Download citation
Download citation
link to html
4,6-Dinitro-N,N'-di-n-octylbenzene-1,3-diamine, C22H38N4O4, (I), 4,6-dinitro-N,N'-di-n-undecyl­benzene-1,3-diamine, C28H50N4O4, (II), and N,N'-bis­(2,4-dinitro­phenyl)octane-1,8-diamine, C20H24N6O8, (III), are the first synthetic meta-dinitro­arenes functionalized with long-chain aliphatic amine groups to be structurally characterized. The intra- and inter­molecular inter­actions in these model compounds provide information that can be used to help understand the physical properties of corresponding polymers with similar functionalities. Compounds (I) and (II) possess near-mirror symmetry, with the octyl and undecyl chains adopting fully extended anti conformations in the same direction with respect to the ring. Compound (III) rests on a center of inversion that occupies the mid-point of the central C-C bond of the octyl chain. The middle six C atoms of the chain form an anti arrangement, while the remaining two C atoms take hard turns almost perpendicular to the rest of the chain. All three mol­ecules display intra­molecular N-H...O hydrogen bonds between the amine and nitro groups, with the same NH group forming a bifurcated inter­molecular hydrogen bond to the nitro O atom of an adjacent mol­ecule. In each case, these inter­actions link the mol­ecules into one-dimensional mol­ecular chains. In (I) and (II), these chains pack so that the pendant alkyl groups are inter­leaved parallel to one another, maximizing non­bonded C-H contacts. In (III), the alkyl groups are more isolated within the mol­ecular chains and the primary non­bonded contacts between the chains appear to involve the nitro groups not involved in the hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109001619/sk3288sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109001619/sk3288Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109001619/sk3288IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109001619/sk3288IIIsup4.hkl
Contains datablock III

CCDC references: 724215; 724216; 724217

Comment top

We have recently reported the preparation and characteristics of polyamines containing two aromatic nitro groups in the polymer repeat units (Teng et al., 2006). These polymers were prepared by the reactions of various aliphatic diamines with 1,5-difluoro-2,4-dinitrobenzene (DFDNB) in dimethylacetamide (DMAC) and diphenyl sulfone (DPS) at elevated temperatures. Anhydrous potassium carbonate was used as the acid scavenger and the resulting by-product, water, was removed by toluene via azeotropic distillation. The aforementioned reaction conditions, in particular the need for higher reaction temperatures to achieve high molecular weight polymers, were ascertained from the preparation of various model compounds. For example, the higher degree of solubility of 4,6-dinitro-N,N'-di-n-octylbenzene-1,3-diamine, (I), in DMAC, in contrast with N,N'-bis(2,4-dinitrophenyl)octane-1,8-diamine, (III), which precipitates out of refluxing DMAC, led us to use DPS (a higher boiling point dipolar aprotic solvent) as co-solvent during polymer syntheses. The prepared polymers were soluble only in strong mineral acids with bulky counterions, including nitric, sulfuric and perchloric acids at room temperature. This exceptional solvent resistance can be attributed to both inter- and intrachain hydrogen bonding and possible hydrophobic interactions. In addition, the chain flexibility associated with longer aliphatic chains (hexyl and higher) allows for semi-helical chains, which further facilitates a higher order of chain packing. This was evidenced from the complex wide-angle X-ray data for these polymers. Notwithstanding these strong interactions, it is possible to obtain fingernail-creasable films by compression molding these polymers above their melting points. This paper is part of our continuing study of the structures of the monomer units for these polymers (Walczak et al., 2008). Compounds (I), (II) (4,6-dinitro-N,N'-di-n-undecylbenzene-1,3-diamine) and (III) constitute a new family of dinitroarenes functionalized with long-chain alkyl amines. These model compounds and their intermolecular interactions offer insight into the physical properties of polymers prepared from diamines and the corresponding difluoro compound.

Molecules of (I) come close to having an internal mirror plane but in fact reside on general positions (Fig. 1). The H atoms on the N atoms of the n-octylamine groups participate in strong intramolecular hydrogen bonds with the O atoms of the adjacent nitro group (Table 1). This pattern has been observed previously in molecules with primary amine groups on both sides of a nitro group (Ammon et al., 1982). A search of the Cambridge Structural Database (Version 5.29 plus updates in January 2008 and August 2008; Allen, 2002) reveals three structures of 1,5-bis(amino)-substituted 2,4-dinitrobenzene derivatives with 3-amino-1-pentanoic acid (Williams et al., 1993), hydroxyethylamine (Lee et al., 2006) and 3-(2,2,5,5,-tetramethylpyrrolidinyl-n-oxide)amine (Hilti et al., 1976) groups, respectively, that display the same intramolecular N—H···O hydrogen bonding. In these other cases, the amine functional groups contain strong hydrogen-bonding donors and/or acceptors which create very different intermolecular interactions. Compound (I) is the first example we are aware of in which the amine functional groups are long-chain alkyl chains with no additional substitution.

The octyl groups in (I) adopt an anti conformation throughout the chain. However, unlike what was observed in 1,3-bis(n-octylamino)-2-nitrobenzene (Walczak et al., 2008), the chains are not coplanar with the ring. Rather, the axis of the parallel chains in (I) is roughly 38° out of the plane containing the ring, nitro groups and amine N atoms. This difference is most likely associated with the formation of intramolecular N—H···O interactions in (I) that are not observed in 1,3-bis(n-octylamino)-2-nitrobenzene. These H atoms are further involved in bifurcated intermolecular interactions (Table 1) that link the molecules of (I) into chains that run in the [210] direction and stack parallel to (120) (Fig. 2). This type of bifurcated N—H···O interaction involving nitro O atoms from different molecules has been observed before (Panunto et al., 1987), but it appears to be more commonly associated with the formation of isolated dimers (akin to the behavior of carboxylic acid groups) rather than chains. The linking of amine- and nitro-substituted organic molecules into chains is more commonly accomplished by bifurcated hydrogen bonds in which the N—H group of one molecule interacts with two O atoms from the same nitro group of an adjacent molecule (Panunto et al., 1987). In the crystal structure of (I) described here, the chains are formed such that the octyl groups of adjacent molecules point to opposite sides of the chain. As a result, when the chains pack in the c direction, the octyl groups interleave, thus forming hydrophobic domains dominated by C—H interactions. In addition, the arene rings are stacked on top of each other along the a axis at distances of ca 3.8–3.9 Å apart. This is also different from what was found for 1,3-bis(n-octylamino)-2-nitrobenzene (Walczak et al., 2008).

Molecules of (II) adopt essentially the same molecular structure as those of (I), with the alkyl chains simply extended by three methylene groups (Fig. 3). The intramolecular N—H···O amine–nitro hydrogen bonds occur on both sides of the ring (Table 2), the undecyl chains are in the anti conformation for the length of the chain and the parallel chains are canted by ca 36° with respect to the plane of the arene ring. The packing in the ab plane is virtually identical to that in (I), as indicated by the similarity of the cell dimensions, with the same intermolecular hydrogen-bonding pattern and interleaving of the alkyl chains (Fig. 4). As a result of the additional methylene units, the c axis of (II) is about 4 Å longer than that of (I).

Molecules of (III) possess internal inversion symmetry about the center of the C10—C10i bond [symmetry code: (i) 1 - x, 1 - y, -z] (Fig. 5). The amine H atom participates in an intramolecular hydrogen bond with the nearest nitro O atom (Table 3). The majority of the octyl chain forms an extended anti conformation (torsion angles all within 4° of 180°). However, the last C atom at each end is gauche to the rest of the chain [C10—C9—C8—C7 torsion angle ca 71°]. As a result, although the planes of the arene rings are parallel, they are not coplanar. The octyl chain forms a modified S-shaped connector between the rings. This conformation gives support to the proposition that polymer chains made from this monomer could have semi-helical arrangements.

Similarly to the case in (I) and (II), the molecules of (III) are linked by four-center hydrogen bonds involving two amine H atoms and two nitro O atoms, the same groups being involved in the intramolecular N—H···O interactions. Because each molecule can form two such bifurcated interactions, the net result is a motif of chains running along the c direction (Fig. 6). These chains then stack along the b direction, with the nitro groups that are not involved in the hydrogen bonds in close proximity to one another. Contrary to (I) and (II), the packing in (III) does not cleanly maximize contacts between either the alkyl chains or the arene rings. We believe that this is the first N,N'-(2,4-dinitrophenyl)diaminoalkane to be structurally characterized.

Experimental top

To prepare (I), octylamine (1.29 g, 0.01 mol), 1,5-difluoro-2,4-dinitrobenzene (DFDNB) (1.02 g, 0.005 mol), anhydrous potassium carbonate (2.20 g, excess), dimethylacetamide (DMAC) (20 ml) and toluene (15 ml) were placed in a four-necked 100 ml round-bottomed flask fitted with a thermometer, a nitrogen inlet, an overhead stirrer and a Dean–Stark trap fitted with a condenser. The reaction vessel was heated by an external oil bath to an initial temperature of 333 K and the reaction was allowed to continue at this temperature, with stirring, for 30 min. The temperature of the reaction mixture was gradually raised to 423 K over a period of 2 h. Water, the by-product of the reaction mixture, was removed by azeotropic distillation with toluene. After complete removal of water, the reaction mixture was cooled to room temperature, diluted with tetrahydrofuran (25 ml), filtered, and the filtrate poured into a rapidly stirred water–acetic acid mixture (1:1 v/v). The crude yellow precipitate was isolated by filtration and washed with saturated sodium bicarbonate solution to remove residual acetic acid. The product was air-dried under suction overnight, dissolved in dichloromethane and washed twice with water, and the organic layer was dried over anhydrous magnesium sulfate. It was filtered and the volume of the solution was reduced using a rotary evaporator. Compound (I) was then allowed to crystallize from the concentrated solution [yield 80%, m.p. 355 K (differential scanning calorimetry)]. Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 9.17 (d, 1H), 8.28 (t, 2H), 5.60 (s, 1H), 3.25 (m, 4H), 1.75 (m, 4H), 1.36 (m, 20H), 1.05 (t, 6H); 13C NMR (CDCl3, δ, p.p.m.): 148.78, 129.75, 124.18, 90.22, 43.59, 32.00, 29.47, 29.39, 28.67, 27.33, 22.87, 14.32; IR (KBr, ν > 1400 cm-1): 3379, 2921, 2847, 1616, 1581, 1542, 1411; MS (m/z) (% base peak): 422 (18), 387 (100), 323 (75), 305 (36).

Compound (II) was prepared by a similar procedure [yield 78%, m.p. 365 K (differential scanning calorimetry)]. Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 9.24 (d, 1H), 8.33 (t, 2H), 5.64 (s, 1H), 3.27 (m, 4H), 1.77 (m, 4H), 1.38 (m, 32H), 0.88 (t, 6H); 13C NMR (CDCl3, δ, p.p.m.): 148.51, 129.50. 123.91, 90.50, 43.31, 31.86, 29.56, 29.53, 29.46, 29.29, 29.24, 28.39, 27.05, 22.64, 14.07; IR (KBr, ν > 1400 cm-1): 3379, 2916, 2848, 1618, 1581, 1411, 1254; MS (m/z) (% base peak): 506 (11), 471 (100), 389 (24), 365 (29).

Compound (III) was prepared from 1,8-diaminooctane and two equivalents of 2,4-dinitrofluorobenzene using a similar reaction procedure. However, the resulting compound was sparingly soluble in DMAC at its reflux temperature. The reaction mixture was cooled to room temperature and then filtered. The residue was purified using a Soxhlet apparatus. Acetone, water and acetone, in that order, were used to remove residual salts and DMAC. The crude product was dried and recrystallized from refluxing trichloromethane to obtain suitable crystals for X-ray analysis [yield 75%, m.p. 415 K (differential scanning calorimetry). Spectroscopic analysis: 1H NMR (400 MHz, D2SO4, δ, p.p.m.): 8.6 (m, 1H), 8.1 (m, 1H), 5.6 (s, 1H), 7.4 (m, 1H), 3.0 (t, 2H), 1.2 (m, 2H), 0.9 (m, 4H); 13C NMR (D2SO4, δ, p.p.m.): 147.08, 139.45, 132.60, 131.02, 127.20, 122.30, 54.90, 26.67, 24.61, 23.98; IR (KBr, ν > 1400 cm-1): 3363, 1621, 1585, 1522, 1420; MS (m/z) (% base peak): 476 (2), 264 (12), 196 (100), 180 (55).

Refinement top

All H atoms were located from difference Fourier syntheses and refined isotropically [Please give ranges of refined C—H distances].

Computing details top

Data collection: SMART (Bruker, 2003) for (I), (III); CrystalClear (Rigaku, 2002) for (II). Cell refinement: SAINT (Bruker, 2003) for (I), (III); D*TREK (Pflugrath, 1999) for (II). Data reduction: SAINT (Bruker, 2003) for (I), (III); D*TREK (Pflugrath, 1999) for (II). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are shown as dashed bonds.
[Figure 2] Fig. 2. Portions of two adjacent molecular chains of (I) that run approximately parallel to (120), viewed along the a axis. Intra- and intermolecular N—H···O hydrogen bonds are shown as dashed bonds.
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. Portions of two adjacent molecular chains of (II) that run approximately parallel to (120), viewed along the a axis. Intra- and intermolecular N—H···O hydrogen bonds are shown as dashed lines.
[Figure 5] Fig. 5. The molecular structure of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are shown as dashed lines. The asymmetric unit consists of one-half molecule, and unlabeled atoms are related to labeled atoms by the symmetry operator (1 - x, 1 - y, -z).
[Figure 6] Fig. 6. Portions of two adjacent molecular chains of (III) running along the c direction, viewed along the a axis. Intra- and intermolecular N—H···O hydrogen bonds are shown as dashed lines.
(I) 4,6-Dinitro-N,N'-di-n-octylbenzene-1,3-diamine top
Crystal data top
C22H38N4O4Z = 2
Mr = 422.56F(000) = 460
Triclinic, P1Dx = 1.233 Mg m3
Hall symbol: -P 1Melting point: 355 K
a = 4.6679 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.5897 (6) ÅCell parameters from 6388 reflections
c = 15.7690 (6) Åθ = 2.5–28.5°
α = 83.760 (1)°µ = 0.09 mm1
β = 89.356 (1)°T = 120 K
γ = 86.421 (1)°Columnar, yellow
V = 1138.49 (8) Å30.38 × 0.12 × 0.05 mm
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
5647 independent reflections
Radiation source: fine-focus sealed tube4846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.866, Tmax = 0.996k = 2020
20817 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.116All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.4024P]
where P = (Fo2 + 2Fc2)/3
5647 reflections(Δ/σ)max = 0.001
423 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H38N4O4γ = 86.421 (1)°
Mr = 422.56V = 1138.49 (8) Å3
Triclinic, P1Z = 2
a = 4.6679 (2) ÅMo Kα radiation
b = 15.5897 (6) ŵ = 0.09 mm1
c = 15.7690 (6) ÅT = 120 K
α = 83.760 (1)°0.38 × 0.12 × 0.05 mm
β = 89.356 (1)°
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
5647 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4846 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.996Rint = 0.027
20817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116All H-atom parameters refined
S = 1.06Δρmax = 0.38 e Å3
5647 reflectionsΔρmin = 0.23 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24260 (19)0.03304 (5)0.05228 (5)0.02251 (19)
O20.13441 (19)0.07075 (5)0.12928 (5)0.0233 (2)
O30.5046 (2)0.43627 (6)0.06148 (6)0.0277 (2)
O40.61719 (19)0.33619 (6)0.13742 (6)0.0244 (2)
N10.0387 (2)0.08520 (6)0.07503 (6)0.0171 (2)
N20.4682 (2)0.36181 (6)0.08254 (6)0.0178 (2)
N30.3564 (2)0.12187 (6)0.07635 (6)0.0167 (2)
H3N0.381 (3)0.0744 (11)0.0554 (10)0.026 (4)*
N40.1209 (2)0.40298 (6)0.06140 (6)0.0185 (2)
H4N0.231 (4)0.4384 (11)0.0369 (10)0.029 (4)*
C10.1660 (2)0.18057 (7)0.03705 (7)0.0147 (2)
C20.0052 (2)0.16459 (7)0.03638 (7)0.0153 (2)
C30.1980 (2)0.22544 (7)0.07204 (7)0.0156 (2)
H30.301 (3)0.2133 (9)0.1194 (9)0.020 (3)*
C40.2473 (2)0.30464 (7)0.04113 (7)0.0155 (2)
C50.0861 (2)0.32621 (7)0.03005 (7)0.0151 (2)
C60.1108 (2)0.26159 (7)0.06710 (7)0.0152 (2)
H60.210 (3)0.2724 (9)0.1145 (10)0.023 (4)*
C70.5056 (2)0.13197 (7)0.15491 (7)0.0169 (2)
H7B0.587 (3)0.1883 (9)0.1504 (9)0.017 (3)*
H7A0.661 (3)0.0902 (9)0.1586 (9)0.018 (3)*
C80.3171 (3)0.11994 (8)0.23464 (7)0.0187 (2)
H8B0.240 (3)0.0634 (10)0.2377 (9)0.024 (4)*
H8A0.160 (3)0.1621 (10)0.2295 (9)0.024 (4)*
C90.4846 (3)0.13000 (8)0.31523 (7)0.0200 (2)
H9B0.635 (3)0.0864 (10)0.3215 (10)0.026 (4)*
H9A0.575 (3)0.1852 (10)0.3089 (10)0.024 (4)*
C100.3014 (3)0.12458 (8)0.39606 (8)0.0212 (2)
H10B0.203 (3)0.0717 (10)0.4004 (9)0.022 (4)*
H10A0.157 (4)0.1726 (11)0.3927 (10)0.032 (4)*
C110.4762 (3)0.12786 (8)0.47668 (8)0.0213 (2)
H11B0.575 (3)0.1812 (10)0.4708 (10)0.026 (4)*
H11A0.613 (3)0.0791 (10)0.4814 (10)0.029 (4)*
C120.2971 (3)0.12325 (8)0.55840 (8)0.0223 (2)
H12B0.190 (3)0.0719 (10)0.5628 (10)0.025 (4)*
H12A0.157 (4)0.1707 (11)0.5547 (11)0.033 (4)*
C130.4769 (3)0.12411 (9)0.63837 (8)0.0251 (3)
H13B0.585 (4)0.1761 (11)0.6326 (10)0.033 (4)*
H13A0.618 (4)0.0739 (11)0.6419 (11)0.036 (4)*
C140.2988 (3)0.11971 (11)0.72002 (9)0.0318 (3)
H14C0.191 (4)0.0675 (12)0.7277 (11)0.043 (5)*
H14B0.418 (4)0.1198 (13)0.7693 (13)0.052 (5)*
H14A0.170 (4)0.1682 (12)0.7194 (11)0.041 (5)*
C150.0168 (3)0.42373 (7)0.13836 (7)0.0181 (2)
H15B0.216 (3)0.4024 (9)0.1382 (9)0.018 (3)*
H15A0.018 (3)0.4851 (9)0.1349 (9)0.015 (3)*
C160.1350 (3)0.38728 (8)0.21953 (8)0.0211 (2)
H16B0.317 (3)0.4188 (9)0.2237 (9)0.021 (4)*
H16A0.180 (3)0.3269 (10)0.2159 (10)0.025 (4)*
C170.0380 (3)0.39281 (8)0.30015 (8)0.0213 (2)
H17B0.113 (3)0.4505 (10)0.2980 (9)0.021 (3)*
H17A0.199 (4)0.3505 (10)0.3013 (10)0.030 (4)*
C180.1380 (3)0.37504 (8)0.38158 (8)0.0226 (2)
H18B0.222 (3)0.3189 (10)0.3825 (10)0.027 (4)*
H18A0.299 (3)0.4187 (10)0.3812 (10)0.025 (4)*
C190.0344 (3)0.37681 (9)0.46293 (8)0.0229 (2)
H19B0.124 (3)0.4308 (10)0.4608 (9)0.020 (3)*
H19A0.186 (4)0.3298 (11)0.4656 (11)0.034 (4)*
C200.1482 (3)0.36597 (8)0.54386 (8)0.0231 (3)
H20B0.247 (3)0.3129 (10)0.5456 (9)0.023 (4)*
H20A0.300 (3)0.4122 (10)0.5406 (9)0.022 (4)*
C210.0219 (3)0.36753 (9)0.62564 (8)0.0251 (3)
H21B0.118 (3)0.4228 (10)0.6225 (10)0.025 (4)*
H21A0.168 (4)0.3210 (11)0.6291 (11)0.036 (4)*
C220.1640 (3)0.35702 (10)0.70579 (9)0.0304 (3)
H22C0.318 (4)0.4024 (11)0.7041 (10)0.032 (4)*
H22B0.255 (4)0.3022 (12)0.7105 (11)0.037 (4)*
H22A0.048 (4)0.3599 (12)0.7563 (12)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0238 (4)0.0202 (4)0.0227 (4)0.0088 (3)0.0017 (3)0.0041 (3)
O20.0274 (5)0.0223 (4)0.0207 (4)0.0002 (3)0.0069 (3)0.0054 (3)
O30.0295 (5)0.0199 (4)0.0325 (5)0.0100 (4)0.0094 (4)0.0035 (4)
O40.0202 (4)0.0297 (5)0.0226 (4)0.0046 (3)0.0082 (3)0.0022 (3)
N10.0193 (5)0.0175 (4)0.0139 (4)0.0010 (4)0.0009 (4)0.0009 (3)
N20.0155 (5)0.0204 (5)0.0164 (5)0.0027 (4)0.0003 (4)0.0013 (4)
N30.0179 (5)0.0159 (4)0.0158 (5)0.0043 (4)0.0024 (4)0.0022 (3)
N40.0206 (5)0.0156 (4)0.0182 (5)0.0053 (4)0.0039 (4)0.0011 (4)
C10.0127 (5)0.0162 (5)0.0146 (5)0.0005 (4)0.0016 (4)0.0005 (4)
C20.0160 (5)0.0156 (5)0.0141 (5)0.0006 (4)0.0014 (4)0.0014 (4)
C30.0144 (5)0.0189 (5)0.0132 (5)0.0005 (4)0.0000 (4)0.0002 (4)
C40.0125 (5)0.0174 (5)0.0155 (5)0.0027 (4)0.0008 (4)0.0015 (4)
C50.0136 (5)0.0160 (5)0.0148 (5)0.0006 (4)0.0023 (4)0.0003 (4)
C60.0143 (5)0.0175 (5)0.0132 (5)0.0009 (4)0.0019 (4)0.0005 (4)
C70.0153 (5)0.0187 (5)0.0161 (5)0.0030 (4)0.0032 (4)0.0006 (4)
C80.0172 (5)0.0216 (6)0.0168 (5)0.0003 (4)0.0018 (4)0.0008 (4)
C90.0188 (6)0.0241 (6)0.0168 (5)0.0010 (5)0.0023 (4)0.0020 (4)
C100.0198 (6)0.0264 (6)0.0172 (5)0.0006 (5)0.0011 (4)0.0024 (4)
C110.0214 (6)0.0254 (6)0.0169 (5)0.0017 (5)0.0016 (4)0.0014 (4)
C120.0216 (6)0.0269 (6)0.0180 (6)0.0006 (5)0.0008 (5)0.0020 (4)
C130.0263 (6)0.0303 (6)0.0184 (6)0.0016 (5)0.0022 (5)0.0015 (5)
C140.0356 (8)0.0416 (8)0.0171 (6)0.0038 (6)0.0006 (5)0.0014 (5)
C150.0190 (6)0.0157 (5)0.0197 (6)0.0004 (4)0.0013 (4)0.0031 (4)
C160.0182 (6)0.0261 (6)0.0197 (6)0.0024 (5)0.0001 (4)0.0049 (4)
C170.0188 (6)0.0260 (6)0.0196 (6)0.0023 (5)0.0007 (4)0.0035 (4)
C180.0213 (6)0.0276 (6)0.0194 (6)0.0041 (5)0.0005 (5)0.0029 (5)
C190.0216 (6)0.0274 (6)0.0201 (6)0.0031 (5)0.0014 (5)0.0027 (5)
C200.0232 (6)0.0276 (6)0.0188 (6)0.0044 (5)0.0022 (5)0.0017 (5)
C210.0240 (6)0.0304 (6)0.0208 (6)0.0012 (5)0.0036 (5)0.0027 (5)
C220.0326 (7)0.0401 (8)0.0190 (6)0.0055 (6)0.0016 (5)0.0035 (5)
Geometric parameters (Å, º) top
O1—N11.2423 (12)C11—H11A0.959 (16)
O2—N11.2313 (13)C12—C131.5242 (17)
O3—N21.2428 (13)C12—H12B0.965 (16)
O4—N21.2309 (13)C12—H12A0.952 (17)
N1—C21.4372 (14)C13—C141.5224 (18)
N2—C41.4349 (13)C13—H13B0.977 (17)
N3—C11.3411 (14)C13—H13A0.987 (18)
N3—C71.4561 (14)C14—H14C0.980 (19)
N3—H3N0.843 (16)C14—H14B0.96 (2)
N4—C51.3438 (14)C14—H14A0.937 (19)
N4—C151.4558 (15)C15—C161.5281 (16)
N4—H4N0.799 (17)C15—H15B0.967 (15)
C1—C61.4046 (15)C15—H15A0.953 (14)
C1—C21.4393 (15)C16—C171.5270 (16)
C2—C31.3783 (15)C16—H16B0.960 (15)
C3—C41.3812 (15)C16—H16A0.985 (15)
C3—H30.935 (15)C17—C181.5259 (17)
C4—C51.4393 (15)C17—H17B0.982 (15)
C5—C61.4033 (14)C17—H17A0.967 (17)
C6—H60.920 (15)C18—C191.5255 (17)
C7—C81.5280 (16)C18—H18B0.979 (16)
C7—H7B0.973 (14)C18—H18A0.982 (16)
C7—H7A0.942 (15)C19—C201.5266 (17)
C8—C91.5271 (16)C19—H19B0.959 (15)
C8—H8B0.970 (15)C19—H19A0.985 (17)
C8—H8A0.951 (16)C20—C211.5252 (17)
C9—C101.5246 (16)C20—H20B0.969 (15)
C9—H9B0.946 (16)C20—H20A0.976 (16)
C9—H9A0.977 (15)C21—C221.5248 (19)
C10—C111.5255 (16)C21—H21B0.992 (16)
C10—H10B0.966 (15)C21—H21A0.962 (18)
C10—H10A0.972 (17)C22—H22C0.974 (17)
C11—C121.5256 (17)C22—H22B0.974 (18)
C11—H11B0.971 (16)C22—H22A0.973 (19)
O2—N1—O1122.00 (9)C13—C12—H12A109.3 (10)
O2—N1—C2119.38 (9)C11—C12—H12A109.2 (10)
O1—N1—C2118.61 (9)H12B—C12—H12A105.8 (13)
O4—N2—O3121.70 (9)C14—C13—C12113.19 (11)
O4—N2—C4119.61 (9)C14—C13—H13B110.3 (10)
O3—N2—C4118.69 (9)C12—C13—H13B108.8 (10)
C1—N3—C7124.87 (10)C14—C13—H13A108.7 (10)
C1—N3—H3N116.6 (11)C12—C13—H13A108.4 (10)
C7—N3—H3N118.3 (11)H13B—C13—H13A107.3 (14)
C5—N4—C15124.36 (10)C13—C14—H14C111.7 (11)
C5—N4—H4N117.0 (12)C13—C14—H14B111.2 (12)
C15—N4—H4N118.6 (12)H14C—C14—H14B107.9 (15)
N3—C1—C6120.84 (10)C13—C14—H14A110.4 (11)
N3—C1—C2122.81 (10)H14C—C14—H14A108.8 (15)
C6—C1—C2116.35 (9)H14B—C14—H14A106.7 (16)
C3—C2—N1116.34 (10)N4—C15—C16112.37 (10)
C3—C2—C1120.61 (10)N4—C15—H15B109.1 (8)
N1—C2—C1123.03 (9)C16—C15—H15B110.7 (8)
C2—C3—C4121.67 (10)N4—C15—H15A107.1 (8)
C2—C3—H3119.0 (9)C16—C15—H15A111.0 (8)
C4—C3—H3119.3 (9)H15B—C15—H15A106.3 (12)
C3—C4—N2116.45 (10)C17—C16—C15112.92 (10)
C3—C4—C5120.61 (10)C17—C16—H16B109.2 (9)
N2—C4—C5122.93 (10)C15—C16—H16B108.6 (9)
N4—C5—C6120.65 (10)C17—C16—H16A109.6 (9)
N4—C5—C4123.03 (10)C15—C16—H16A110.6 (9)
C6—C5—C4116.31 (10)H16B—C16—H16A105.6 (12)
C5—C6—C1124.36 (10)C18—C17—C16112.73 (10)
C5—C6—H6118.3 (9)C18—C17—H17B109.4 (9)
C1—C6—H6117.3 (9)C16—C17—H17B109.2 (8)
N3—C7—C8113.63 (9)C18—C17—H17A108.7 (9)
N3—C7—H7B109.7 (8)C16—C17—H17A108.3 (9)
C8—C7—H7B110.2 (8)H17B—C17—H17A108.5 (13)
N3—C7—H7A106.0 (9)C19—C18—C17113.49 (10)
C8—C7—H7A110.2 (8)C19—C18—H18B109.3 (9)
H7B—C7—H7A106.8 (12)C17—C18—H18B109.8 (9)
C9—C8—C7111.54 (9)C19—C18—H18A108.6 (9)
C9—C8—H8B111.1 (9)C17—C18—H18A108.8 (9)
C7—C8—H8B108.5 (9)H18B—C18—H18A106.6 (13)
C9—C8—H8A108.9 (9)C18—C19—C20113.17 (10)
C7—C8—H8A109.0 (9)C18—C19—H19B109.2 (9)
H8B—C8—H8A107.7 (13)C20—C19—H19B108.6 (9)
C10—C9—C8113.66 (10)C18—C19—H19A108.5 (10)
C10—C9—H9B109.1 (9)C20—C19—H19A108.9 (10)
C8—C9—H9B108.6 (9)H19B—C19—H19A108.4 (13)
C10—C9—H9A108.9 (9)C21—C20—C19113.65 (10)
C8—C9—H9A109.8 (9)C21—C20—H20B110.3 (9)
H9B—C9—H9A106.6 (13)C19—C20—H20B109.5 (9)
C9—C10—C11112.93 (10)C21—C20—H20A109.0 (9)
C9—C10—H10B108.8 (9)C19—C20—H20A108.7 (9)
C11—C10—H10B109.6 (9)H20B—C20—H20A105.3 (12)
C9—C10—H10A109.8 (10)C22—C21—C20112.94 (11)
C11—C10—H10A107.6 (10)C22—C21—H21B110.0 (9)
H10B—C10—H10A107.9 (13)C20—C21—H21B108.7 (9)
C10—C11—C12113.92 (10)C22—C21—H21A108.4 (10)
C10—C11—H11B108.3 (9)C20—C21—H21A108.6 (10)
C12—C11—H11B109.1 (9)H21B—C21—H21A108.1 (13)
C10—C11—H11A107.8 (10)C21—C22—H22C110.9 (10)
C12—C11—H11A107.7 (10)C21—C22—H22B110.8 (10)
H11B—C11—H11A109.9 (13)H22C—C22—H22B106.9 (14)
C13—C12—C11113.05 (10)C21—C22—H22A110.2 (11)
C13—C12—H12B109.9 (9)H22C—C22—H22A108.5 (14)
C11—C12—H12B109.3 (9)H22B—C22—H22A109.5 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.843 (16)2.008 (16)2.6535 (13)132.7 (14)
N3—H3N···O1i0.843 (16)2.354 (16)3.0166 (12)135.8 (14)
N4—H4N···O30.799 (17)2.027 (17)2.6412 (14)133.5 (15)
N4—H4N···O3ii0.799 (17)2.312 (17)2.9647 (13)139.3 (15)
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z.
(II) 4,6-dinitro-N,N'-di-n-undecylbenzene-1,3-diamine top
Crystal data top
C28H50N4O4Z = 2
Mr = 506.72F(000) = 556
Triclinic, P1Dx = 1.153 Mg m3
Hall symbol: -P 1Melting point: 365 K
a = 4.7349 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.6273 (3) ÅCell parameters from 6392 reflections
c = 19.7771 (3) Åθ = 2.5–26.0°
α = 87.282 (2)°µ = 0.08 mm1
β = 88.549 (2)°T = 293 K
γ = 87.069 (2)°Thin plate, yellow
V = 1459.44 (5) Å30.41 × 0.06 × 0.01 mm
Data collection top
Rigaku RAPID
diffractometer
5726 independent reflections
Radiation source: rotating anode4432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(D*TREK; Pflugrath, 1999)
h = 55
Tmin = 0.822, Tmax = 1.000k = 1919
22872 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: difference Fourier map
wR(F2) = 0.176All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0901P)2 + 0.1948P]
where P = (Fo2 + 2Fc2)/3
5726 reflections(Δ/σ)max = 0.001
525 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C28H50N4O4γ = 87.069 (2)°
Mr = 506.72V = 1459.44 (5) Å3
Triclinic, P1Z = 2
a = 4.7349 (1) ÅMo Kα radiation
b = 15.6273 (3) ŵ = 0.08 mm1
c = 19.7771 (3) ÅT = 293 K
α = 87.282 (2)°0.41 × 0.06 × 0.01 mm
β = 88.549 (2)°
Data collection top
Rigaku RAPID
diffractometer
5726 independent reflections
Absorption correction: empirical (using intensity measurements)
(D*TREK; Pflugrath, 1999)
4432 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 1.000Rint = 0.028
22872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.176All H-atom parameters refined
S = 1.11Δρmax = 0.17 e Å3
5726 reflectionsΔρmin = 0.24 e Å3
525 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2446 (3)0.53227 (9)0.04457 (7)0.0711 (4)
O20.9021 (4)0.56802 (9)0.11043 (7)0.0777 (5)
O30.5025 (3)0.93061 (9)0.04702 (7)0.0712 (4)
O40.4193 (3)0.83046 (10)0.11324 (7)0.0745 (4)
N11.0553 (3)0.58419 (9)0.06443 (7)0.0527 (4)
N20.5510 (3)0.85734 (10)0.06701 (7)0.0514 (4)
N31.3537 (3)0.62890 (9)0.05696 (7)0.0481 (3)
H3N1.380 (5)0.5784 (15)0.0377 (12)0.077 (7)*
N40.8726 (3)0.90489 (9)0.05080 (7)0.0497 (4)
H4N0.760 (4)0.9369 (14)0.0316 (10)0.059 (6)*
C11.1659 (3)0.68454 (10)0.02668 (7)0.0416 (4)
C21.0153 (3)0.66484 (10)0.03255 (7)0.0439 (4)
C30.8196 (3)0.72344 (11)0.06016 (8)0.0456 (4)
H30.727 (4)0.7082 (12)0.0960 (10)0.055 (5)*
C40.7642 (3)0.80279 (10)0.03419 (7)0.0433 (4)
C50.9130 (3)0.82768 (10)0.02370 (7)0.0418 (4)
C61.1065 (3)0.76601 (10)0.05193 (8)0.0428 (4)
H61.202 (3)0.7795 (10)0.0906 (8)0.040 (4)*
C71.4939 (4)0.64278 (12)0.11964 (8)0.0481 (4)
H7B1.565 (4)0.7005 (12)0.1171 (9)0.048 (5)*
H7A1.649 (4)0.6017 (12)0.1213 (9)0.052 (5)*
C81.3058 (4)0.63209 (12)0.18266 (8)0.0498 (4)
H8B1.139 (4)0.6740 (14)0.1802 (10)0.065 (6)*
H8A1.222 (4)0.5762 (14)0.1826 (10)0.066 (6)*
C91.4671 (4)0.64230 (13)0.24703 (9)0.0538 (4)
H9B1.636 (4)0.5993 (14)0.2480 (10)0.068 (6)*
H9A1.542 (4)0.6985 (15)0.2446 (10)0.070 (6)*
C101.2885 (4)0.63109 (14)0.31157 (9)0.0557 (4)
H10B1.121 (5)0.6754 (15)0.3106 (11)0.073 (6)*
H10A1.200 (5)0.5764 (16)0.3134 (11)0.077 (6)*
C111.4538 (4)0.63680 (14)0.37584 (9)0.0566 (5)
H11B1.613 (5)0.5930 (14)0.3763 (10)0.070 (6)*
H11A1.535 (4)0.6906 (14)0.3763 (10)0.063 (6)*
C121.2785 (4)0.62372 (14)0.44052 (9)0.0578 (5)
H12B1.116 (5)0.6693 (15)0.4407 (11)0.076 (6)*
H12A1.190 (5)0.5682 (16)0.4407 (11)0.077 (7)*
C131.4469 (4)0.62880 (14)0.50455 (9)0.0573 (5)
H13B1.533 (5)0.6852 (15)0.5052 (11)0.074 (6)*
H13A1.603 (5)0.5856 (15)0.5046 (11)0.074 (6)*
C141.2737 (4)0.61541 (15)0.56977 (9)0.0588 (5)
H14B1.110 (5)0.6589 (15)0.5704 (11)0.075 (6)*
H14A1.199 (5)0.5575 (15)0.5691 (11)0.076 (6)*
C151.4421 (4)0.62157 (15)0.63345 (9)0.0588 (5)
H15B1.601 (5)0.5786 (15)0.6331 (11)0.077 (6)*
H15A1.525 (5)0.6773 (16)0.6329 (11)0.077 (7)*
C161.2739 (5)0.60844 (18)0.69891 (10)0.0709 (6)
H16B1.105 (6)0.6518 (17)0.6962 (12)0.091 (7)*
H16A1.196 (6)0.552 (2)0.6987 (15)0.115 (10)*
C171.4439 (7)0.6165 (2)0.76190 (12)0.0882 (8)
H17C1.611 (7)0.575 (2)0.7604 (15)0.126 (11)*
H17B1.332 (7)0.610 (2)0.8020 (18)0.129 (11)*
H17A1.531 (7)0.673 (2)0.7634 (15)0.119 (11)*
C181.0043 (4)0.92923 (11)0.11203 (9)0.0499 (4)
H18B1.207 (4)0.9103 (12)0.1120 (9)0.055 (5)*
H18A1.000 (4)0.9895 (13)0.1105 (9)0.053 (5)*
C190.8557 (4)0.89531 (14)0.17631 (9)0.0559 (4)
H19B0.679 (5)0.9302 (14)0.1833 (10)0.072 (6)*
H19A0.796 (5)0.8340 (15)0.1711 (11)0.078 (6)*
C201.0296 (4)0.89875 (14)0.23954 (9)0.0568 (4)
H20B1.187 (5)0.8540 (15)0.2384 (11)0.077 (6)*
H20A1.120 (4)0.9572 (15)0.2401 (10)0.068 (6)*
C210.8570 (4)0.88589 (16)0.30481 (9)0.0614 (5)
H21B0.742 (6)0.8347 (18)0.3016 (13)0.097 (8)*
H21A0.718 (5)0.9354 (16)0.3086 (12)0.083 (7)*
C221.0291 (4)0.88247 (15)0.36898 (9)0.0605 (5)
H22B1.146 (4)0.9369 (14)0.3683 (10)0.069 (6)*
H22A1.164 (6)0.8335 (18)0.3688 (12)0.092 (8)*
C230.8493 (5)0.87836 (16)0.43364 (9)0.0629 (5)
H23B0.727 (6)0.8282 (18)0.4328 (13)0.093 (8)*
H23A0.720 (5)0.9299 (16)0.4336 (11)0.077 (7)*
C241.0175 (5)0.87238 (15)0.49816 (10)0.0630 (5)
H24B1.146 (4)0.9245 (14)0.4981 (10)0.071 (6)*
H24A1.147 (5)0.8223 (18)0.4996 (12)0.090 (8)*
C250.8357 (5)0.87116 (16)0.56274 (10)0.0645 (5)
H25B0.707 (5)0.9234 (17)0.5612 (11)0.082 (7)*
H25A0.706 (5)0.8226 (18)0.5616 (12)0.092 (8)*
C261.0018 (5)0.86311 (16)0.62747 (10)0.0659 (5)
H26B1.134 (5)0.9128 (17)0.6279 (12)0.086 (7)*
H26A1.121 (5)0.8111 (18)0.6273 (12)0.091 (8)*
C270.8198 (6)0.86272 (19)0.69160 (11)0.0751 (6)
H27B0.699 (6)0.9172 (18)0.6910 (13)0.092 (8)*
H27A0.687 (6)0.818 (2)0.6905 (14)0.113 (10)*
C280.9865 (8)0.8518 (2)0.75613 (13)0.0944 (9)
H28C1.091 (8)0.799 (3)0.7564 (17)0.136 (13)*
H28B1.139 (7)0.897 (2)0.7576 (15)0.118 (11)*
H28A0.860 (7)0.858 (2)0.7948 (19)0.132 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0874 (9)0.0586 (8)0.0664 (8)0.0250 (7)0.0127 (7)0.0191 (6)
O20.1048 (11)0.0627 (8)0.0680 (9)0.0043 (8)0.0302 (8)0.0228 (7)
O30.0817 (9)0.0551 (8)0.0753 (9)0.0226 (7)0.0220 (7)0.0044 (7)
O40.0769 (9)0.0828 (10)0.0637 (8)0.0164 (7)0.0307 (7)0.0085 (7)
N10.0661 (9)0.0494 (8)0.0427 (7)0.0022 (7)0.0014 (6)0.0077 (6)
N20.0532 (8)0.0562 (9)0.0435 (7)0.0057 (6)0.0055 (6)0.0040 (6)
N30.0573 (8)0.0446 (8)0.0414 (7)0.0108 (6)0.0057 (6)0.0053 (6)
N40.0595 (9)0.0439 (8)0.0447 (8)0.0112 (7)0.0076 (6)0.0039 (6)
C10.0453 (8)0.0431 (8)0.0355 (7)0.0024 (6)0.0020 (6)0.0004 (6)
C20.0516 (9)0.0436 (8)0.0363 (8)0.0013 (7)0.0007 (6)0.0047 (6)
C30.0498 (9)0.0526 (9)0.0343 (8)0.0026 (7)0.0026 (6)0.0013 (7)
C40.0452 (8)0.0478 (9)0.0358 (8)0.0038 (7)0.0021 (6)0.0028 (6)
C50.0456 (8)0.0432 (8)0.0358 (7)0.0020 (6)0.0027 (6)0.0005 (6)
C60.0480 (8)0.0448 (8)0.0354 (7)0.0037 (7)0.0054 (6)0.0037 (6)
C70.0489 (9)0.0482 (9)0.0464 (9)0.0082 (8)0.0092 (7)0.0025 (7)
C80.0532 (10)0.0539 (10)0.0423 (9)0.0020 (8)0.0080 (7)0.0005 (7)
C90.0580 (10)0.0600 (11)0.0438 (9)0.0045 (9)0.0090 (7)0.0012 (8)
C100.0570 (11)0.0668 (12)0.0438 (9)0.0048 (9)0.0080 (8)0.0019 (8)
C110.0615 (11)0.0663 (12)0.0427 (9)0.0066 (10)0.0080 (8)0.0022 (8)
C120.0614 (11)0.0684 (12)0.0443 (10)0.0064 (10)0.0060 (8)0.0035 (8)
C130.0628 (11)0.0660 (12)0.0432 (9)0.0041 (10)0.0059 (8)0.0018 (8)
C140.0613 (11)0.0687 (12)0.0466 (10)0.0037 (10)0.0041 (8)0.0032 (8)
C150.0645 (11)0.0669 (12)0.0449 (10)0.0035 (10)0.0038 (8)0.0011 (8)
C160.0762 (14)0.0881 (16)0.0477 (11)0.0038 (13)0.0016 (9)0.0021 (10)
C170.1010 (19)0.118 (2)0.0454 (12)0.0035 (18)0.0045 (12)0.0007 (13)
C180.0599 (11)0.0421 (9)0.0478 (9)0.0014 (8)0.0034 (7)0.0072 (7)
C190.0572 (11)0.0655 (12)0.0460 (9)0.0043 (9)0.0014 (8)0.0107 (8)
C200.0588 (11)0.0664 (12)0.0456 (9)0.0014 (9)0.0042 (8)0.0080 (8)
C210.0641 (12)0.0751 (13)0.0461 (10)0.0073 (11)0.0041 (8)0.0086 (9)
C220.0660 (12)0.0698 (13)0.0457 (10)0.0011 (10)0.0049 (8)0.0056 (9)
C230.0693 (12)0.0758 (14)0.0446 (10)0.0090 (11)0.0053 (8)0.0045 (9)
C240.0721 (13)0.0690 (13)0.0478 (10)0.0002 (11)0.0056 (9)0.0029 (9)
C250.0727 (13)0.0721 (13)0.0493 (10)0.0099 (11)0.0048 (9)0.0021 (9)
C260.0799 (14)0.0693 (13)0.0481 (11)0.0027 (11)0.0077 (9)0.0035 (9)
C270.0872 (16)0.0878 (17)0.0511 (11)0.0140 (14)0.0016 (10)0.0016 (11)
C280.124 (2)0.109 (2)0.0496 (13)0.008 (2)0.0099 (14)0.0024 (13)
Geometric parameters (Å, º) top
O1—N11.2366 (19)C14—H14A0.99 (2)
O2—N11.2214 (18)C15—C161.514 (3)
O3—N21.238 (2)C15—H15B0.98 (2)
O4—N21.2221 (18)C15—H15A0.97 (2)
N1—C21.438 (2)C16—C171.514 (3)
N2—C41.435 (2)C16—H16B1.02 (3)
N3—C11.343 (2)C16—H16A0.97 (3)
N3—C71.451 (2)C17—H17C0.99 (4)
N3—H3N0.89 (2)C17—H17B0.95 (4)
N4—C51.346 (2)C17—H17A0.99 (3)
N4—C181.451 (2)C18—C191.523 (3)
N4—H4N0.80 (2)C18—H18B0.989 (19)
C1—C61.402 (2)C18—H18A0.940 (19)
C1—C21.440 (2)C19—C201.519 (2)
C2—C31.374 (2)C19—H19B0.99 (2)
C3—C41.375 (2)C19—H19A1.02 (2)
C3—H30.891 (19)C20—C211.521 (3)
C4—C51.439 (2)C20—H20B1.00 (2)
C5—C61.402 (2)C20—H20A1.03 (2)
C6—H60.936 (17)C21—C221.523 (3)
C7—C81.521 (2)C21—H21B1.00 (3)
C7—H7B0.979 (18)C21—H21A1.00 (3)
C7—H7A0.949 (19)C22—C231.519 (3)
C8—C91.520 (2)C22—H22B1.04 (2)
C8—H8B1.00 (2)C22—H22A0.97 (3)
C8—H8A0.98 (2)C23—C241.518 (3)
C9—C101.522 (3)C23—H23B1.00 (3)
C9—H9B1.02 (2)C23—H23A0.99 (2)
C9—H9A0.96 (2)C24—C251.522 (3)
C10—C111.518 (2)C24—H24B1.04 (2)
C10—H10B1.03 (2)C24—H24A0.97 (3)
C10—H10A0.97 (2)C25—C261.516 (3)
C11—C121.518 (3)C25—H25B0.99 (3)
C11—H11B0.99 (2)C25—H25A1.00 (3)
C11—H11A0.94 (2)C26—C271.515 (3)
C12—C131.521 (2)C26—H26B1.02 (3)
C12—H12B1.02 (2)C26—H26A0.96 (3)
C12—H12A0.98 (2)C27—C281.516 (3)
C13—C141.523 (3)C27—H27B1.00 (3)
C13—H13B0.99 (2)C27—H27A0.97 (3)
C13—H13A0.98 (2)C28—H28C0.94 (4)
C14—C151.517 (2)C28—H28B1.03 (3)
C14—H14B1.01 (2)C28—H28A0.96 (4)
O2—N1—O1121.16 (14)C16—C15—H15A108.9 (13)
O2—N1—C2119.62 (14)C14—C15—H15A109.1 (14)
O1—N1—C2119.21 (13)H15B—C15—H15A106.5 (19)
O4—N2—O3121.45 (14)C15—C16—C17113.9 (2)
O4—N2—C4119.70 (15)C15—C16—H16B106.1 (14)
O3—N2—C4118.85 (14)C17—C16—H16B112.4 (14)
C1—N3—C7124.97 (14)C15—C16—H16A107.6 (18)
C1—N3—H3N115.3 (15)C17—C16—H16A110.5 (18)
C7—N3—H3N119.5 (15)H16B—C16—H16A106 (2)
C5—N4—C18124.44 (15)C16—C17—H17C108.6 (18)
C5—N4—H4N114.7 (15)C16—C17—H17B112 (2)
C18—N4—H4N120.7 (15)H17C—C17—H17B113 (3)
N3—C1—C6120.83 (14)C16—C17—H17A112.8 (18)
N3—C1—C2122.80 (14)H17C—C17—H17A103 (3)
C6—C1—C2116.37 (14)H17B—C17—H17A107 (3)
C3—C2—N1117.09 (14)N4—C18—C19112.88 (15)
C3—C2—C1120.17 (14)N4—C18—H18B110.7 (10)
N1—C2—C1122.72 (14)C19—C18—H18B110.2 (11)
C2—C3—C4122.28 (15)N4—C18—H18A106.6 (11)
C2—C3—H3117.5 (12)C19—C18—H18A110.5 (11)
C4—C3—H3120.3 (12)H18B—C18—H18A105.6 (15)
C3—C4—N2116.71 (14)C20—C19—C18113.80 (16)
C3—C4—C5120.48 (14)C20—C19—H19B107.8 (12)
N2—C4—C5122.81 (14)C18—C19—H19B108.6 (12)
N4—C5—C6120.44 (14)C20—C19—H19A109.6 (12)
N4—C5—C4123.43 (14)C18—C19—H19A110.8 (12)
C6—C5—C4116.13 (14)H19B—C19—H19A105.9 (18)
C5—C6—C1124.52 (14)C19—C20—C21113.27 (16)
C5—C6—H6118.2 (10)C19—C20—H20B109.4 (12)
C1—C6—H6117.2 (10)C21—C20—H20B109.0 (13)
N3—C7—C8114.01 (14)C19—C20—H20A109.6 (12)
N3—C7—H7B108.7 (10)C21—C20—H20A108.4 (11)
C8—C7—H7B109.4 (10)H20B—C20—H20A107.0 (17)
N3—C7—H7A105.2 (11)C20—C21—C22114.54 (17)
C8—C7—H7A110.1 (11)C20—C21—H21B109.2 (15)
H7B—C7—H7A109.3 (15)C22—C21—H21B112.4 (15)
C9—C8—C7111.86 (14)C20—C21—H21A108.5 (14)
C9—C8—H8B110.3 (11)C22—C21—H21A106.2 (13)
C7—C8—H8B110.2 (11)H21B—C21—H21A105 (2)
C9—C8—H8A111.7 (12)C23—C22—C21113.55 (17)
C7—C8—H8A108.7 (12)C23—C22—H22B109.0 (11)
H8B—C8—H8A103.8 (17)C21—C22—H22B108.1 (11)
C8—C9—C10113.81 (15)C23—C22—H22A109.5 (15)
C8—C9—H9B108.6 (11)C21—C22—H22A109.7 (14)
C10—C9—H9B110.0 (11)H22B—C22—H22A106.7 (19)
C8—C9—H9A107.9 (12)C24—C23—C22114.34 (18)
C10—C9—H9A109.6 (13)C24—C23—H23B109.4 (15)
H9B—C9—H9A106.7 (17)C22—C23—H23B109.0 (15)
C11—C10—C9113.65 (16)C24—C23—H23A109.5 (13)
C11—C10—H10B110.4 (12)C22—C23—H23A108.1 (13)
C9—C10—H10B109.4 (12)H23B—C23—H23A106 (2)
C11—C10—H10A108.2 (13)C23—C24—C25114.02 (18)
C9—C10—H10A110.8 (13)C23—C24—H24B108.6 (11)
H10B—C10—H10A103.9 (18)C25—C24—H24B108.7 (11)
C10—C11—C12114.00 (16)C23—C24—H24A111.3 (14)
C10—C11—H11B109.4 (12)C25—C24—H24A108.6 (15)
C12—C11—H11B108.3 (12)H24B—C24—H24A105.2 (19)
C10—C11—H11A109.9 (12)C26—C25—C24114.42 (19)
C12—C11—H11A108.5 (12)C26—C25—H25B111.6 (13)
H11B—C11—H11A106.5 (18)C24—C25—H25B107.9 (14)
C11—C12—C13113.54 (16)C26—C25—H25A109.6 (14)
C11—C12—H12B108.6 (13)C24—C25—H25A108.5 (14)
C13—C12—H12B109.1 (12)H25B—C25—H25A104 (2)
C11—C12—H12A109.8 (13)C27—C26—C25114.2 (2)
C13—C12—H12A109.6 (13)C27—C26—H26B108.8 (13)
H12B—C12—H12A105.9 (19)C25—C26—H26B108.8 (14)
C12—C13—C14114.04 (16)C27—C26—H26A109.1 (15)
C12—C13—H13B110.0 (13)C25—C26—H26A108.9 (15)
C14—C13—H13B108.4 (12)H26B—C26—H26A107 (2)
C12—C13—H13A109.5 (13)C26—C27—C28114.0 (2)
C14—C13—H13A108.1 (13)C26—C27—H27B108.0 (15)
H13B—C13—H13A106.5 (19)C28—C27—H27B110.8 (14)
C15—C14—C13113.77 (16)C26—C27—H27A109.4 (17)
C15—C14—H14B109.0 (12)C28—C27—H27A109.5 (18)
C13—C14—H14B109.3 (13)H27B—C27—H27A105 (2)
C15—C14—H14A109.1 (13)C27—C28—H28C109 (2)
C13—C14—H14A106.9 (13)C27—C28—H28B111.6 (18)
H14B—C14—H14A108.6 (18)H28C—C28—H28B104 (3)
C16—C15—C14114.65 (18)C27—C28—H28A110 (2)
C16—C15—H15B108.3 (13)H28C—C28—H28A114 (3)
C14—C15—H15B109.1 (13)H28B—C28—H28A108 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.89 (2)1.95 (2)2.6456 (19)134 (2)
N3—H3N···O1i0.89 (2)2.42 (2)3.0927 (19)132.5 (18)
N4—H4N···O30.80 (2)2.01 (2)2.646 (2)135.9 (19)
N4—H4N···O3ii0.80 (2)2.39 (2)3.048 (2)140.3 (18)
Symmetry codes: (i) x+3, y+1, z; (ii) x+1, y+2, z.
(III) N,N'-bis(2,4-dinitrophenyl)octane-1,8-diamine top
Crystal data top
C20H24N6O8F(000) = 500
Mr = 476.45Dx = 1.479 Mg m3
Monoclinic, P21/cMelting point: 415 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.6740 (1) ÅCell parameters from 9203 reflections
b = 25.7389 (8) Åθ = 2.4–35.4°
c = 8.9254 (3) ŵ = 0.12 mm1
β = 94.949 (1)°T = 105 K
V = 1069.75 (5) Å3Parallelepiped, yellow
Z = 20.30 × 0.20 × 0.12 mm
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
2096 independent reflections
Radiation source: fine-focus sealed tube1973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
h = 54
Tmin = 0.759, Tmax = 0.986k = 3131
8443 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.109All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.7683P]
where P = (Fo2 + 2Fc2)/3
2096 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H24N6O8V = 1069.75 (5) Å3
Mr = 476.45Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.6740 (1) ŵ = 0.12 mm1
b = 25.7389 (8) ÅT = 105 K
c = 8.9254 (3) Å0.30 × 0.20 × 0.12 mm
β = 94.949 (1)°
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
2096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
1973 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.986Rint = 0.026
8443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.109All H-atom parameters refined
S = 1.11Δρmax = 0.34 e Å3
2096 reflectionsΔρmin = 0.24 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2873 (3)0.52120 (4)0.58095 (14)0.0291 (3)
O20.0548 (3)0.54337 (5)0.71511 (14)0.0322 (3)
O30.0743 (3)0.77934 (5)0.70804 (16)0.0404 (4)
O40.2373 (3)0.71662 (6)0.83856 (16)0.0387 (4)
N10.1404 (3)0.55469 (5)0.63733 (15)0.0221 (3)
N20.0882 (3)0.73311 (6)0.74205 (17)0.0302 (4)
N30.5325 (3)0.59148 (5)0.41903 (15)0.0198 (3)
H30.517 (4)0.5595 (9)0.438 (2)0.027 (5)*
C10.3856 (3)0.62460 (6)0.49881 (17)0.0179 (3)
C20.1972 (3)0.60895 (6)0.60844 (18)0.0199 (3)
C30.0470 (3)0.64441 (7)0.68846 (19)0.0224 (4)
H3A0.069 (4)0.6324 (8)0.758 (2)0.026 (5)*
C40.0792 (3)0.69653 (6)0.66181 (19)0.0236 (4)
C50.2608 (4)0.71428 (6)0.55641 (19)0.0237 (4)
H50.281 (4)0.7495 (8)0.539 (2)0.027 (5)*
C60.4085 (3)0.67947 (6)0.47726 (19)0.0211 (3)
H60.526 (4)0.6907 (7)0.409 (2)0.017 (4)*
C70.7060 (4)0.60578 (6)0.29635 (19)0.0218 (4)
H7B0.818 (4)0.6371 (8)0.326 (2)0.024 (5)*
H7A0.843 (4)0.5771 (8)0.288 (2)0.028 (5)*
C80.5231 (4)0.61429 (6)0.1484 (2)0.0257 (4)
H8B0.374 (5)0.6418 (9)0.163 (2)0.037 (6)*
H8A0.651 (5)0.6267 (8)0.079 (2)0.031 (5)*
C90.3716 (4)0.56493 (7)0.0863 (2)0.0255 (4)
H9B0.214 (4)0.5741 (8)0.010 (2)0.030 (5)*
H9A0.264 (4)0.5485 (8)0.165 (2)0.027 (5)*
C100.5748 (4)0.52520 (7)0.0261 (2)0.0258 (4)
H10A0.739 (5)0.5172 (8)0.106 (2)0.036 (6)*
H10B0.662 (5)0.5433 (8)0.058 (3)0.037 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0356 (7)0.0150 (6)0.0395 (7)0.0024 (5)0.0191 (6)0.0001 (5)
O20.0379 (7)0.0281 (7)0.0335 (7)0.0016 (5)0.0205 (6)0.0025 (5)
O30.0529 (9)0.0239 (7)0.0430 (8)0.0160 (6)0.0036 (7)0.0110 (6)
O40.0389 (8)0.0417 (8)0.0365 (8)0.0115 (6)0.0097 (6)0.0131 (6)
N10.0251 (7)0.0200 (7)0.0223 (7)0.0010 (5)0.0081 (6)0.0004 (5)
N20.0310 (8)0.0280 (8)0.0298 (8)0.0112 (6)0.0072 (6)0.0123 (6)
N30.0237 (7)0.0130 (7)0.0234 (7)0.0010 (5)0.0064 (5)0.0004 (5)
C10.0175 (7)0.0162 (7)0.0195 (8)0.0001 (6)0.0014 (6)0.0017 (6)
C20.0209 (8)0.0159 (7)0.0228 (8)0.0009 (6)0.0018 (6)0.0009 (6)
C30.0205 (8)0.0244 (8)0.0221 (8)0.0021 (6)0.0013 (7)0.0038 (6)
C40.0230 (8)0.0219 (8)0.0250 (8)0.0074 (6)0.0035 (7)0.0086 (6)
C50.0272 (8)0.0145 (7)0.0278 (9)0.0028 (6)0.0072 (7)0.0025 (6)
C60.0227 (8)0.0173 (8)0.0229 (8)0.0016 (6)0.0007 (6)0.0003 (6)
C70.0253 (8)0.0169 (7)0.0244 (8)0.0036 (6)0.0088 (7)0.0009 (6)
C80.0315 (9)0.0205 (8)0.0257 (9)0.0001 (7)0.0063 (7)0.0005 (7)
C90.0248 (8)0.0261 (9)0.0258 (9)0.0004 (7)0.0037 (7)0.0025 (7)
C100.0240 (8)0.0266 (9)0.0277 (9)0.0043 (7)0.0077 (7)0.0035 (7)
Geometric parameters (Å, º) top
O1—N11.2358 (18)C5—H50.93 (2)
O2—N11.2285 (18)C6—C11.431 (2)
O3—N21.231 (2)C6—H60.901 (19)
O4—N21.229 (2)C7—C81.526 (2)
N1—C21.449 (2)C7—H7B0.98 (2)
N2—C41.452 (2)C7—H7A0.99 (2)
N3—C11.338 (2)C8—C91.535 (2)
N3—C71.465 (2)C8—H8B1.01 (2)
N3—H30.85 (2)C8—H8A0.95 (2)
C2—C31.387 (2)C9—C101.524 (2)
C2—C11.430 (2)C9—H9B0.99 (2)
C3—C41.373 (2)C9—H9A0.99 (2)
C3—H3A0.91 (2)C10—C10i1.527 (3)
C4—C51.397 (3)C10—H10A1.02 (2)
C5—C61.365 (2)C10—H10B1.00 (2)
O2—N1—O1122.04 (14)C2—C1—C6115.33 (14)
O2—N1—C2119.05 (13)N3—C7—C8112.22 (14)
O1—N1—C2118.90 (13)N3—C7—H7B108.9 (11)
O4—N2—O3123.48 (15)C8—C7—H7B111.0 (11)
O4—N2—C4118.94 (15)N3—C7—H7A106.1 (11)
O3—N2—C4117.57 (16)C8—C7—H7A111.1 (11)
C1—N3—C7125.49 (14)H7B—C7—H7A107.3 (16)
C1—N3—H3117.3 (14)C7—C8—C9113.60 (14)
C7—N3—H3117.2 (14)C7—C8—H8B109.4 (12)
C3—C2—C1122.43 (15)C9—C8—H8B108.9 (13)
C3—C2—N1115.73 (14)C7—C8—H8A105.9 (13)
C1—C2—N1121.77 (14)C9—C8—H8A109.8 (12)
C4—C3—C2119.07 (16)H8B—C8—H8A109.1 (17)
C4—C3—H3A122.0 (13)C10—C9—C8113.61 (14)
C2—C3—H3A118.9 (13)C10—C9—H9B111.6 (12)
C3—C4—C5121.22 (15)C8—C9—H9B110.1 (12)
C3—C4—N2118.43 (16)C10—C9—H9A109.4 (11)
C5—C4—N2120.31 (15)C8—C9—H9A110.0 (11)
C6—C5—C4119.85 (15)H9B—C9—H9A101.4 (16)
C6—C5—H5119.5 (13)C9—C10—C10i113.25 (18)
C4—C5—H5120.7 (13)C9—C10—H10A110.0 (12)
C5—C6—C1122.10 (16)C10i—C10—H10A109.8 (12)
C5—C6—H6120.2 (11)C9—C10—H10B105.0 (12)
C1—C6—H6117.7 (11)C10i—C10—H10B111.7 (13)
N3—C1—C2124.02 (14)H10A—C10—H10B106.8 (17)
N3—C1—C6120.65 (15)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.85 (2)2.00 (2)2.6382 (18)131.9 (18)
N3—H3···O1ii0.85 (2)2.28 (2)3.0202 (18)146.3 (18)
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC22H38N4O4C28H50N4O4C20H24N6O8
Mr422.56506.72476.45
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/c
Temperature (K)120293105
a, b, c (Å)4.6679 (2), 15.5897 (6), 15.7690 (6)4.7349 (1), 15.6273 (3), 19.7771 (3)4.6740 (1), 25.7389 (8), 8.9254 (3)
α, β, γ (°)83.760 (1), 89.356 (1), 86.421 (1)87.282 (2), 88.549 (2), 87.069 (2)90, 94.949 (1), 90
V3)1138.49 (8)1459.44 (5)1069.75 (5)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.080.12
Crystal size (mm)0.38 × 0.12 × 0.050.41 × 0.06 × 0.010.30 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART 6000 CCD area-detector
diffractometer
Rigaku RAPID
diffractometer
Bruker SMART 6000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(D*TREK; Pflugrath, 1999)
Multi-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.866, 0.9960.822, 1.0000.759, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
20817, 5647, 4846 22872, 5726, 4432 8443, 2096, 1973
Rint0.0270.0280.026
(sin θ/λ)max1)0.6670.6180.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.06 0.058, 0.176, 1.11 0.044, 0.109, 1.11
No. of reflections564757262096
No. of parameters423525202
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.230.17, 0.240.34, 0.24

Computer programs: SMART (Bruker, 2003), CrystalClear (Rigaku, 2002), SAINT (Bruker, 2003), D*TREK (Pflugrath, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.843 (16)2.008 (16)2.6535 (13)132.7 (14)
N3—H3N···O1i0.843 (16)2.354 (16)3.0166 (12)135.8 (14)
N4—H4N···O30.799 (17)2.027 (17)2.6412 (14)133.5 (15)
N4—H4N···O3ii0.799 (17)2.312 (17)2.9647 (13)139.3 (15)
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.89 (2)1.95 (2)2.6456 (19)134 (2)
N3—H3N···O1i0.89 (2)2.42 (2)3.0927 (19)132.5 (18)
N4—H4N···O30.80 (2)2.01 (2)2.646 (2)135.9 (19)
N4—H4N···O3ii0.80 (2)2.39 (2)3.048 (2)140.3 (18)
Symmetry codes: (i) x+3, y+1, z; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.85 (2)2.00 (2)2.6382 (18)131.9 (18)
N3—H3···O1i0.85 (2)2.28 (2)3.0202 (18)146.3 (18)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds