Download citation
Download citation
link to html
The title racemic complex, bis[[mu]-N-(2-oxidobenzyl­idene)-D,L-glutamato(2-)]bis­[(iso­quin­oline)­copper(II)] ethanol disolvate, [Cu2(C12H11NO5)2(C9H7N)2]·2C2H6O, adopts a square-pyramidal CuII coordination mode with a tridentate N-sali­cylideneglutamato Schiff base dianion and an isoquinoline ligand bound in the basal plane. The apex of the pyramid is occupied by a phenolic O atom from the adjacent chelate mol­ecule at an apical distance of 2.487 (3) Å, building a dimer located on the crystallographic inversion center. The Cu...Cu spacing within the dimers is 3.3264 (12) Å. The ethanol solvent mol­ecules are hydrogen bonded to the dimeric complex mol­ecules, forming infinite chains in the a direction. The biological activity of the title complex has been studied.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109009731/sk3299sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109009731/sk3299Isup2.hkl
Contains datablock I

CCDC reference: 735113

Comment top

Copper(II) complexes containing a Schiff base derived from salicylaldehyde and various amino acids have received considerable attention in view of their impact in many fields of bioinorganic chemistry. A series of copper(II) complexes containing the Schiff base derived from salicylaldehyde and L-glutamic acid were synthesized (Andrezálová et al., 1998; Kohútová et al., 2000) and studied on account of their antimicrobial and antiradical activities, especially for their observed capability to imitate the role of the natural superoxidedismutase enzyme. Several structures of these complexes containing the molecular ligands such as water, pyridine, pyrazole, imidazole and its derivatives have already been described, namely (1-methylimidazole)(N-salicylidene-rac-glutamato)copper(II) (Langer et al., 2003), (N-salicylidene-D,L-glutamato)(2-methylimidazole)copper(II) (Langer, Scholtzová et al., 2004) and aqua(N-salicylidene-methylester-L-glutamato)copper(II) monohydrate (Langer, Gyepesová et al., 2004). The title compound, (I), showed antimicrobial activity tested against G- bacteria Escherichia coli (IC50 = 0.60 mmol dm-3), yeasts Candida parapsilosis (IC50 = 0.63 mmol dm-3), and filamentous fungi Microsporum gypseum and Botrytis cinerea (IC50 = 0.45 and 0.44 mmol dm-3, respectively) (Valent et al., 2004). Its crystal and molecular structures are presented here.

The crystal structure of (I) consists of centrosymmetric dimers of Cu(N-salicylidene-rac-glutamato)(isoquinoline) and ethanol solvent molecules (for the numbering of the asymmetric part of the structure see Fig. 1). Each copper ion in the title complex displays a slightly distorted square-pyramidal coordination geometry. The base of the pyramid is formed by the phenol O3, carboxylate O4 and azomethine N1 atoms of the Schiff base N-salicylidenglutamate dianion and by atom N1Q of the isoquinoline ligand. The apex of the pyramid consists of the weakly bonded phenol O3 atom of an adjacent molecule at the apical distance of 2.487 (3) Å (Table 1 and Fig. 2). The size of the pyramidal base and the apical bond length are comparable to the corresponding bond lengths found in other compounds of this structure type, e.g. dimeric (imidazole-N3)(N-salicylidene-rac-alaninato-O,N,O')copper(II) (Warda, 1998), dimeric (pyrazole-N2)(N-salicylidene-2,2- dimethylglycinato-O,N,O')copper(II)pyrazole solvate (Hill & Warda, 1999) and (imidazole)(N-salicylidene-β-alaninato)copper(II) (Plesch et al. 1998). In (I), the Cu1—O3 distance of 1.922 (3) Å is considerably shorter than the Cu1—O4 distance of 1.952 (3) Å, as is the case in the above-mentioned related compounds, indicating that more negative charge is localized on the phenol O3 atom than on the carboxy O4 atom; the C1=N1 bond formed by the condensation reaction of length 1.284 (5) Å is in the normal double-bond range of 1.28–1.30 Å. In the structures of copper(II) complexes containing various N-salicylidene–amino acid Schiff bases and different neutral ligands, the local environment in the plane where the chelate and neutral ligands are bound undergoes only slight changes. A rich variety of axial distortions ranging from square-planar to square-pyramidal has been found. Such structural adaptability may be one of the reason for the diversity of interactions of these complexes with biological systems (Plesch et al., 1998). As an example, (1-methylimidazole)(N-salicylidene-rac-glutamato)copper(II) (Langer et al., 2003) adopts square-planar copper(II) coordination mode with the tridentate N-salicylidenglutamate Schiff base dianion and the1-methylimidazole ligand with dimers of centrosymmetrically related molecules [the Cu···Cu distance within dimers is 4.0429 (5) Å]; the distance of the phenol O atom from the Cu atom within the dimer is 3.2206 (16) Å and a weak interaction was formed. The Cu···Cui distance in (I) within the dimers is 3.3264 (12) Å [symmetry code: (i) -x, -y, -z + 1]. The dimers are linked into infinite chains running parallel to the a axis via medium-strong hydrogen bonds (Table 2), with the hydroxy group of the ethanol solvent molecule playing the role of both H-atom donor and acceptor (Fig. 3). In addition, there is a strong ππ interaction between the isoquinone ring systems of neighbouring dimers, with a perpendicular distance of 3.236 (2) Å between the parallel planes.

Related literature top

For related literature, see: Andrezálová et al. (1998); Hill & Warda (1999); Kohútová et al. (2000); Langer et al. (2003); Langer, Gyepesová, Scholtzová, Mach, Kohútová, Valent & Smrčok (2004); Langer, Scholtzová, Gyepesová, Kohútová & Valent (2004); Nakao et al. (1967); Sivý et al. (1994); Valent et al. (2004); Warda (1998).

Experimental top

The title complex, (I), was synthesized by the reaction of (diaqua N-salicylidene-L-glutamato)copper(II) monohydrate, prepared according to Nakao et al. (1967), and isoquinoline in the molar ratio 1:1 with 10% of excess of isoquinoline (molecular ligand) in ethanol at ambient temperature. The precipitated green coloured product was isolated, washed with ethanol and dried in air. The synthesis of the title compound resulted in a racemic mixture of Cu(N-salicylidene-rac-glutamato)(isoquinoline)diethanolate even though an optically active parent complex [Cu(N-salicylidene-L-glutamato)(H2O)2] was used in the reaction with isoquinoline. The racemization of the Schiff base ligand readily occurs under mild conditions even in neutral or weak acidic aqueous or alcoholic solutions (Sivý et al., 1994).

Refinement top

H atoms were refined isotropically and their positions were constrained to an ideal geometry using an appropriate riding model, with C—H distances of 0.95–1.00 Å. For the methyl group, the O—C—H angles (109.5°) were kept fixed, while the torsion angle was allowed to refine with the starting positions based on the circular Fourier synthesis averaged using the local threefold axis. For the hydroxy groups, the O—H distances (0.84 Å) and C—O—H angles (109.5°) were kept fixed, while the torsion angles were allowed to refine with the starting positions based on the circular Fourier synthesis. The ethanol molecule is slightly disordered (the maximum residual density peak is in this region).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003) and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective drawing of the symmetry-independent part of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The dimer of the centrosymmetrically related molecules, showing the square-pyramidal arrangement. H atoms have been omitted for clarity. [Symmetry code: (i) -x, -y, -z + 1.]
[Figure 3] Fig. 3. A projection of the structure of (I) along the c axis. Hydrogen bonds are shown as broken lines. H atoms not involved in the hydrogen-bonding pattern have been omitted for clarity. [Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 1, y, z.]
Bis[µ-hydrogen N-(2-oxidobenzylidene)-DL-glutamato]bis[(isoquinoline)copper(II)] ethanol disolvate top
Crystal data top
[Cu2(C12H11NO5)2(C9H7N)2]·2C2H6OZ = 1
Mr = 975.98F(000) = 506
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4211 (16) ÅCell parameters from 1943 reflections
b = 10.949 (3) Åθ = 2.3–23.9°
c = 12.565 (3) ŵ = 1.06 mm1
α = 66.477 (5)°T = 153 K
β = 69.288 (3)°Drop-like irregular, green–blue
γ = 69.139 (3)°0.21 × 0.19 × 0.12 mm
V = 1076.1 (4) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
3744 independent reflections
Radiation source: fine-focus sealed tube2710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 120 µm pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.808, Tmax = 0.884l = 1414
8414 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.8014P]
where P = (Fo2 + 2Fc2)/3
3744 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.84 e Å3
18 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu2(C12H11NO5)2(C9H7N)2]·2C2H6Oγ = 69.139 (3)°
Mr = 975.98V = 1076.1 (4) Å3
Triclinic, P1Z = 1
a = 9.4211 (16) ÅMo Kα radiation
b = 10.949 (3) ŵ = 1.06 mm1
c = 12.565 (3) ÅT = 153 K
α = 66.477 (5)°0.21 × 0.19 × 0.12 mm
β = 69.288 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3744 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2710 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.884Rint = 0.064
8414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04818 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.00Δρmax = 0.84 e Å3
3744 reflectionsΔρmin = 0.52 e Å3
292 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.07835 (6)0.11298 (5)0.49788 (5)0.02484 (18)
O10.4807 (5)0.4562 (4)0.6903 (4)0.0698 (13)
H10.52230.46050.74120.084*
O20.4285 (4)0.6479 (4)0.8206 (3)0.0562 (10)
O30.0301 (3)0.0539 (3)0.3801 (2)0.0258 (6)
O40.1218 (3)0.2904 (3)0.6019 (3)0.0301 (7)
O50.0232 (3)0.5165 (3)0.6437 (3)0.0338 (7)
N10.1137 (4)0.2279 (3)0.4295 (3)0.0256 (8)
C10.2032 (5)0.1898 (4)0.3246 (4)0.0268 (9)
H1A0.28900.25860.29890.032*
C20.1849 (4)0.0530 (4)0.2433 (4)0.0245 (9)
C30.2884 (5)0.0326 (5)0.1291 (4)0.0321 (10)
H30.36620.10940.10970.039*
C40.2807 (5)0.0949 (5)0.0449 (4)0.0361 (11)
H40.35230.10690.03180.043*
C50.1660 (5)0.2059 (5)0.0740 (4)0.0351 (11)
H50.15830.29460.01600.042*
C60.0631 (5)0.1905 (4)0.1851 (4)0.0304 (10)
H60.01360.26900.20240.036*
C70.0689 (4)0.0617 (4)0.2734 (3)0.0225 (9)
C80.1451 (5)0.3706 (4)0.5051 (4)0.0291 (10)
H80.19170.43360.45500.035*
C90.2567 (5)0.3911 (4)0.5764 (4)0.0316 (10)
H9A0.20980.32430.62180.038*
H9B0.35520.36930.51960.038*
C100.2973 (5)0.5349 (4)0.6641 (4)0.0366 (11)
H10A0.19920.55770.72050.044*
H10B0.34680.60190.61890.044*
C110.4057 (5)0.5504 (5)0.7347 (4)0.0363 (11)
C130.0118 (5)0.3963 (4)0.5896 (4)0.0260 (9)
N1Q0.3003 (4)0.0194 (3)0.5629 (3)0.0239 (8)
C2Q0.3766 (5)0.1003 (4)0.4940 (4)0.0248 (9)
H2Q0.32000.14310.41620.030*
C3Q0.5291 (5)0.1609 (4)0.5313 (4)0.0271 (9)
H3Q0.57690.24550.48040.033*
C4Q0.7803 (5)0.1549 (5)0.6898 (4)0.0324 (10)
H4Q0.83440.24000.64390.039*
C5Q0.8568 (5)0.0845 (5)0.7986 (4)0.0373 (11)
H5Q0.96510.12140.82870.045*
C6Q0.7795 (5)0.0410 (5)0.8674 (4)0.0395 (12)
H6Q0.83640.08900.94260.047*
C7Q0.6239 (5)0.0954 (5)0.8282 (4)0.0361 (11)
H7Q0.57190.18020.87610.043*
C8Q0.3801 (5)0.0783 (4)0.6697 (4)0.0264 (9)
H8Q0.32700.16140.71850.032*
C9Q0.6183 (5)0.0996 (4)0.6453 (4)0.0258 (9)
C10Q0.5403 (5)0.0245 (4)0.7157 (4)0.0265 (9)
O1E0.6852 (5)0.4945 (6)0.8002 (4)0.0885 (16)
H1E0.76820.50100.74580.106*
C1E0.7895 (8)0.5641 (7)0.9681 (6)0.0746 (19)
H1E10.89170.54860.91720.112*
H1E20.80430.64361.03950.112*
H1E30.72560.48230.99240.112*
C2E0.7081 (8)0.5912 (7)0.8999 (6)0.0759 (19)
H2E10.77050.67750.88110.091*
H2E20.60510.60630.95260.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0200 (3)0.0253 (3)0.0273 (3)0.0059 (2)0.0049 (2)0.0070 (2)
O10.075 (3)0.077 (3)0.064 (3)0.054 (2)0.044 (2)0.026 (2)
O20.062 (2)0.049 (2)0.052 (2)0.0164 (18)0.033 (2)0.0080 (19)
O30.0236 (15)0.0259 (15)0.0263 (16)0.0051 (12)0.0047 (13)0.0088 (12)
O40.0218 (15)0.0261 (15)0.0359 (18)0.0042 (13)0.0046 (13)0.0071 (13)
O50.0272 (16)0.0272 (16)0.0401 (19)0.0083 (13)0.0068 (14)0.0039 (14)
N10.0231 (18)0.0231 (18)0.028 (2)0.0066 (14)0.0100 (16)0.0017 (15)
C10.018 (2)0.031 (2)0.032 (3)0.0068 (18)0.0057 (19)0.0107 (19)
C20.017 (2)0.034 (2)0.024 (2)0.0106 (17)0.0038 (17)0.0083 (18)
C30.027 (2)0.037 (3)0.037 (3)0.0090 (19)0.006 (2)0.017 (2)
C40.033 (3)0.050 (3)0.024 (2)0.020 (2)0.001 (2)0.007 (2)
C50.032 (3)0.039 (3)0.029 (3)0.014 (2)0.006 (2)0.002 (2)
C60.028 (2)0.031 (2)0.033 (3)0.0061 (19)0.013 (2)0.008 (2)
C70.017 (2)0.034 (2)0.019 (2)0.0104 (17)0.0055 (17)0.0073 (18)
C80.022 (2)0.026 (2)0.036 (3)0.0033 (17)0.0084 (19)0.0081 (19)
C90.027 (2)0.030 (2)0.036 (3)0.0097 (19)0.009 (2)0.006 (2)
C100.030 (2)0.032 (2)0.048 (3)0.010 (2)0.020 (2)0.003 (2)
C110.028 (2)0.040 (3)0.038 (3)0.009 (2)0.006 (2)0.010 (2)
C130.025 (2)0.030 (2)0.025 (2)0.0098 (19)0.0093 (18)0.0043 (19)
N1Q0.0211 (18)0.0272 (18)0.027 (2)0.0078 (15)0.0089 (15)0.0084 (16)
C2Q0.027 (2)0.024 (2)0.030 (2)0.0095 (18)0.0102 (19)0.0084 (18)
C3Q0.029 (2)0.021 (2)0.036 (3)0.0036 (18)0.016 (2)0.0090 (19)
C4Q0.023 (2)0.037 (2)0.048 (3)0.0022 (19)0.013 (2)0.025 (2)
C5Q0.022 (2)0.055 (3)0.045 (3)0.011 (2)0.000 (2)0.032 (3)
C6Q0.037 (3)0.055 (3)0.030 (3)0.021 (2)0.000 (2)0.016 (2)
C7Q0.032 (3)0.040 (3)0.033 (3)0.008 (2)0.006 (2)0.011 (2)
C8Q0.027 (2)0.026 (2)0.029 (2)0.0063 (18)0.011 (2)0.0088 (19)
C9Q0.023 (2)0.032 (2)0.033 (2)0.0093 (18)0.0076 (19)0.018 (2)
C10Q0.023 (2)0.033 (2)0.028 (2)0.0083 (18)0.0072 (19)0.0128 (19)
O1E0.060 (3)0.160 (4)0.045 (2)0.070 (3)0.020 (2)0.012 (3)
C1E0.099 (5)0.073 (4)0.067 (4)0.023 (3)0.042 (4)0.016 (3)
C2E0.061 (3)0.092 (4)0.068 (4)0.021 (3)0.025 (3)0.008 (3)
Geometric parameters (Å, º) top
Cu1—O31.922 (3)C9—H9B0.9900
Cu1—N11.933 (3)C10—C111.502 (6)
Cu1—O41.952 (3)C10—H10A0.9900
Cu1—N1Q2.006 (3)C10—H10B0.9900
Cu1—O3i2.487 (3)N1Q—C8Q1.312 (5)
O1—C111.286 (5)N1Q—C2Q1.359 (5)
O1—H10.8400C2Q—C3Q1.348 (6)
O2—C111.196 (5)C2Q—H2Q0.9500
O3—C71.325 (5)C3Q—C9Q1.411 (6)
O4—C131.271 (5)C3Q—H3Q0.9500
O5—C131.242 (5)C4Q—C5Q1.357 (6)
N1—C11.284 (5)C4Q—C9Q1.420 (6)
N1—C81.454 (5)C4Q—H4Q0.9500
C1—C21.427 (6)C5Q—C6Q1.396 (7)
C1—H1A0.9500C5Q—H5Q0.9500
C2—C31.403 (6)C6Q—C7Q1.359 (6)
C2—C71.423 (6)C6Q—H6Q0.9500
C3—C41.370 (6)C7Q—C10Q1.412 (6)
C3—H30.9500C7Q—H7Q0.9500
C4—C51.385 (6)C8Q—C10Q1.407 (5)
C4—H40.9500C8Q—H8Q0.9500
C5—C61.374 (6)C9Q—C10Q1.399 (6)
C5—H50.9500O1E—C2E1.306 (7)
C6—C71.401 (6)O1E—H1E0.8400
C6—H60.9500C1E—C2E1.497 (8)
C8—C91.516 (6)C1E—H1E10.9800
C8—C131.529 (6)C1E—H1E20.9800
C8—H81.0000C1E—H1E30.9800
C9—C101.524 (6)C2E—H2E10.9900
C9—H9A0.9900C2E—H2E20.9900
O3—Cu1—N193.08 (12)H10A—C10—H10B107.7
O3—Cu1—O4173.30 (12)O2—C11—O1122.7 (4)
N1—Cu1—O482.64 (12)O2—C11—C10122.4 (4)
O3—Cu1—N1Q93.97 (12)O1—C11—C10114.7 (4)
N1—Cu1—N1Q167.18 (13)O5—C13—O4124.3 (4)
O4—Cu1—N1Q89.31 (12)O5—C13—C8119.1 (4)
C11—O1—H1109.5O4—C13—C8116.5 (3)
C7—O3—Cu1124.8 (2)C8Q—N1Q—C2Q118.0 (3)
C13—O4—Cu1116.2 (3)C8Q—N1Q—Cu1120.7 (3)
C1—N1—C8120.7 (4)C2Q—N1Q—Cu1121.0 (3)
C1—N1—Cu1125.5 (3)C3Q—C2Q—N1Q122.8 (4)
C8—N1—Cu1113.5 (3)C3Q—C2Q—H2Q118.6
N1—C1—C2125.7 (4)N1Q—C2Q—H2Q118.6
N1—C1—H1A117.1C2Q—C3Q—C9Q120.5 (4)
C2—C1—H1A117.1C2Q—C3Q—H3Q119.8
C3—C2—C7119.4 (4)C9Q—C3Q—H3Q119.8
C3—C2—C1117.5 (4)C5Q—C4Q—C9Q119.2 (4)
C7—C2—C1123.1 (4)C5Q—C4Q—H4Q120.4
C4—C3—C2121.9 (4)C9Q—C4Q—H4Q120.4
C4—C3—H3119.0C4Q—C5Q—C6Q121.3 (4)
C2—C3—H3119.0C4Q—C5Q—H5Q119.3
C3—C4—C5118.5 (4)C6Q—C5Q—H5Q119.3
C3—C4—H4120.8C7Q—C6Q—C5Q120.9 (4)
C5—C4—H4120.8C7Q—C6Q—H6Q119.6
C6—C5—C4121.5 (4)C5Q—C6Q—H6Q119.6
C6—C5—H5119.3C6Q—C7Q—C10Q119.3 (4)
C4—C5—H5119.3C6Q—C7Q—H7Q120.3
C5—C6—C7121.4 (4)C10Q—C7Q—H7Q120.3
C5—C6—H6119.3N1Q—C8Q—C10Q123.4 (4)
C7—C6—H6119.3N1Q—C8Q—H8Q118.3
O3—C7—C6118.7 (4)C10Q—C8Q—H8Q118.3
O3—C7—C2123.9 (4)C4Q—C9Q—C3Q123.9 (4)
C6—C7—C2117.4 (4)C4Q—C9Q—C10Q119.3 (4)
N1—C8—C9108.7 (3)C3Q—C9Q—C10Q116.8 (4)
N1—C8—C13107.0 (3)C7Q—C10Q—C8Q121.5 (4)
C9—C8—C13110.1 (4)C7Q—C10Q—C9Q119.9 (4)
N1—C8—H8110.4C8Q—C10Q—C9Q118.5 (4)
C9—C8—H8110.4C2E—O1E—H1E109.5
C13—C8—H8110.4C2E—C1E—H1E1109.5
C8—C9—C10115.4 (3)C2E—C1E—H1E2109.5
C8—C9—H9A108.4H1E1—C1E—H1E2109.5
C10—C9—H9A108.4C2E—C1E—H1E3109.5
C8—C9—H9B108.4H1E1—C1E—H1E3109.5
C10—C9—H9B108.4H1E2—C1E—H1E3109.5
H9A—C9—H9B107.5O1E—C2E—C1E115.8 (6)
C11—C10—C9113.8 (4)O1E—C2E—H2E1108.3
C11—C10—H10A108.8C1E—C2E—H2E1108.3
C9—C10—H10A108.8O1E—C2E—H2E2108.3
C11—C10—H10B108.8C1E—C2E—H2E2108.3
C9—C10—H10B108.8H2E1—C2E—H2E2107.4
N1—Cu1—O3—C721.8 (3)C9—C10—C11—O2167.2 (5)
N1Q—Cu1—O3—C7147.5 (3)C9—C10—C11—O117.9 (6)
N1—Cu1—O4—C135.3 (3)Cu1—O4—C13—O5175.7 (3)
N1Q—Cu1—O4—C13175.3 (3)Cu1—O4—C13—C86.3 (4)
O3—Cu1—N1—C115.7 (3)N1—C8—C13—O5163.6 (4)
O4—Cu1—N1—C1159.1 (4)C9—C8—C13—O578.5 (5)
N1Q—Cu1—N1—C1107.6 (6)N1—C8—C13—O418.3 (5)
O3—Cu1—N1—C8169.2 (3)C9—C8—C13—O499.6 (4)
O4—Cu1—N1—C816.0 (3)O3—Cu1—N1Q—C8Q160.6 (3)
N1Q—Cu1—N1—C867.5 (7)N1—Cu1—N1Q—C8Q76.2 (7)
C8—N1—C1—C2179.4 (4)O4—Cu1—N1Q—C8Q25.2 (3)
Cu1—N1—C1—C25.8 (6)O3—Cu1—N1Q—C2Q25.3 (3)
N1—C1—C2—C3175.9 (4)N1—Cu1—N1Q—C2Q97.9 (6)
N1—C1—C2—C74.9 (6)O4—Cu1—N1Q—C2Q148.9 (3)
C7—C2—C3—C40.5 (6)C8Q—N1Q—C2Q—C3Q0.7 (6)
C1—C2—C3—C4179.8 (4)Cu1—N1Q—C2Q—C3Q174.9 (3)
C2—C3—C4—C50.5 (6)N1Q—C2Q—C3Q—C9Q1.1 (6)
C3—C4—C5—C61.0 (7)C9Q—C4Q—C5Q—C6Q0.2 (6)
C4—C5—C6—C70.5 (7)C4Q—C5Q—C6Q—C7Q1.3 (7)
Cu1—O3—C7—C6163.3 (3)C5Q—C6Q—C7Q—C10Q0.9 (7)
Cu1—O3—C7—C218.4 (5)C2Q—N1Q—C8Q—C10Q0.7 (6)
C5—C6—C7—O3177.9 (4)Cu1—N1Q—C8Q—C10Q173.6 (3)
C5—C6—C7—C20.5 (6)C5Q—C4Q—C9Q—C3Q177.0 (4)
C3—C2—C7—O3177.3 (4)C5Q—C4Q—C9Q—C10Q1.4 (6)
C1—C2—C7—O32.0 (6)C2Q—C3Q—C9Q—C4Q178.2 (4)
C3—C2—C7—C60.9 (5)C2Q—C3Q—C9Q—C10Q0.3 (6)
C1—C2—C7—C6179.8 (4)C6Q—C7Q—C10Q—C8Q178.3 (4)
C1—N1—C8—C987.8 (5)C6Q—C7Q—C10Q—C9Q0.7 (6)
Cu1—N1—C8—C996.9 (3)N1Q—C8Q—C10Q—C7Q176.2 (4)
C1—N1—C8—C13153.5 (4)N1Q—C8Q—C10Q—C9Q1.4 (6)
Cu1—N1—C8—C1321.9 (4)C4Q—C9Q—C10Q—C7Q1.8 (6)
N1—C8—C9—C10177.9 (4)C3Q—C9Q—C10Q—C7Q176.7 (4)
C13—C8—C9—C1061.0 (5)C4Q—C9Q—C10Q—C8Q179.5 (3)
C8—C9—C10—C11178.9 (4)C3Q—C9Q—C10Q—C8Q0.9 (6)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1E0.841.792.576 (5)154
O1E—H1E···O5ii0.841.922.750 (5)169
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C12H11NO5)2(C9H7N)2]·2C2H6O
Mr975.98
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)9.4211 (16), 10.949 (3), 12.565 (3)
α, β, γ (°)66.477 (5), 69.288 (3), 69.139 (3)
V3)1076.1 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.21 × 0.19 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.808, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
8414, 3744, 2710
Rint0.064
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.124, 1.00
No. of reflections3744
No. of parameters292
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.52

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003) and SADABS (Sheldrick, 2003), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).

Selected bond lengths (Å) top
Cu1—O31.922 (3)Cu1—N1Q2.006 (3)
Cu1—N11.933 (3)Cu1—O3i2.487 (3)
Cu1—O41.952 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1E0.841.792.576 (5)154
O1E—H1E···O5ii0.841.922.750 (5)169
Symmetry code: (ii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds