corresponding to the atoms named above are approximately 54.34° for one molecule and -53.12° for the other.

The chlorophenol ring is rotated by 37.07 (8)° [42.10 (6)°] from the pyrazole ring. The propionic acid unit has an extended conformation, and a mean plane fitted through atoms O2, O3, C1, C11, C12 and C13 has an r.m.s. deviation of 0.230 Å [0.0148 Å]. The covalent molecular geometry is unexceptional, as is the crystal packing, which consists principally of van der Waals interactions and some minor C—H···π interactions. In some parts of the structure there is evidence of favourable δ+ and δ- alignment (for example C59—H59···N1). The geometry of these interactions is such that we do not believe that these are formal weak hydrogen bonds but rather they result from simple electrostatic attraction.

Obtained as a reaction side-product in the synthesis of (I) was the corresponding methyl ester (II). This was isolated by flash chromatography and crystallized separately. The molecular structure of (II) is shown in Fig. 3 and as with molecule (I) matches that of the predicted regioisomer I; there is only one molecule in the asymmetric unit of this compound. The molecule adopts an extended conformation with the ester group essentially planar (a mean plane fitted through atoms C1, C11, C12, C13, C14 [or C20?], O2 and O3 has an r.m.s. deviation of 0.0406 Å) and that plane is rotated by 31.79 (5)° from the pyrazole ring plane. As with (I), the methoxy group is essentially coplanar with the benzyl ring to which it is bonded, and a mean plane fitted through all six ring C atoms and the two methoxy atoms has an r.m.s. deviation of 0.0323 Å. This plane is rotated by 71.01 (3)° from the pyrazole ring. Finally the chlorobenzene group is rotated by 22.93 (5)° from the central pyrazole ring. The covalent molecular geometry is unexceptional.

The crystal packing of (II) is more complex than that of (I), despite the lack of any functional groups for classical hydrogen bonding. A b-axis projection of (II) (Fig. 4) shows that the ester carbonyl atom O3 is not involved in the O—H···O hydrogen bond found in (I) and is available to form weak C—H···O hydrogen bonds to atoms H2 and H15, generating an R12(7) motif. Furthermore, one of the methyl H atoms (H20B) of the ester function is also able to participate in a weak C—H···N bond, as opposed to a purely favourable electrostatic interation by virtue of the way the atoms are oriented, with the pyrazole ring of an adjacent group. Overall the crystal packing can be most easily described as rippled, stacked sheets, as shown by a projection along the ab diagonal.

Related literature top

For related literature, see: Bernstein et al. (1995); Charlier & Michaux (2003); Murray et al. (1991); Spivey et al. (2000); Young (1999).

Experimental top

The title compounds were synthesized in a two-step procedure. 6-(4-Chlorophenyl)-4,6-dioxohexanoic acid was synthesized by a modification of the method dscribed by Murray et al. (1991), using NaHMDS in place of LiHMDS. Next, a mixture of 6-(4-chlorophenyl)-4,6-dioxohexanoic acid (1.27 g, 5 mmol), 4-methoxyphenylhydrazine hydrochloride (873 mg, 5 mmol) and Et3N (506 mg, 5 mmol) were combined in MeOH (40 ml) and stirred at room temperature for 6 h. The mixture was then concentrated in vacuo to a residue, which was partitioned between Et2O (40 ml) and 5% aqueous HCl (37.5 ml). The ether layer was separated, washed with 5% aqueous HCl (2 × 10 ml) and brine 10 ml, dried over Na2SO4, filtered, and concentrated to a residue. The crude residue was flash chromatographed on silica gel with hexane:EtOAc:AcOH (6:2:1) as eluant and separated into the two products (I) and (II). Compound (I) was crystallized by slow evaporation of a diethyl ether solution (yield 70%). Compound (II) was crystallized by slow evaporation of a deuterated methanol solution (yield 30%).

Refinement top

All hydrogen atoms were located from a difference map and constrained to ride on the parent atom, except that the hydroxy H atoms in (I) were freely refined [the O—H distances are 0.84 (3) and 0.90 (3) Å]. H atoms were refined with Uiso(H) values of 1.2Ueq(C) [or 1.5Ueq(C) for methyl H atoms] and fixed C—H distances of 0.95 Å for aryl, 0.98 Å for methyl and 0.99 Å for methylene H atoms.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999) and Mercury (Version 2.2; Macrae et al., 2008). Software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2008) and local programs for (I); SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2008), and local programs for (II).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with anisotropic displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. An overlay plot of molecule A (gray; orange in the electronic version of the paper) with molecule B (black).
[Figure 3] Fig. 3. The asymmetric unit of (II), with anisotropic displacement ellipsoids at the 50% probability level.
[Figure 4] Fig. 4. A b-axis packing plot of (II). Weak hydrogen bonding is illustrated by dashed lines (blue in the electronic version of the paper).
(I) 3-[5-(4-Chlorophenyl)-1-(4-methoxyphenyl)-1H-pyrazol-3-yl]propionic acid top
Crystal data top
C19H17ClN2O3Z = 4
Mr = 356.80F(000) = 744
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.131 (2) ÅCell parameters from 5841 reflections
b = 13.759 (3) Åθ = 2.4–28.0°
c = 14.264 (3) ŵ = 0.25 mm1
α = 103.733 (3)°T = 150 K
β = 96.928 (3)°Block, colourless
γ = 98.459 (3)°0.32 × 0.21 × 0.11 mm
V = 1699.2 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8218 independent reflections
Radiation source: sealed tube6174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
thin–slice ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.916, Tmax = 0.974k = 1818
19183 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.050P)2 + 0.4502P]
where P = (Fo2 + 2Fc2)/3
8218 reflections(Δ/σ)max = 0.001
461 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C19H17ClN2O3γ = 98.459 (3)°
Mr = 356.80V = 1699.2 (6) Å3
Triclinic, P1Z = 4
a = 9.131 (2) ÅMo Kα radiation
b = 13.759 (3) ŵ = 0.25 mm1
c = 14.264 (3) ÅT = 150 K
α = 103.733 (3)°0.32 × 0.21 × 0.11 mm
β = 96.928 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
8218 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6174 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.974Rint = 0.025
19183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.52 e Å3
8218 reflectionsΔρmin = 0.32 e Å3
461 parameters
Special details top

Experimental. Spectroscopic data for compound (I).

C19H17ClN2O3, Mass Calculated 356.80, 1H NMR (600 MHz, CDCl3) d 7.25 (d, 2H),7.13 (t, 4H), 6.9 (d, 2H), 6.4 (s, 1H), 3.76 (s, 3H) 2.96 (t, 2H) 2.70 (t, 2H)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27614 (5)0.31833 (3)0.67484 (4)0.04131 (13)
O10.04617 (17)0.19973 (11)1.08923 (9)0.0449 (3)
O20.62247 (16)0.45259 (9)0.56095 (10)0.0405 (3)
H2O0.689 (3)0.479 (2)0.5275 (19)0.074 (8)*
O30.63158 (14)0.30375 (9)0.45893 (9)0.0337 (3)
N10.31218 (15)0.19334 (10)0.69068 (10)0.0255 (3)
N20.21733 (15)0.12475 (10)0.72088 (10)0.0244 (3)
C10.31393 (18)0.14856 (12)0.59717 (11)0.0244 (3)
C20.22024 (18)0.05316 (12)0.56672 (12)0.0262 (3)
H20.20240.00730.50350.031*
C30.15901 (17)0.03923 (11)0.64726 (11)0.0234 (3)
C40.18565 (17)0.14963 (12)0.81879 (11)0.0234 (3)
C50.19647 (19)0.08145 (13)0.87649 (13)0.0300 (4)
H50.23570.02150.85380.036*
C60.1502 (2)0.10115 (14)0.96662 (13)0.0339 (4)
H60.15590.05401.00540.041*
C70.09518 (19)0.18974 (14)1.00096 (12)0.0304 (4)
C80.0912 (2)0.25997 (13)0.94570 (12)0.0304 (4)
H80.05830.32210.97020.036*
C90.13575 (19)0.23892 (12)0.85421 (12)0.0285 (4)
H90.13170.28650.81580.034*
C100.0173 (2)0.28677 (17)1.12500 (14)0.0452 (5)
H10A0.05960.34821.13840.068*
H10B0.05550.28201.18540.068*
H10C0.09990.29021.07590.068*
C110.41458 (19)0.19607 (12)0.53809 (12)0.0278 (4)
H11A0.35940.18470.47110.033*
H11B0.50220.16160.53290.033*
C120.4701 (2)0.30929 (12)0.58101 (13)0.0311 (4)
H12A0.38340.34480.58000.037*
H12B0.51670.32150.65010.037*
C130.58203 (19)0.35346 (12)0.52660 (13)0.0284 (4)
C140.05165 (17)0.04738 (12)0.65634 (12)0.0236 (3)
C150.06232 (19)0.14580 (12)0.60665 (12)0.0293 (4)
H150.14000.15570.56860.035*
C160.0378 (2)0.22898 (13)0.61177 (12)0.0306 (4)
H160.03050.29560.57690.037*
C170.14897 (18)0.21383 (12)0.66846 (12)0.0275 (4)
C180.16246 (18)0.11766 (13)0.71918 (13)0.0294 (4)
H180.23840.10860.75880.035*
C190.06361 (18)0.03486 (12)0.71130 (12)0.0274 (4)
H190.07440.03180.74390.033*
Cl511.58948 (6)1.16094 (4)0.16067 (5)0.05287 (16)
O511.40228 (16)0.51734 (10)0.16297 (9)0.0411 (3)
O520.79956 (16)0.38456 (9)0.34517 (10)0.0391 (3)
H52O0.747 (3)0.357 (2)0.379 (2)0.076 (9)*
O530.82523 (16)0.52788 (9)0.46318 (10)0.0414 (3)
N511.15524 (15)0.62669 (10)0.23265 (10)0.0275 (3)
N521.24349 (15)0.69184 (10)0.19441 (10)0.0257 (3)
C511.12167 (18)0.68508 (12)0.31247 (12)0.0269 (3)
C521.18747 (19)0.78708 (12)0.32632 (12)0.0279 (4)
H521.18070.84300.37850.034*
C531.26365 (18)0.79014 (12)0.24948 (12)0.0248 (3)
C541.29342 (18)0.64860 (12)0.10536 (11)0.0239 (3)
C551.19538 (19)0.57000 (12)0.03676 (12)0.0289 (4)
H551.09970.54560.05070.035*
C561.2366 (2)0.52766 (13)0.05103 (13)0.0317 (4)
H561.16950.47360.09750.038*
C571.3759 (2)0.56322 (12)0.07252 (12)0.0300 (4)
C581.4763 (2)0.63996 (13)0.00270 (13)0.0318 (4)
H581.57250.66380.01630.038*
C591.43537 (19)0.68140 (13)0.08681 (12)0.0285 (4)
H591.50460.73220.13530.034*
C601.5382 (2)0.55308 (15)0.19046 (15)0.0435 (5)
H60A1.54700.62600.18590.065*
H60B1.54070.51630.25790.065*
H60C1.62190.54200.14680.065*
C611.0217 (2)0.63930 (12)0.37321 (12)0.0292 (4)
H61A0.93650.67590.38060.035*
H61B1.07900.64890.43930.035*
C620.9610 (2)0.52670 (13)0.32904 (13)0.0325 (4)
H62A0.90810.51690.26180.039*
H62B1.04630.48980.32460.039*
C630.85545 (19)0.48111 (12)0.38645 (12)0.0283 (4)
C641.34394 (18)0.87970 (12)0.22497 (12)0.0247 (3)
C651.32780 (19)0.89161 (13)0.13001 (12)0.0280 (4)
H651.26460.84030.07860.034*
C661.4031 (2)0.97761 (13)0.10989 (14)0.0324 (4)
H661.39250.98500.04500.039*
C671.49379 (19)1.05237 (13)0.18537 (14)0.0320 (4)
C681.50994 (19)1.04394 (13)0.28041 (14)0.0319 (4)
H681.57171.09620.33180.038*
C691.43416 (18)0.95756 (12)0.29928 (13)0.0275 (3)
H691.44400.95130.36450.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0426 (3)0.0347 (2)0.0434 (3)0.01198 (19)0.0146 (2)0.0117 (2)
O10.0635 (9)0.0533 (8)0.0291 (7)0.0250 (7)0.0201 (6)0.0174 (6)
O20.0536 (8)0.0235 (6)0.0442 (8)0.0064 (6)0.0284 (7)0.0064 (5)
O30.0410 (7)0.0271 (6)0.0335 (7)0.0018 (5)0.0178 (6)0.0078 (5)
N10.0275 (7)0.0233 (7)0.0256 (7)0.0024 (5)0.0076 (6)0.0086 (5)
N20.0269 (7)0.0224 (6)0.0234 (7)0.0007 (5)0.0081 (5)0.0063 (5)
C10.0280 (8)0.0232 (8)0.0224 (8)0.0009 (6)0.0060 (6)0.0079 (6)
C20.0309 (9)0.0231 (8)0.0229 (8)0.0011 (6)0.0063 (6)0.0051 (6)
C30.0241 (8)0.0213 (7)0.0242 (8)0.0012 (6)0.0049 (6)0.0062 (6)
C40.0218 (7)0.0257 (8)0.0218 (8)0.0006 (6)0.0050 (6)0.0065 (6)
C50.0312 (9)0.0331 (9)0.0312 (9)0.0123 (7)0.0096 (7)0.0127 (7)
C60.0393 (10)0.0407 (10)0.0307 (10)0.0139 (8)0.0114 (8)0.0198 (8)
C70.0320 (9)0.0393 (10)0.0225 (9)0.0073 (7)0.0083 (7)0.0106 (7)
C80.0380 (9)0.0255 (8)0.0267 (9)0.0057 (7)0.0075 (7)0.0039 (7)
C90.0357 (9)0.0233 (8)0.0266 (9)0.0012 (7)0.0066 (7)0.0082 (6)
C100.0539 (12)0.0585 (13)0.0282 (10)0.0207 (10)0.0190 (9)0.0088 (9)
C110.0340 (9)0.0263 (8)0.0226 (8)0.0029 (7)0.0074 (7)0.0093 (6)
C120.0365 (9)0.0250 (8)0.0330 (9)0.0011 (7)0.0159 (7)0.0091 (7)
C130.0300 (9)0.0254 (8)0.0300 (9)0.0016 (7)0.0082 (7)0.0102 (7)
C140.0243 (8)0.0229 (8)0.0238 (8)0.0011 (6)0.0055 (6)0.0079 (6)
C150.0335 (9)0.0266 (8)0.0281 (9)0.0010 (7)0.0150 (7)0.0055 (7)
C160.0398 (10)0.0225 (8)0.0279 (9)0.0009 (7)0.0137 (7)0.0034 (7)
C170.0278 (8)0.0269 (8)0.0273 (9)0.0043 (6)0.0068 (7)0.0103 (7)
C180.0229 (8)0.0319 (9)0.0342 (9)0.0025 (7)0.0111 (7)0.0084 (7)
C190.0240 (8)0.0238 (8)0.0338 (9)0.0036 (6)0.0082 (7)0.0049 (7)
Cl510.0598 (3)0.0331 (3)0.0746 (4)0.0013 (2)0.0337 (3)0.0242 (2)
O510.0538 (8)0.0369 (7)0.0337 (7)0.0048 (6)0.0231 (6)0.0055 (6)
O520.0520 (8)0.0266 (6)0.0360 (7)0.0085 (6)0.0214 (6)0.0052 (5)
O530.0556 (8)0.0281 (6)0.0391 (8)0.0069 (6)0.0288 (6)0.0043 (5)
N510.0294 (7)0.0269 (7)0.0266 (7)0.0031 (6)0.0101 (6)0.0097 (6)
N520.0261 (7)0.0265 (7)0.0247 (7)0.0019 (5)0.0091 (5)0.0085 (5)
C510.0281 (8)0.0287 (8)0.0249 (8)0.0012 (7)0.0079 (6)0.0093 (7)
C520.0319 (9)0.0273 (8)0.0248 (9)0.0018 (7)0.0101 (7)0.0066 (7)
C530.0249 (8)0.0245 (8)0.0259 (8)0.0016 (6)0.0066 (6)0.0088 (6)
C540.0270 (8)0.0221 (7)0.0223 (8)0.0006 (6)0.0059 (6)0.0064 (6)
C550.0284 (9)0.0283 (8)0.0281 (9)0.0026 (7)0.0069 (7)0.0073 (7)
C560.0379 (10)0.0254 (8)0.0285 (9)0.0014 (7)0.0061 (7)0.0048 (7)
C570.0431 (10)0.0260 (8)0.0242 (9)0.0097 (7)0.0122 (7)0.0077 (7)
C580.0317 (9)0.0314 (9)0.0351 (10)0.0051 (7)0.0143 (7)0.0101 (7)
C590.0269 (8)0.0275 (8)0.0279 (9)0.0017 (7)0.0060 (7)0.0040 (7)
C600.0593 (13)0.0417 (11)0.0395 (11)0.0142 (9)0.0365 (10)0.0122 (9)
C610.0341 (9)0.0280 (8)0.0269 (9)0.0000 (7)0.0147 (7)0.0081 (7)
C620.0419 (10)0.0292 (9)0.0253 (9)0.0044 (7)0.0153 (7)0.0071 (7)
C630.0324 (9)0.0265 (8)0.0264 (9)0.0001 (7)0.0090 (7)0.0090 (7)
C640.0240 (8)0.0240 (8)0.0302 (9)0.0058 (6)0.0113 (6)0.0105 (6)
C650.0288 (8)0.0298 (8)0.0279 (9)0.0052 (7)0.0104 (7)0.0097 (7)
C660.0366 (10)0.0361 (9)0.0350 (10)0.0136 (8)0.0192 (8)0.0187 (8)
C670.0302 (9)0.0251 (8)0.0490 (11)0.0078 (7)0.0212 (8)0.0165 (8)
C680.0288 (9)0.0264 (8)0.0411 (10)0.0036 (7)0.0094 (7)0.0086 (7)
C690.0285 (8)0.0266 (8)0.0290 (9)0.0049 (7)0.0068 (7)0.0090 (7)
Geometric parameters (Å, º) top
Cl1—C171.7379 (16)Cl51—C671.7490 (17)
O1—C71.370 (2)O51—C571.362 (2)
O1—C101.420 (2)O51—C601.402 (2)
O2—H2O0.90 (3)O52—H52O0.84 (3)
O2—C131.314 (2)O52—C631.315 (2)
O3—C131.220 (2)O53—C631.216 (2)
N1—N21.3671 (18)N51—N521.3696 (18)
N1—C11.333 (2)N51—C511.326 (2)
N2—C31.366 (2)N52—C531.367 (2)
N2—C41.432 (2)N52—C541.427 (2)
C1—C21.397 (2)C51—C521.400 (2)
C1—C111.501 (2)C51—C611.504 (2)
C2—H20.950C52—H520.950
C2—C31.377 (2)C52—C531.373 (2)
C3—C141.469 (2)C53—C641.476 (2)
C4—C51.393 (2)C54—C551.389 (2)
C4—C91.378 (2)C54—C591.386 (2)
C5—H50.950C55—H550.950
C5—C61.380 (2)C55—C561.372 (2)
C6—H60.950C56—H560.950
C6—C71.391 (2)C56—C571.391 (2)
C7—C81.386 (2)C57—C581.394 (2)
C8—H80.950C58—H580.950
C8—C91.391 (2)C58—C591.388 (2)
C9—H90.950C59—H590.950
C10—H10A0.980C60—H60A0.980
C10—H10B0.980C60—H60B0.980
C10—H10C0.980C60—H60C0.980
C11—H11A0.990C61—H61A0.990
C11—H11B0.990C61—H61B0.990
C11—C121.516 (2)C61—C621.518 (2)
C12—H12A0.990C62—H62A0.990
C12—H12B0.990C62—H62B0.990
C12—C131.500 (2)C62—C631.500 (2)
C14—C151.395 (2)C64—C651.396 (2)
C14—C191.393 (2)C64—C691.393 (2)
C15—H150.950C65—H650.950
C15—C161.378 (2)C65—C661.387 (2)
C16—H160.950C66—H660.950
C16—C171.381 (2)C66—C671.382 (3)
C17—C181.380 (2)C67—C681.380 (3)
C18—H180.950C68—H680.950
C18—C191.381 (2)C68—C691.385 (2)
C19—H190.950C69—H690.950
C7—O1—C10117.50 (15)C57—O51—C60117.74 (15)
H2O—O2—C13111.6 (16)H52O—O52—C63113.1 (19)
N2—N1—C1104.60 (12)N52—N51—C51105.06 (13)
N1—N2—C3111.96 (13)N51—N52—C53111.68 (13)
N1—N2—C4119.75 (12)N51—N52—C54116.90 (13)
C3—N2—C4128.23 (13)C53—N52—C54131.39 (13)
N1—C1—C2111.54 (14)N51—C51—C52111.09 (14)
N1—C1—C11121.68 (14)N51—C51—C61120.17 (14)
C2—C1—C11126.66 (14)C52—C51—C61128.72 (15)
C1—C2—H2127.1C51—C52—H52126.9
C1—C2—C3105.87 (14)C51—C52—C53106.29 (14)
H2—C2—C3127.1H52—C52—C53126.9
N2—C3—C2106.02 (13)N52—C53—C52105.87 (14)
N2—C3—C14124.92 (14)N52—C53—C64125.40 (14)
C2—C3—C14129.06 (14)C52—C53—C64128.63 (15)
N2—C4—C5120.45 (14)N52—C54—C55117.81 (14)
N2—C4—C9119.76 (14)N52—C54—C59122.19 (14)
C5—C4—C9119.68 (15)C55—C54—C59119.99 (15)
C4—C5—H5120.0C54—C55—H55120.0
C4—C5—C6119.95 (16)C54—C55—C56120.04 (15)
H5—C5—C6120.0H55—C55—C56120.0
C5—C6—H6119.9C55—C56—H56119.7
C5—C6—C7120.27 (16)C55—C56—C57120.53 (16)
H6—C6—C7119.9H56—C56—C57119.7
O1—C7—C6115.56 (15)O51—C57—C56115.14 (15)
O1—C7—C8124.64 (16)O51—C57—C58125.30 (16)
C6—C7—C8119.79 (16)C56—C57—C58119.56 (15)
C7—C8—H8120.2C57—C58—H58120.1
C7—C8—C9119.62 (16)C57—C58—C59119.76 (16)
H8—C8—C9120.2H58—C58—C59120.1
C4—C9—C8120.57 (16)C54—C59—C58119.99 (15)
C4—C9—H9119.7C54—C59—H59120.0
C8—C9—H9119.7C58—C59—H59120.0
O1—C10—H10A109.5O51—C60—H60A109.5
O1—C10—H10B109.5O51—C60—H60B109.5
O1—C10—H10C109.5O51—C60—H60C109.5
H10A—C10—H10B109.5H60A—C60—H60B109.5
H10A—C10—H10C109.5H60A—C60—H60C109.5
H10B—C10—H10C109.5H60B—C60—H60C109.5
C1—C11—H11A108.9C51—C61—H61A109.0
C1—C11—H11B108.9C51—C61—H61B109.0
C1—C11—C12113.55 (14)C51—C61—C62112.94 (14)
H11A—C11—H11B107.7H61A—C61—H61B107.8
H11A—C11—C12108.9H61A—C61—C62109.0
H11B—C11—C12108.9H61B—C61—C62109.0
C11—C12—H12A109.0C61—C62—H62A108.9
C11—C12—H12B109.0C61—C62—H62B108.9
C11—C12—C13112.79 (14)C61—C62—C63113.51 (14)
H12A—C12—H12B107.8H62A—C62—H62B107.7
H12A—C12—C13109.0H62A—C62—C63108.9
H12B—C12—C13109.0H62B—C62—C63108.9
O2—C13—O3123.46 (15)O52—C63—O53123.44 (15)
O2—C13—C12112.14 (15)O52—C63—C62112.68 (14)
O3—C13—C12124.40 (15)O53—C63—C62123.88 (15)
C3—C14—C15119.34 (14)C53—C64—C65122.27 (15)
C3—C14—C19122.32 (14)C53—C64—C69119.37 (15)
C15—C14—C19118.33 (14)C65—C64—C69118.30 (15)
C14—C15—H15119.4C64—C65—H65119.6
C14—C15—C16121.17 (15)C64—C65—C66120.72 (16)
H15—C15—C16119.4H65—C65—C66119.6
C15—C16—H16120.5C65—C66—H66120.4
C15—C16—C17118.91 (15)C65—C66—C67119.22 (17)
H16—C16—C17120.5H66—C66—C67120.4
Cl1—C17—C16119.15 (13)Cl51—C67—C66119.55 (14)
Cl1—C17—C18119.27 (13)Cl51—C67—C68118.90 (14)
C16—C17—C18121.57 (15)C66—C67—C68121.55 (16)
C17—C18—H18120.6C67—C68—H68120.7
C17—C18—C19118.83 (15)C67—C68—C69118.53 (17)
H18—C18—C19120.6H68—C68—C69120.7
C14—C19—C18121.15 (15)C64—C69—C68121.65 (16)
C14—C19—H19119.4C64—C69—H69119.2
C18—C19—H19119.4C68—C69—H69119.2
C1—N1—N2—C30.89 (18)C51—N51—N52—C530.54 (18)
C1—N1—N2—C4178.32 (14)C51—N51—N52—C54178.54 (14)
N2—N1—C1—C20.83 (18)N52—N51—C51—C520.13 (19)
N2—N1—C1—C11175.47 (14)N52—N51—C51—C61178.58 (15)
N1—C1—C2—C30.5 (2)N51—C51—C52—C530.7 (2)
C11—C1—C2—C3175.59 (16)C61—C51—C52—C53177.84 (17)
N1—N2—C3—C20.61 (18)N51—N52—C53—C520.99 (19)
N1—N2—C3—C14178.85 (14)N51—N52—C53—C64175.58 (15)
C4—N2—C3—C2177.77 (15)C54—N52—C53—C52178.62 (16)
C4—N2—C3—C141.7 (3)C54—N52—C53—C642.1 (3)
C1—C2—C3—N20.08 (18)C51—C52—C53—N521.00 (19)
C1—C2—C3—C14179.35 (16)C51—C52—C53—C64175.41 (16)
N1—N2—C4—C5130.75 (16)N51—N52—C54—C5536.4 (2)
N1—N2—C4—C953.0 (2)N51—N52—C54—C59142.53 (16)
C3—N2—C4—C552.3 (2)C53—N52—C54—C55141.13 (18)
C3—N2—C4—C9123.94 (18)C53—N52—C54—C5939.9 (3)
N2—C4—C5—C6172.97 (16)N52—C54—C55—C56178.33 (15)
C9—C4—C5—C63.3 (3)C59—C54—C55—C562.7 (3)
C4—C5—C6—C71.2 (3)C54—C55—C56—C570.4 (3)
C10—O1—C7—C6177.16 (17)C60—O51—C57—C56177.24 (16)
C10—O1—C7—C82.0 (3)C60—O51—C57—C583.3 (3)
C5—C6—C7—O1177.24 (17)C55—C56—C57—O51178.10 (16)
C5—C6—C7—C82.0 (3)C55—C56—C57—C582.4 (3)
O1—C7—C8—C9176.12 (17)O51—C57—C58—C59179.35 (16)
C6—C7—C8—C93.0 (3)C56—C57—C58—C591.2 (3)
N2—C4—C9—C8174.04 (15)N52—C54—C59—C58177.20 (16)
C5—C4—C9—C82.2 (2)C55—C54—C59—C583.9 (3)
C7—C8—C9—C40.9 (3)C57—C58—C59—C541.9 (3)
N1—C1—C11—C1219.4 (2)N51—C51—C61—C623.8 (2)
C2—C1—C11—C12164.86 (17)C52—C51—C61—C62174.66 (18)
C1—C11—C12—C13174.43 (15)C51—C61—C62—C63177.32 (15)
C11—C12—C13—O2176.23 (16)C61—C62—C63—O52177.55 (16)
C11—C12—C13—O34.4 (3)C61—C62—C63—O532.9 (3)
N2—C3—C14—C15143.44 (17)N52—C53—C64—C6541.4 (2)
N2—C3—C14—C1938.1 (2)N52—C53—C64—C69141.46 (17)
C2—C3—C14—C1537.2 (3)C52—C53—C64—C65134.38 (19)
C2—C3—C14—C19141.24 (18)C52—C53—C64—C6942.8 (2)
C3—C14—C15—C16178.80 (16)C53—C64—C65—C66178.92 (15)
C19—C14—C15—C160.3 (3)C69—C64—C65—C661.7 (2)
C14—C15—C16—C170.9 (3)C64—C65—C66—C670.6 (2)
C15—C16—C17—Cl1179.73 (14)C65—C66—C67—Cl51179.87 (13)
C15—C16—C17—C180.5 (3)C65—C66—C67—C680.7 (3)
Cl1—C17—C18—C19178.08 (13)Cl51—C67—C68—C69179.79 (13)
C16—C17—C18—C191.1 (3)C66—C67—C68—C690.8 (3)
C17—C18—C19—C142.4 (3)C67—C68—C69—C640.5 (3)
C3—C14—C19—C18179.55 (16)C53—C64—C69—C68178.95 (15)
C15—C14—C19—C182.0 (3)C65—C64—C69—C681.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O530.90 (3)1.78 (3)2.6815 (18)178 (3)
O52—H52O···O30.84 (3)1.84 (3)2.6790 (18)177 (3)
(II) Methyl 3-[5-(4-chlorophenyl)-1-(4-methoxyphenyl)-1H-pyrazol-3-yl]propionate top
Crystal data top
C20H19ClN2O3F(000) = 1552
Mr = 370.82Dx = 1.383 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8767 reflections
a = 22.174 (5) Åθ = 2.6–28.3°
b = 5.1352 (11) ŵ = 0.24 mm1
c = 31.884 (7) ÅT = 150 K
β = 101.126 (2)°Rod, colourless
V = 3562.4 (13) Å30.27 × 0.15 × 0.09 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4351 independent reflections
Radiation source: fine-focus sealed tube3788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
thin–slice ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2929
Tmin = 0.919, Tmax = 0.979k = 66
18813 measured reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.087H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0391P)2 + 2.9658P]
where P = (Fo2 + 2Fc2)/3
4351 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H19ClN2O3V = 3562.4 (13) Å3
Mr = 370.82Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.174 (5) ŵ = 0.24 mm1
b = 5.1352 (11) ÅT = 150 K
c = 31.884 (7) Å0.27 × 0.15 × 0.09 mm
β = 101.126 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4351 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3788 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.979Rint = 0.022
18813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
4351 reflectionsΔρmin = 0.24 e Å3
237 parameters
Special details top

Experimental. Spectroscopic data for compound (2) C20H19ClN2O3, Mass Calculated; 370.83, LCQ MSm/z 371.1. 1HNMR (500 MHz, MeOD) δ 7.2 (d, 2H), 7.1 (t, 4H), 6.85 (d, 2H), 6.35(s, 1H) 3.75 (s, 3H) 3.6 (s, 3H) 2.9 (t, 2H), 2.70 (t, 2H) 13C NMR δ (500 MHz, MeOD) 24.481,34.604, 107.262, 115.465, 128.453, 129.802,130.394, 131.310, 134.047, 135.525, 144.604, 153.476, 161.048, 174.982 LCQ MSm/z 371.1

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.494947 (15)0.89824 (7)0.183985 (11)0.03867 (10)
O10.13992 (4)0.7107 (2)0.25101 (3)0.0336 (2)
O20.01512 (4)0.2309 (2)0.03747 (3)0.0344 (2)
O30.10061 (4)0.45884 (18)0.03784 (3)0.0313 (2)
N10.17275 (4)0.1843 (2)0.07866 (3)0.0235 (2)
N20.21372 (4)0.3414 (2)0.10458 (3)0.0218 (2)
C10.20409 (5)0.0851 (2)0.05067 (3)0.0213 (2)
C20.26488 (5)0.1765 (2)0.05832 (4)0.0222 (2)
H20.29600.13420.04270.027*
C30.27019 (5)0.3404 (2)0.09317 (3)0.0207 (2)
C40.19538 (5)0.4461 (2)0.14193 (3)0.0209 (2)
C50.21951 (5)0.3419 (2)0.18183 (4)0.0254 (2)
H50.24900.20580.18450.030*
C60.20032 (6)0.4373 (3)0.21763 (4)0.0272 (3)
H60.21690.36730.24500.033*
C70.15672 (5)0.6359 (2)0.21368 (4)0.0236 (2)
C80.13346 (5)0.7432 (2)0.17394 (4)0.0244 (2)
H80.10440.88110.17130.029*
C90.15308 (5)0.6466 (2)0.13799 (4)0.0235 (2)
H90.13730.71900.11070.028*
C100.09370 (7)0.9065 (3)0.24853 (5)0.0356 (3)
H10A0.10901.07010.23870.053*
H10B0.08360.93230.27680.053*
H10C0.05680.85140.22840.053*
C110.17471 (5)0.1098 (2)0.01787 (4)0.0232 (2)
H11A0.18190.28730.02990.028*
H11B0.19440.09850.00740.028*
C120.10599 (5)0.0662 (2)0.00385 (4)0.0240 (2)
H12A0.08680.06120.02940.029*
H12B0.09890.10480.01060.029*
C130.07555 (5)0.2740 (2)0.02584 (4)0.0219 (2)
C140.32387 (5)0.4880 (2)0.11504 (3)0.0205 (2)
C150.38242 (5)0.4002 (2)0.11127 (4)0.0236 (2)
H150.38620.25090.09440.028*
C160.43483 (5)0.5284 (2)0.13181 (4)0.0258 (2)
H160.47440.46810.12900.031*
C170.42894 (5)0.7448 (2)0.15644 (4)0.0250 (2)
C180.37196 (6)0.8398 (2)0.16025 (4)0.0259 (2)
H180.36870.98990.17710.031*
C190.31958 (5)0.7130 (2)0.13915 (4)0.0240 (2)
H190.28020.77970.14110.029*
C200.01904 (6)0.4267 (3)0.06480 (5)0.0366 (3)
H20A0.00500.43140.09210.055*
H20B0.06290.38410.06990.055*
H20C0.01240.59730.05090.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03250 (17)0.03609 (19)0.04210 (19)0.01208 (13)0.00606 (14)0.00251 (14)
O10.0399 (5)0.0400 (5)0.0234 (4)0.0048 (4)0.0122 (4)0.0045 (4)
O20.0201 (4)0.0384 (5)0.0426 (5)0.0006 (4)0.0004 (4)0.0196 (4)
O30.0272 (4)0.0258 (5)0.0400 (5)0.0020 (4)0.0039 (4)0.0119 (4)
N10.0221 (5)0.0258 (5)0.0222 (5)0.0028 (4)0.0035 (4)0.0050 (4)
N20.0205 (4)0.0246 (5)0.0206 (4)0.0027 (4)0.0046 (4)0.0046 (4)
C10.0221 (5)0.0208 (5)0.0209 (5)0.0004 (4)0.0039 (4)0.0004 (4)
C20.0216 (5)0.0228 (6)0.0226 (5)0.0003 (4)0.0053 (4)0.0020 (4)
C30.0210 (5)0.0198 (5)0.0216 (5)0.0001 (4)0.0049 (4)0.0009 (4)
C40.0201 (5)0.0232 (6)0.0200 (5)0.0036 (4)0.0054 (4)0.0035 (4)
C50.0245 (5)0.0253 (6)0.0257 (6)0.0033 (4)0.0033 (4)0.0007 (5)
C60.0308 (6)0.0300 (6)0.0200 (5)0.0020 (5)0.0034 (5)0.0015 (5)
C70.0244 (5)0.0257 (6)0.0217 (5)0.0046 (4)0.0071 (4)0.0046 (4)
C80.0223 (5)0.0246 (6)0.0265 (6)0.0011 (4)0.0053 (4)0.0025 (5)
C90.0240 (5)0.0259 (6)0.0203 (5)0.0008 (4)0.0034 (4)0.0006 (4)
C100.0398 (7)0.0350 (7)0.0357 (7)0.0001 (6)0.0169 (6)0.0121 (6)
C110.0219 (5)0.0232 (6)0.0243 (5)0.0007 (4)0.0039 (4)0.0049 (4)
C120.0222 (5)0.0211 (6)0.0282 (6)0.0004 (4)0.0032 (4)0.0066 (4)
C130.0216 (5)0.0218 (5)0.0228 (5)0.0014 (4)0.0059 (4)0.0016 (4)
C140.0223 (5)0.0201 (5)0.0193 (5)0.0025 (4)0.0042 (4)0.0012 (4)
C150.0253 (6)0.0215 (6)0.0247 (5)0.0018 (4)0.0068 (4)0.0005 (4)
C160.0227 (5)0.0257 (6)0.0291 (6)0.0016 (5)0.0050 (5)0.0034 (5)
C170.0265 (6)0.0242 (6)0.0224 (5)0.0088 (5)0.0003 (4)0.0035 (4)
C180.0329 (6)0.0213 (6)0.0238 (5)0.0056 (5)0.0064 (5)0.0019 (4)
C190.0248 (5)0.0215 (6)0.0265 (5)0.0020 (4)0.0072 (4)0.0007 (4)
C200.0248 (6)0.0432 (8)0.0400 (7)0.0069 (6)0.0021 (5)0.0174 (6)
Geometric parameters (Å, º) top
Cl1—C171.7431 (12)C9—H90.950
O1—C71.3690 (14)C10—H10A0.980
O1—C101.4271 (17)C10—H10B0.980
O2—C131.3380 (14)C10—H10C0.980
O2—C201.4453 (15)C11—H11A0.990
O3—C131.1992 (14)C11—H11B0.990
N1—N21.3672 (13)C11—C121.5196 (16)
N1—C11.3334 (15)C12—H12A0.990
N2—C31.3697 (14)C12—H12B0.990
N2—C41.4350 (14)C12—C131.4978 (16)
C1—C21.4035 (16)C14—C151.4012 (16)
C1—C111.5026 (16)C14—C191.4013 (16)
C2—H20.950C15—H150.950
C2—C31.3807 (15)C15—C161.3852 (17)
C3—C141.4689 (15)C16—H160.950
C4—C51.3887 (16)C16—C171.3817 (18)
C4—C91.3822 (16)C17—C181.3813 (18)
C5—H50.950C18—H180.950
C5—C61.3828 (17)C18—C191.3872 (17)
C6—H60.950C19—H190.950
C6—C71.3941 (17)C20—H20A0.980
C7—C81.3866 (17)C20—H20B0.980
C8—H80.950C20—H20C0.980
C8—C91.3934 (16)
C7—O1—C10117.55 (10)C1—C11—H11A109.1
C13—O2—C20115.62 (10)C1—C11—H11B109.1
N2—N1—C1104.99 (9)C1—C11—C12112.46 (9)
N1—N2—C3111.85 (9)H11A—C11—H11B107.8
N1—N2—C4117.46 (9)H11A—C11—C12109.1
C3—N2—C4129.92 (9)H11B—C11—C12109.1
N1—C1—C2111.29 (10)C11—C12—H12A109.1
N1—C1—C11120.56 (10)C11—C12—H12B109.1
C2—C1—C11128.06 (10)C11—C12—C13112.64 (9)
C1—C2—H2127.1H12A—C12—H12B107.8
C1—C2—C3105.87 (10)H12A—C12—C13109.1
H2—C2—C3127.1H12B—C12—C13109.1
N2—C3—C2106.00 (10)O2—C13—O3122.91 (11)
N2—C3—C14124.79 (10)O2—C13—C12111.25 (10)
C2—C3—C14129.21 (10)O3—C13—C12125.83 (11)
N2—C4—C5119.66 (11)C3—C14—C15118.20 (10)
N2—C4—C9119.99 (10)C3—C14—C19123.46 (10)
C5—C4—C9120.34 (10)C15—C14—C19118.33 (10)
C4—C5—H5120.2C14—C15—H15119.6
C4—C5—C6119.61 (11)C14—C15—C16120.89 (11)
H5—C5—C6120.2H15—C15—C16119.6
C5—C6—H6119.9C15—C16—H16120.4
C5—C6—C7120.22 (11)C15—C16—C17119.22 (11)
H6—C6—C7119.9H16—C16—C17120.4
O1—C7—C6115.28 (11)Cl1—C17—C16119.19 (10)
O1—C7—C8124.56 (11)Cl1—C17—C18119.30 (10)
C6—C7—C8120.16 (11)C16—C17—C18121.50 (11)
C7—C8—H8120.3C17—C18—H18120.5
C7—C8—C9119.35 (11)C17—C18—C19119.08 (11)
H8—C8—C9120.3H18—C18—C19120.5
C4—C9—C8120.30 (11)C14—C19—C18120.92 (11)
C4—C9—H9119.8C14—C19—H19119.5
C8—C9—H9119.8C18—C19—H19119.5
O1—C10—H10A109.5O2—C20—H20A109.5
O1—C10—H10B109.5O2—C20—H20B109.5
O1—C10—H10C109.5O2—C20—H20C109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
C1—N1—N2—C30.23 (13)N2—C4—C9—C8177.76 (10)
C1—N1—N2—C4171.15 (10)C5—C4—C9—C81.09 (18)
N2—N1—C1—C20.06 (13)C7—C8—C9—C40.08 (18)
N2—N1—C1—C11177.00 (10)N1—C1—C11—C1231.81 (15)
N1—C1—C2—C30.12 (14)C2—C1—C11—C12151.81 (12)
C11—C1—C2—C3176.53 (11)C1—C11—C12—C13174.82 (10)
N1—N2—C3—C20.31 (13)C20—O2—C13—O31.67 (18)
N1—N2—C3—C14179.55 (10)C20—O2—C13—C12177.57 (11)
C4—N2—C3—C2169.78 (11)C11—C12—C13—O2179.75 (10)
C4—N2—C3—C1410.08 (19)C11—C12—C13—O30.54 (18)
C1—C2—C3—N20.25 (13)N2—C3—C14—C15156.57 (11)
C1—C2—C3—C14179.60 (11)N2—C3—C14—C1924.02 (18)
N1—N2—C4—C5104.40 (13)C2—C3—C14—C1523.26 (18)
N1—N2—C4—C974.45 (14)C2—C3—C14—C19156.15 (12)
C3—N2—C4—C564.58 (17)C3—C14—C15—C16178.78 (11)
C3—N2—C4—C9116.56 (14)C19—C14—C15—C161.78 (17)
N2—C4—C5—C6177.92 (11)C14—C15—C16—C170.27 (18)
C9—C4—C5—C60.94 (18)C15—C16—C17—Cl1177.47 (9)
C4—C5—C6—C70.38 (19)C15—C16—C17—C181.51 (18)
C10—O1—C7—C6177.67 (11)Cl1—C17—C18—C19178.35 (9)
C10—O1—C7—C82.26 (18)C16—C17—C18—C190.62 (18)
C5—C6—C7—O1178.38 (11)C17—C18—C19—C141.52 (18)
C5—C6—C7—C81.55 (19)C3—C14—C19—C18177.91 (11)
O1—C7—C8—C9178.53 (11)C15—C14—C19—C182.68 (17)
C6—C7—C8—C91.39 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.503.3651 (15)152
C15—H15···O3i0.952.413.3317 (15)165
C18—H18···O1ii0.952.603.4625 (16)152
C20—H20B···N1iii0.982.613.5750 (18)169
C10—H10C···Cl1iv0.982.923.7554 (15)143
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z; (iv) x1/2, y1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H17ClN2O3C20H19ClN2O3
Mr356.80370.82
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)150150
a, b, c (Å)9.131 (2), 13.759 (3), 14.264 (3)22.174 (5), 5.1352 (11), 31.884 (7)
α, β, γ (°)103.733 (3), 96.928 (3), 98.459 (3)90, 101.126 (2), 90
V3)1699.2 (6)3562.4 (13)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.250.24
Crystal size (mm)0.32 × 0.21 × 0.110.27 × 0.15 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.916, 0.9740.919, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
19183, 8218, 6174 18813, 4351, 3788
Rint0.0250.022
(sin θ/λ)max1)0.6660.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.07 0.034, 0.087, 1.02
No. of reflections82184351
No. of parameters461237
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.320.28, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), DIAMOND (Brandenburg & Putz, 1999) and Mercury (Version 2.2; Macrae et al., 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2008) and local programs, SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2008), and local programs.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O530.90 (3)1.78 (3)2.6815 (18)178 (3)
O52—H52O···O30.84 (3)1.84 (3)2.6790 (18)177 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.503.3651 (15)152
C15—H15···O3i0.952.413.3317 (15)165
C18—H18···O1ii0.952.603.4625 (16)152
C20—H20B···N1iii0.982.613.5750 (18)169
C10—H10C···Cl1iv0.982.923.7554 (15)143
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z; (iv) x1/2, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds