Download citation
Download citation
link to html
The title compound, C21H28O4, has a 4-acet­oxy substituent positioned on the steroid [alpha] face. The six-membered ring A assumes a conformation inter­mediate between 1[alpha],2[beta]-half chair and 1[alpha]-sofa. A long Csp3-Csp3 bond is observed in ring B and reproduced in quantum-mechanical ab initio calculations of the isolated mol­ecule using a mol­ecular-orbital Hartree-Fock method. Cohesion of the crystal can be attributed to van der Waals inter­actions and weak C-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107015533/sk3116sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107015533/sk3116Isup2.hkl
Contains datablock I

CCDC reference: 652508

Comment top

Following our interest in preparing steroidal enzymatic inhibitors aimed at breast cancer treatment, and in studying their structure–activity relationships (Cepa et al., 2005), the title compound, (I), which is the acetate derivative of formestane, was prepared as previously described in the literature (Marsh et al., 1985). We report here the molecular structure of (I) determined by single-crystal X-ray analysis, and compare it with that of the free molecule as given by quantum-mechanical ab initio calculations.

An ORTEPII (Johnson, 1976) plot of (I) is shown in Fig. 1. The 4-acetoxy substituent is positioned on the α face of the steroid nucleus. Average values for the atomic distances are in good agreement with reported ones (Allen et al., 1987), although for the Csp3—Csp3 bonds extreme values of 1.514 (3) (C12—C13) and 1.569 (3) Å (C9—C10) were found, deviating significantly from the average value of 1.535 (14) Å. The abnormally large value is probably due to the severe distortion of ring A (C1–C5/C10). A similar C9—C10 bond length was observed for one of the non-equivalent molecules in the asymmetric unit of formestane [1.571 (3) Å; Griffin et al., 1980].

As a consequence of the C4C5 double bond present in ring A, this ring assumes a conformation intermediate between 1α,2β-half chair and 1α-sofa [asymmetry parameters (Duax & Norton, 1975) ΔC2(1,2) = 12.5 (3)°, ΔCs(1) = 13.7 (2)° and ΔCs(3) = 45.1 (2)°]. Rings B (C5–C10) and C (C8/C9/C11–C14) have sightly distorted chair conformations with average torsion angles of 54.0 (18) and 55 (2)°, respectively. The five-membered ring D (C13–C17) has a 14α-conformation, most common for these 17-one steroids [puckering parameters (Cremer & Pople, 1975) q2 = 0.417 (3) Å and ϕ2 = 215.6 (4)°; pseudo-rotation (Altona et al., 1968) and asymmetry parameters (Duax & Norton, 1975): Δ = -34.4 (4)°, ϕm = 42.7 (1)°, ΔCs(14) = 0.7 (2)°, ΔC2(13,14) = 20.0 (2)°]. The distance between terminal atoms O3 and O17 is 10.564 (2) Å. The C19—C10···C13—C18 pseudo-torsion angle of -0.06 (19)° indicates that the molecule is not twisted. The dihedral angle between the least-squares plane of the four non-H atoms of the acetate group and that of ring A is 79.78 (10)°.

In order to check whether the observed large deviations from the mean of the C9—C10 and C12—C13 bond lengths were intrinsic to the free steroid molecule or rather due to an influence of crystal packing, we have performed a quantum chemical calculation of the equilibrium geometry of the free molecule. These calculations were performed with the computer program GAMESS (Schmidt et al., 1993). A molecular orbital Roothan Hartree–Fock method was used with an extended 6–31 G(d,p) basis set. Tight conditions for convergence of both the self-consistent field cycles and the maximum density and energy gradients were imposed (10-5 atomic units). The programs were run on a Pentium IV PC (3.0 GHz) running Linux. Interestingly, the calculations reproduce the long C9—C10 bond [calculated value 1.570 Å]. For the shorter Csp3—Csp3 bond, the calculations give a slightly higher value than the observed one [calculated value 1.526 Å]. Overall, there is a very good agreement between the remaining calculated and observed bond lengths. However, the equilibrium geometry of the isolated molecule has a significantly more twisted steroid nucleus [calculated pseudo-torsion angle C19—C10···C13—C18 = 4.9°]. There is considerable freedom of rotation of the acetoxy group around the C4—O4 and O4—C41 bonds, as evidenced by the torsion angles C3—C4—O4—C41 [experimental 80.0 (2)°; calculated 77.0°] and C4—O4—C41—O41 [experimental 0.4 (4)°; calculated 15.4°].

Owing to the absence of a strong hydrogen-bond donor, cohesion of the structure of (I) is mainly achieved by van der Waals and weak C—H···O interactions. One intramolecular C—H···O short contact between the single-bonded O atom of the 4-acetoxy group and a neighbouring H atom of ring B is present, C6—H6A···O4 = 2.808 (5) Å. There are, in addition, two intermolecular C—H···O short distances of 3.357 (6) and 3.459 (6) Å between H atoms of rings B and C and O atoms.

Related literature top

For related literature, see: Allen et al. (1987); Altona et al. (1968); Cepa et al. (2005); Cremer & Pople (1975); Duax & Norton (1975); Griffin et al. (1980); Johnson (1976); Marsh et al. (1985); Schmidt et al. (1993).

Experimental top

To an ice-cooled solution of formestane (0.3 g, 0.99 mmol) in pyridine (5.0 ml), acetyl chloride (0.11 ml, 1.48 mmol) was added, and the reaction was stirred for 3 h until completion. Dichloromethane (100 ml) was then added, and the organic layer was washed with aqueous 0.25 N HCl (2 × 100 ml), 10% NaHCO3 (2 × 100 ml) and water (2 × 100 ml), dried over anhydrous MgSO4 and evaporated to dryness giving the desired title compound as a yellow crystalline solid (yield 0.335 g, 98%). Crystals of (I) of good quality suitable for X-ray crystallographic analysis were grown from ethyl acetate [m.p. 457–458 K; literature value 457–457.5 K (Marsh et al., 1985)]. IR (Medium?, ν, cm-1): 1758, 1735, 1681, 1625; 1H NMR (CDCl3, δ, p.p.m.): 0.91 (s, 3H, 18-H3), 1.27 (s, 3H, 19-H3), 2.24 [s, 3H, CH3C(O)O], 2.73 (ddd, 1H, J6α-6β = 15.0 Hz, J6α-7α = 4.0 Hz, J6α-7β = 2.5 Hz, 6α-H).

Refinement top

All H atoms were refined as riding on their parent atoms, with C—H = 0.96–0.98 Å and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H. [Please check added text] The absolute configuration was not determined from the X-ray data but was known from the synthesis route. Friedel pairs were merged before refinement.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: PLATON (Spek, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
3,17-Dioxoandrost-4-en-4-yl acetate top
Crystal data top
C21H28O4Dx = 1.213 Mg m3
Mr = 344.43Melting point: 457.5(5) K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 11.5681 (3) Åθ = 16.4–26.9°
b = 12.0702 (3) ŵ = 0.66 mm1
c = 13.512 (2) ÅT = 294 K
V = 1886.6 (3) Å3Prism, colourless
Z = 40.36 × 0.17 × 0.17 mm
F(000) = 744
Data collection top
Enraf–Nonius MACH-3
diffractometer
1795 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 73.8°, θmin = 4.9°
profile data from ω–2θ scansh = 1414
Absorption correction: ψ scan
(North et al., 1968)
k = 615
Tmin = 0.851, Tmax = 0.890l = 1616
3577 measured reflections3 standard reflections every 300 min
2135 independent reflections intensity decay: 2.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.3523P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.025
2128 reflectionsΔρmax = 0.16 e Å3
230 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0095 (6)
Crystal data top
C21H28O4V = 1886.6 (3) Å3
Mr = 344.43Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 11.5681 (3) ŵ = 0.66 mm1
b = 12.0702 (3) ÅT = 294 K
c = 13.512 (2) Å0.36 × 0.17 × 0.17 mm
Data collection top
Enraf–Nonius MACH-3
diffractometer
1795 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.851, Tmax = 0.8903 standard reflections every 300 min
3577 measured reflections intensity decay: 2.2%
2135 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.09Δρmax = 0.16 e Å3
2128 reflectionsΔρmin = 0.15 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.16071 (19)0.83111 (14)0.70155 (15)0.0703 (6)
O40.01306 (13)0.69137 (13)0.60928 (11)0.0478 (4)
O170.43619 (16)0.00475 (15)0.59791 (15)0.0676 (5)
O410.14471 (17)0.7197 (2)0.49048 (14)0.0755 (6)
C10.30303 (18)0.57501 (18)0.7628 (2)0.0483 (6)
H1A0.35460.54820.81410.058*
H1B0.34760.58180.70220.058*
C20.2583 (2)0.6892 (2)0.7922 (2)0.0572 (6)
H2A0.22110.68460.85640.069*
H2B0.32280.74020.79780.069*
C30.1739 (2)0.73266 (18)0.71761 (18)0.0487 (5)
C40.10241 (18)0.64852 (18)0.66895 (16)0.0417 (5)
C50.10965 (18)0.53964 (17)0.68459 (16)0.0398 (5)
C60.02065 (19)0.46203 (19)0.6436 (2)0.0506 (6)
H6A0.02730.50180.59670.061*
H6B0.02870.43680.69700.061*
C70.0733 (2)0.3617 (2)0.5922 (2)0.0548 (6)
H7A0.10940.38520.53090.066*
H7B0.01240.30960.57590.066*
C80.16294 (18)0.30427 (17)0.65691 (17)0.0419 (5)
H80.12510.27620.71670.050*
C90.25714 (17)0.38909 (16)0.68698 (15)0.0379 (4)
H90.28700.42010.62500.046*
C100.20659 (17)0.48954 (17)0.74670 (16)0.0383 (4)
C110.36155 (19)0.33567 (18)0.73938 (18)0.0457 (5)
H11A0.42230.39060.74570.055*
H11B0.33850.31370.80560.055*
C120.41010 (18)0.23401 (19)0.68508 (19)0.0473 (5)
H12A0.44500.25710.62310.057*
H12B0.46950.19950.72520.057*
C130.31464 (18)0.15127 (18)0.66461 (16)0.0421 (5)
C140.22060 (18)0.20822 (18)0.60298 (17)0.0440 (5)
H140.26030.24090.54590.053*
C150.1488 (2)0.1118 (2)0.5620 (2)0.0603 (7)
H15A0.10440.13440.50460.072*
H15B0.09670.08260.61180.072*
C160.2418 (2)0.0265 (2)0.5341 (2)0.0628 (7)
H16A0.21470.04820.54670.075*
H16B0.26190.03280.46460.075*
C170.3454 (2)0.05331 (19)0.59882 (19)0.0503 (5)
C180.2694 (3)0.0988 (2)0.76160 (19)0.0583 (7)
H18A0.33180.06230.79510.087*
H18B0.21000.04590.74640.087*
H18C0.23820.15570.80340.087*
C190.1564 (2)0.4529 (2)0.84711 (17)0.0529 (6)
H19A0.12590.51630.88120.079*
H19B0.21620.41970.88630.079*
H19C0.09560.40010.83640.079*
C410.0471 (2)0.7260 (2)0.51771 (18)0.0501 (6)
C420.0518 (3)0.7691 (3)0.4599 (2)0.0684 (8)
H42A0.04440.84790.45250.103*
H42B0.12260.75240.49380.103*
H42C0.05260.73490.39570.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0844 (13)0.0391 (8)0.0872 (14)0.0084 (9)0.0022 (12)0.0050 (9)
O40.0459 (8)0.0518 (8)0.0457 (8)0.0133 (7)0.0034 (7)0.0097 (7)
O170.0640 (11)0.0637 (11)0.0753 (12)0.0153 (9)0.0043 (10)0.0155 (10)
O410.0620 (11)0.1170 (18)0.0476 (10)0.0101 (13)0.0109 (9)0.0080 (11)
C10.0406 (11)0.0453 (12)0.0590 (14)0.0004 (9)0.0086 (11)0.0013 (11)
C20.0543 (13)0.0484 (12)0.0688 (16)0.0013 (11)0.0109 (13)0.0129 (12)
C30.0485 (12)0.0410 (11)0.0567 (14)0.0050 (10)0.0101 (11)0.0031 (10)
C40.0382 (10)0.0451 (11)0.0418 (11)0.0067 (9)0.0021 (9)0.0047 (10)
C50.0350 (9)0.0446 (11)0.0398 (11)0.0012 (9)0.0031 (9)0.0041 (9)
C60.0376 (11)0.0483 (12)0.0660 (15)0.0013 (10)0.0098 (11)0.0055 (11)
C70.0446 (12)0.0533 (13)0.0666 (15)0.0013 (10)0.0186 (12)0.0031 (12)
C80.0360 (9)0.0411 (10)0.0485 (12)0.0033 (9)0.0032 (9)0.0026 (9)
C90.0350 (9)0.0393 (10)0.0395 (11)0.0013 (8)0.0009 (9)0.0057 (9)
C100.0369 (10)0.0405 (10)0.0377 (10)0.0000 (8)0.0025 (9)0.0036 (9)
C110.0401 (11)0.0450 (11)0.0522 (13)0.0026 (9)0.0094 (10)0.0034 (10)
C120.0378 (10)0.0495 (12)0.0545 (13)0.0034 (9)0.0045 (10)0.0001 (11)
C130.0441 (11)0.0413 (10)0.0409 (11)0.0016 (9)0.0020 (9)0.0027 (9)
C140.0426 (11)0.0444 (11)0.0449 (11)0.0035 (9)0.0028 (10)0.0011 (10)
C150.0528 (14)0.0559 (14)0.0723 (17)0.0050 (12)0.0117 (13)0.0118 (13)
C160.0670 (15)0.0524 (14)0.0689 (17)0.0026 (14)0.0067 (15)0.0165 (13)
C170.0553 (13)0.0454 (12)0.0504 (13)0.0008 (11)0.0042 (12)0.0011 (11)
C180.0737 (17)0.0504 (13)0.0508 (14)0.0011 (13)0.0101 (13)0.0089 (11)
C190.0562 (13)0.0580 (14)0.0444 (12)0.0072 (12)0.0062 (11)0.0088 (11)
C410.0591 (14)0.0514 (13)0.0396 (12)0.0082 (12)0.0021 (11)0.0007 (10)
C420.0817 (19)0.0746 (18)0.0490 (14)0.0250 (16)0.0076 (14)0.0031 (13)
Geometric parameters (Å, º) top
O3—C31.218 (3)C10—C191.541 (3)
O4—C411.364 (3)C11—C121.536 (3)
O4—C41.409 (3)C11—H11A0.9700
O41—C411.190 (3)C11—H11B0.9700
O17—C171.203 (3)C12—C131.514 (3)
C1—C21.525 (3)C12—H12A0.9700
C1—C101.535 (3)C12—H12B0.9700
C1—H1A0.9700C13—C171.521 (3)
C1—H1B0.9700C13—C141.533 (3)
C2—C31.498 (3)C13—C181.547 (3)
C2—H2A0.9700C14—C151.533 (3)
C2—H2B0.9700C14—H140.9800
C3—C41.465 (3)C15—C161.536 (4)
C4—C51.334 (3)C15—H15A0.9700
C5—C61.498 (3)C15—H15B0.9700
C5—C101.526 (3)C16—C171.518 (4)
C6—C71.522 (3)C16—H16A0.9700
C6—H6A0.9700C16—H16B0.9700
C6—H6B0.9700C18—H18A0.9600
C7—C81.523 (3)C18—H18B0.9600
C7—H7A0.9700C18—H18C0.9600
C7—H7B0.9700C19—H19A0.9600
C8—C141.523 (3)C19—H19B0.9600
C8—C91.549 (3)C19—H19C0.9600
C8—H80.9800C41—C421.480 (3)
C9—C111.541 (3)C42—H42A0.9600
C9—C101.569 (3)C42—H42B0.9600
C9—H90.9800C42—H42C0.9600
C41—O4—C4114.84 (17)C9—C11—H11B108.8
C2—C1—C10113.44 (18)H11A—C11—H11B107.7
C2—C1—H1A108.9C13—C12—C11110.33 (17)
C10—C1—H1A108.9C13—C12—H12A109.6
C2—C1—H1B108.9C11—C12—H12A109.6
C10—C1—H1B108.9C13—C12—H12B109.6
H1A—C1—H1B107.7C11—C12—H12B109.6
C3—C2—C1111.2 (2)H12A—C12—H12B108.1
C3—C2—H2A109.4C12—C13—C17116.68 (19)
C1—C2—H2A109.4C12—C13—C14108.73 (17)
C3—C2—H2B109.4C17—C13—C14101.35 (17)
C1—C2—H2B109.4C12—C13—C18111.2 (2)
H2A—C2—H2B108.0C17—C13—C18104.83 (18)
O3—C3—C4121.7 (2)C14—C13—C18113.80 (19)
O3—C3—C2122.9 (2)C8—C14—C13113.10 (18)
C4—C3—C2115.29 (19)C8—C14—C15120.89 (18)
C5—C4—O4119.9 (2)C13—C14—C15103.89 (18)
C5—C4—C3125.2 (2)C8—C14—H14106.0
O4—C4—C3114.60 (18)C13—C14—H14106.0
C4—C5—C6121.0 (2)C15—C14—H14106.0
C4—C5—C10121.6 (2)C14—C15—C16102.60 (18)
C6—C5—C10117.43 (18)C14—C15—H15A111.2
C5—C6—C7113.01 (18)C16—C15—H15A111.2
C5—C6—H6A109.0C14—C15—H15B111.2
C7—C6—H6A109.0C16—C15—H15B111.2
C5—C6—H6B109.0H15A—C15—H15B109.2
C7—C6—H6B109.0C17—C16—C15105.55 (19)
H6A—C6—H6B107.8C17—C16—H16A110.6
C6—C7—C8111.9 (2)C15—C16—H16A110.6
C6—C7—H7A109.2C17—C16—H16B110.6
C8—C7—H7A109.2C15—C16—H16B110.6
C6—C7—H7B109.2H16A—C16—H16B108.8
C8—C7—H7B109.2O17—C17—C16125.4 (2)
H7A—C7—H7B107.9O17—C17—C13126.0 (2)
C7—C8—C14111.73 (19)C16—C17—C13108.6 (2)
C7—C8—C9109.17 (17)C13—C18—H18A109.5
C14—C8—C9108.69 (16)C13—C18—H18B109.5
C7—C8—H8109.1H18A—C18—H18B109.5
C14—C8—H8109.1C13—C18—H18C109.5
C9—C8—H8109.1H18A—C18—H18C109.5
C11—C9—C8113.28 (16)H18B—C18—H18C109.5
C11—C9—C10112.26 (17)C10—C19—H19A109.5
C8—C9—C10112.53 (16)C10—C19—H19B109.5
C11—C9—H9106.0H19A—C19—H19B109.5
C8—C9—H9106.0C10—C19—H19C109.5
C10—C9—H9106.0H19A—C19—H19C109.5
C5—C10—C1110.22 (17)H19B—C19—H19C109.5
C5—C10—C19108.71 (17)O41—C41—O4122.3 (2)
C1—C10—C19110.0 (2)O41—C41—C42126.4 (2)
C5—C10—C9107.30 (16)O4—C41—C42111.3 (2)
C1—C10—C9108.73 (16)C41—C42—H42A109.5
C19—C10—C9111.83 (17)C41—C42—H42B109.5
C12—C11—C9113.65 (18)H42A—C42—H42B109.5
C12—C11—H11A108.8C41—C42—H42C109.5
C9—C11—H11A108.8H42A—C42—H42C109.5
C12—C11—H11B108.8H42B—C42—H42C109.5
C10—C1—C2—C356.0 (3)C8—C9—C10—C1173.61 (18)
C1—C2—C3—O3150.6 (2)C11—C9—C10—C1964.5 (2)
C1—C2—C3—C433.0 (3)C8—C9—C10—C1964.7 (2)
C41—O4—C4—C5106.1 (2)C8—C9—C11—C1248.8 (2)
C41—O4—C4—C380.0 (2)C10—C9—C11—C12177.61 (18)
O3—C3—C4—C5178.2 (2)C9—C11—C12—C1352.8 (3)
C2—C3—C4—C51.7 (3)C11—C12—C13—C17171.83 (19)
O3—C3—C4—O44.7 (3)C11—C12—C13—C1458.1 (2)
C2—C3—C4—O4171.77 (19)C11—C12—C13—C1868.0 (2)
O4—C4—C5—C63.0 (3)C7—C8—C14—C13177.81 (19)
C3—C4—C5—C6170.2 (2)C9—C8—C14—C1357.3 (2)
O4—C4—C5—C10178.55 (17)C7—C8—C14—C1558.2 (3)
C3—C4—C5—C108.3 (3)C9—C8—C14—C15178.7 (2)
C4—C5—C6—C7132.7 (2)C12—C13—C14—C863.0 (2)
C10—C5—C6—C748.7 (3)C17—C13—C14—C8173.56 (17)
C5—C6—C7—C850.7 (3)C18—C13—C14—C861.6 (2)
C6—C7—C8—C14176.56 (18)C12—C13—C14—C15164.16 (19)
C6—C7—C8—C956.3 (2)C17—C13—C14—C1540.7 (2)
C7—C8—C9—C11171.32 (19)C18—C13—C14—C1571.3 (2)
C14—C8—C9—C1149.2 (2)C8—C14—C15—C16169.1 (2)
C7—C8—C9—C1060.0 (2)C13—C14—C15—C1640.9 (3)
C14—C8—C9—C10177.90 (17)C14—C15—C16—C1724.5 (3)
C4—C5—C10—C114.1 (3)C15—C16—C17—O17179.5 (3)
C6—C5—C10—C1167.4 (2)C15—C16—C17—C130.6 (3)
C4—C5—C10—C19106.6 (2)C12—C13—C17—O1736.9 (3)
C6—C5—C10—C1972.0 (2)C14—C13—C17—O17154.7 (2)
C4—C5—C10—C9132.3 (2)C18—C13—C17—O1786.6 (3)
C6—C5—C10—C949.2 (2)C12—C13—C17—C16143.2 (2)
C2—C1—C10—C545.7 (3)C14—C13—C17—C1625.3 (2)
C2—C1—C10—C1974.2 (3)C18—C13—C17—C1693.3 (2)
C2—C1—C10—C9163.0 (2)C4—O4—C41—O410.4 (4)
C11—C9—C10—C5176.38 (17)C4—O4—C41—C42179.7 (2)
C8—C9—C10—C554.4 (2)C19—C10—C13—C180.06 (19)
C11—C9—C10—C157.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O40.972.342.808 (3)109
C6—H6B···O3i0.972.423.358 (3)164
C11—H11B···O41ii0.972.543.459 (3)159
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H28O4
Mr344.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)11.5681 (3), 12.0702 (3), 13.512 (2)
V3)1886.6 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.36 × 0.17 × 0.17
Data collection
DiffractometerEnraf–Nonius MACH-3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.851, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
3577, 2135, 1795
Rint0.022
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.088, 1.09
No. of reflections2128
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, PLATON (Spek, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected bond lengths (Å) top
O4—C41.409 (3)C4—C51.334 (3)
C2—C31.498 (3)C9—C101.569 (3)
C3—C41.465 (3)C12—C131.514 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O40.972.342.808 (3)109
C6—H6B···O3i0.972.423.358 (3)164
C11—H11B···O41ii0.972.543.459 (3)159
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1/2, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds