Download citation
Download citation
link to html
The title compounds, tert-butyl 6-benzyl-2-(3,3-diethyl­ureido)-4,5,6,7-tetra­hydro­thieno[2,3-c]pyridine-3-carboxyl­ate, C24H33N3O3S, (I), 7-benzyl-2-diethyl­amino-5,6,7,8-tetra­hydro-3-oxa-9-thia-1,7-diaza­fluoren-4-one, C20H23N3O2S, (II), and N-(7-benzyl-4-oxo-5,6,7,8-tetra­hydro-4H-3,9-dithia-1,7-diaza­fluoren-2-yl)benzamide, C23H19N3O2S2, (III), form monoclinic crystal systems. In (I) and (II), the mol­ecules are linked into a three-dimensional framework by weak inter­molecular C-H...O=C hydrogen bonds, whereas in (III) stronger inter­molecular N-H...O=C inter­actions are observed. The conformation of (I) is further stabilized by an intra­molecular N-H...O=C hydrogen bond, which effects the planarity of the ureido­thio­phene­carboxyl­ate moiety.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107001461/sk3083sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107001461/sk3083Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107001461/sk3083IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107001461/sk3083IIIsup4.hkl
Contains datablock III

CCDC references: 641798; 641799; 641800

Comment top

As part of our search for new structures exhibiting an inhibitory potency towards members of the α/β-hydrolase family, we performed the present structure determinations. In this context, we were especially interested in inhibitors of the enzyme acetylcholinesterase (AChE) being currently used as major therapeutic agents to alleviate the symptoms of Morbus Alzheimer (Colombres et al., 2004; Muñoz-Torrero & Camps, 2006). This disease is characterized by a selective neuronal cell death probably caused by amyloid fibrils, as well as a loss of cholinergic transmission. AChE was found to be associated with such amyloid species and may contribute to their development (Alvarez et al., 1997, 1998; Inestrosa & Alarcon, 1998). In addition, the enzyme catalyzes the hydrolytic destruction of the neurotransmitter acetylcholine at cholinergic synapses (Cartaud et al., 2004; Silman & Sussman, 2005). A reduction of the activity of AChE leads to an increased bioavailability of acetylcholine at the synaptic cleft and an improvement of the cholinergic neurotransmission as well as the cognitive functions (Colombres et al., 2004; Muñoz-Torrero & Camps, 2006). Beside its central role in the therapy of Alzheimer's disease, AChE has been targeted in treatments for myasthenia gravis, glaucoma, obstipation and spasmolysis and to antagonize muscle relaxation in anesthesiology (Ibach & Haen, 2004). Compounds of several classes bearing a benzyl substituted piperidine moiety including donepezil (Aricept) have been characterized as inhibitors of AChE (Muñoz-Torrero & Camps, 2006). These findings resulted in the investigation and X-ray crystal structures of the N-benzyl-tetrahydropyrido-anellated thiophene derivatives (I)–(III), at 123 (2) K, that are reported here. Compounds (II) and (III) are potent inhibitors of AChE (IC50 values of 2.1 µM and 5.2 µM, respectively), whereas the enzyme is less affected by (I), i.e. the educt of (II) (IC50 = 10 µM). Full details of the synthesis and characterization of these compounds as well as their biological activity were published elsewhere (Pietsch & Gütschow, 2005).

The structure of (I) with the atomic numbering scheme is shown in Fig. 1. Selected parameters characterizing the geometry of the ureidothiophenecarboxylic ester unit of the two independent molecules are given in Table 1. This unit is planar with the ester group and the ureido group situated in the plane of the thiophene ring system, and torsion angles C2—C3—C31—O32 (C2'—C3'—C31'—O32') and C2—N2—C21—N21 (C2'—N2'—C21'—N21') of 177.93 (16)° [–175.24 (16)°] and -173.60 (17)° [174.37 (17)°], respectively. The mean deviation of the atoms from N21/C21/O21/N2/C2/S1/C7A/C7/C4/C3A/C3/C31/O31/O32/C32 (N21'/C21'/O21'/N2'/C2'/S1'/C7A'/C7'/C4'/C3A'/C3'/C31'/O31'/O32'/C32') plane is 0.044 Å (0.053 Å). The dihedral angles between the planes delineated by the above-mentioned atoms and all the non-H atoms of the phenyl moieties are 68.11 (5) and 67.11 (5)° in the two independent molecules of (I). The ester carbonyl group has a cis orientation with respect to the C2C3 double bond. This leads to an intramolecular, resonance-assisted N2—H2···O31 hydrogen bond (Table 2), which locks the molecular conformation by forming a pseudo-six-membered ring and eliminates conformational flexibility (Gilli et al., 2000). The values of the H—A and D···A distances and the D—H···A angle (Table 2) characterize this bond as a strong hydrogen bond (Desiraju & Steiner, 1999; Steiner, 2002), and agree with relevant data (average values) for 11 β-enaminoesters forming intramolecular N—H···O hydrogen bonds [D···A = 2.70 (2) Å and D—H···A = 132 (4)°; Gilli et al., 2000]. In addition, the O31C31 distance of 1.225 (2) Å [O31'C31' = 1.222 (2) Å] in (I) is in accordance with the average value of CO [1.221 (6) Å] for the above-mentioned β-enaminoesters, and can be calculated from the distance D···A by the equation CO = a + b(D···A), with a = 2.14 (5) and b = -0.34 (2) (Gilli et al., 2000). This calculation yielded values of 1.227 and 1.231 Å for O31C31 and O31'C31', respectively, and agreed with the experimentally found data. The intramolecular hydrogen bond is weakened by the electron-attracting tert-butoxy group, which decreases the charge density and thus the proton affinity of the carbonyl O atom. This effect has been confirmed by calculations showing that the resonance assistance of hydrogen bonds in β-enaminoesters has become so weak that such hydrogen bonds are barely distinguishable from non-resonant ones (Gilli et al., 2000). The weakening of the intramolecular hydrogen bond in (I) is further supported by IR and NMR spectroscopic data. The band of the isolated N—H stretching vibration, ν NH, is only marginally shifted to a lower frequency from approximately 3400 cm-1 (Gilli et al., 2000) to 3247 cm-1 (Pietsch & Gütschow, 2005). Likewise, the σ N—H chemical shift obtained from an NMR measurement shows only a minor downfield shift from approximatately 7 p.p.m. (Gilli et al., 2000) to 11.09 p.p.m. (Pietsch & Gütschow, 2005). In contrast, very strong hydrogen bonds are characterized by the values 2.65 D···A 2.48 Å, 3200 ν NH 2340 cm-1 and 13 σ N—H 18 p.p.m. The latter value, obtained in solution (CDCl3), can be correlated with the solid-state D···A distance using the equation σ N—H = 91 (6) - 30 (2)(D···A) (Gilli et al., 2000), with the calculated values, i.e. 10.48 and 10.78 p.p.m., being in accordance with the experimental one. Molecules of (I) are interconnected by a framework of intermolecular C—H···OC hydrogen bonds, C66—H66···O21' and C64'—H64'···O21, respectively, as shown in Fig. 2 and detailed in Table 2. The values of the H—A and D···A distances, as well as the D—H···A angle, characterize these nearly linear hydrogen bonds (D—H···A = 159 and 160°) as weak ones (Desiraju, 1996; Desiraju & Steiner, 1999; Steiner, 2002) and agree with data described in the literature (Cox, 2002; Pigge et al., 1999; Schulze et al., 2005; Vasu et al., 2004).

Compound (II) is the first thieno[1,3]oxazin-4-one that has been characterized by X-ray crystallography. The synthesis of (II) was performed by treating (I) with trifluoroacetic acid and trifluoroacetic anhydride, resulting in deesterification and cyclocondenstaion (Pietsch & Gütschow, 2005). The structure of (II) with the atomic numbering scheme and the arrangement of the molecules in the asymmetric unit are shown in Figs. 3 and 4, respectively; selected bond distances and angles are given in Table 3. The thienoxazinone system in (II) is essentially planar, in agreement with earlier experimental data of bioisosteric benzoxazinones (Crane & Rogerson, 2004; Gütschow et al., 1998; Kovalevsky & Ponomarev, 2000; Kovalevsky et al., 2000; Yadav et al., 2002). The mean deviation of the atoms from the plane formed by this heterocyclic moiety and the atoms N2, C5 and C8 is 0.015 Å, with C8 deviating by a maximum of 0.041 Å. The aforementioned plane and the phenyl ring of the benzyl group in (II) are virtually perpendicular to each other, as shown by the dihedral angle of 75.50 (3)°. In compound (II), the O3—C2 bond is shorter than the O3—C4 bond. Moreover, the bond angles at C2 and C4 are distorted from their ideal values of 120°. Such observations were explained as a result of the concerted electronic effects of adjactent substituents (Kovalevsky & Ponomarev, 2000). Similarly to the molecules of (I), the crystal structure of (II) is stabilized by weak intermolecular C—H···OC hydrogen bonds formed by C73, H73 and O4 (Table 4 and Fig. 4).

In contrast to the thieno[1,3]oxazin-4-one heterocycle in compound (II), the isosteric thieno[1,3]thiazin-4-one system in (III) (Table 5 and Fig. 5) is less planar. This is reflected in a mean deviation of the atoms from the plane formed by this system and atoms N21, C5 and C8, taking a value of 0.085 Å, with O4 deviating by a maximum of 0.229 Å. The dihedral angles between this plane and the phenyl rings of the benzyl and benzoyl groups are 55.69 (4) and 53.90 (4)°, respectively. The replacement of the ring O atom in the oxazinone (II) by an S atom in the thiazinone (III) results in a significant distortion of the bond angles at C2, C4 and C9A from 120° (Table 5), with the obtained values agreeing with reported data (Evain et al., 2002; Lamiot et al., 1992). As N21, and not N1, was found to be hydrogen-substituted, the structure of the tautomeric form (III) based on IR and NMR data (Pietsch & Gütschow, 2005) has been proved true. The tautomer containing an exocyclic C2N21 double bond is not observed and thus an intramolecular N1—H1···O22 hydrogen bond cannot be formed. Instead, a non-binding intramolecular interaction between atoms S3 and O22 has been taken into account as already shown for 4-acylimino-2-aminothieno[2,3-d][1,3]thiazines (Gütschow et al., 1992). Such interaction was not found as the S3···O22 distance exceeds the described value, and the system formed by atoms S3, C2, N21, C22 and O22 is less planar, with C2 deviating by a maximum of 0.176 Å. In contrast to compounds (I) and (II), molecules of (III) are linked via intermolecular N—H···OC hydrogen bonds originating from N21, H21 and O4 (Table 6 and Fig. 6). The values of the N···O contact distance as a measure of the hydrogen-bond strength, and the C4O4 bond length, taken as an indicator of π-delocalization in an ···ORn—N—H··· heteroconjugated system (Tables 5 and 6), characterize this intermolecular interaction as not assisted by resonance (Bertolasi et al., 1995, 1998).

Related literature top

For related literature, see: Alvarez et al. (1997, 1998); Bertolasi et al. (1995, 1998); Cartaud et al. (2004); Colombres et al. (2004); Cox (2002); Crane & Rogerson (2004); Desiraju (1996); Desiraju & Steiner (1999); Ellman et al. (1961); Evain et al. (2002); Gütschow et al. (1992, 1998); Gilli et al. (2000); Ibach & Haen (2004); Inestrosa & Alarcon (1998); Kovalevsky & Ponomarev (2000); Kovalevsky, Ponomarev & Baranova (2000); Lamiot et al. (1992); Muñoz-Torrero & Camps (2006); Pietsch & Gütschow (2005); Pigge et al. (1999); Schulze et al. (2005); Silman & Sussman (2005); Steiner (2002); Vasu, Nirmala, Chopra, Mohan & Saravanan (2004); Yadav et al. (2002).

Experimental top

The preparation of compounds (I)–(III) was carried out as described previously (Pietsch & Gütschow, 2005). Yellow crystals of (I) suitable for X-ray analysis were grown from methanol; yellow crystals of (II) and (III) were obtained upon recrystallization from hexane and ethyl acetate, respectively. AChE inhibition by compound (I) was assayed spectrophometrically in two separate experiments (each in duplicate) at a single concentration (10 µM) according to the method of Ellman et al. (1961) as described elsewhere (Pietsch & Gütschow, 2005).

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C). The H atoms bound to an N atom were refined freely with N—H distances in the range 0.86–0.88 Å and Uiso(H) = 1.2Ueq(N). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001). Software used to prepare material for publication: SHELXL97 (Sheldrick, 1997); calculation of dihedral angels between planes and mean deviation of atoms from the plane: DIAMOND 3.1d (Brandenburg, 2006) for (I), (III); SHELXL97 (Sheldrick, 1997) for (II).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labeling scheme and displacement ellipsoids at the 50% probability level for non-H atoms of two independent molecules from the asymmetric unit. H atoms are depicted as small circles of arbitrary radii; dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. The arrangement of the molecules of (I) in the unit cell. The intramolecular N—H···O interactions and intermolecular C—H···O interactions are represented by dashed lines.
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-labeling scheme and displacement ellipsoids at the 50% probability level for non-H atoms. H atoms are depicted as small circles of arbitrary radii.
[Figure 4] Fig. 4. The arrangement of the molecules of (II) in the unit cell. The intermolecular C—H···O interactions are represented by dashed lines.
[Figure 5] Fig. 5. The molecular structure of (III), showing the atom-labeling scheme and displacement ellipsoids at the 50% probability level for non-H atoms. H atoms are depicted as small circles of arbitrary radii.
[Figure 6] Fig. 6. The arrangement of the molecules of (III) in the unit cell. The intermolecular N—H···O interactions are represented by dashed lines.
(I) tert-butyl 6_benzyl-2-(3,3-diethylureido)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine- 3-carboxylate top
Crystal data top
C24H33N3O3SF(000) = 1904
Mr = 443.59Dx = 1.254 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9222 reflections
a = 9.7735 (2) Åθ = 1–27.5°
b = 24.4098 (5) ŵ = 0.17 mm1
c = 19.7439 (5) ÅT = 123 K
β = 93.865 (1)°Plate, yellow
V = 4699.57 (18) Å30.50 × 0.40 × 0.20 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
6646 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
rotation in phi and ω, 1 deg. scansh = 1210
28911 measured reflectionsk = 3129
10616 independent reflectionsl = 2522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0609P)2]
where P = (Fo2 + 2Fc2)/3
10616 reflections(Δ/σ)max = 0.001
565 parametersΔρmax = 0.51 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
C24H33N3O3SV = 4699.57 (18) Å3
Mr = 443.59Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.7735 (2) ŵ = 0.17 mm1
b = 24.4098 (5) ÅT = 123 K
c = 19.7439 (5) Å0.50 × 0.40 × 0.20 mm
β = 93.865 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6646 reflections with I > 2σ(I)
28911 measured reflectionsRint = 0.052
10616 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.51 e Å3
10616 reflectionsΔρmin = 0.29 e Å3
565 parameters
Special details top

Experimental. dx = 40 mm, 40 sec./°., 1 °., 3 sets, 259 frames, mos.= 0.624 (2) °.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22311 (5)0.50862 (2)0.38653 (2)0.02217 (13)
C20.12730 (18)0.49062 (8)0.31313 (9)0.0188 (4)
N20.09788 (16)0.43718 (7)0.29608 (8)0.0221 (4)
H20.0534 (18)0.4349 (9)0.2559 (8)0.027*
C210.14393 (18)0.39301 (9)0.33441 (10)0.0220 (5)
O210.20740 (13)0.40003 (6)0.38997 (7)0.0279 (4)
N210.11828 (16)0.34242 (7)0.30793 (8)0.0245 (4)
C220.03758 (19)0.33253 (9)0.24385 (10)0.0253 (5)
H22A0.06440.29660.22560.030*
H22B0.06070.36100.21080.030*
C230.11590 (19)0.33277 (10)0.24981 (11)0.0329 (6)
H23A0.16260.32580.20510.049*
H23B0.14420.36850.26650.049*
H23C0.14040.30410.28160.049*
C240.1628 (2)0.29592 (9)0.35058 (11)0.0285 (5)
H24A0.25740.30280.36980.034*
H24B0.16500.26280.32180.034*
C250.0720 (2)0.28478 (9)0.40837 (11)0.0315 (5)
H25A0.10800.25330.43480.047*
H25B0.02140.27670.38990.047*
H25C0.07080.31710.43780.047*
C30.08733 (18)0.53602 (8)0.27429 (9)0.0184 (4)
C310.00558 (18)0.52884 (9)0.21049 (10)0.0210 (5)
O310.02886 (14)0.48435 (6)0.18620 (7)0.0275 (3)
O320.02791 (13)0.57687 (6)0.18056 (6)0.0229 (3)
C320.10338 (19)0.57932 (9)0.11324 (10)0.0224 (5)
C330.0192 (2)0.55384 (10)0.06002 (10)0.0323 (5)
H33A0.01030.51440.06840.049*
H33B0.07200.57060.06220.049*
H33C0.06480.56000.01490.049*
C340.1183 (2)0.64031 (9)0.10211 (11)0.0348 (6)
H34A0.17270.65600.13730.052*
H34B0.16450.64720.05730.052*
H34C0.02730.65740.10460.052*
C350.24315 (19)0.55211 (10)0.11548 (11)0.0316 (5)
H35A0.23100.51270.12290.047*
H35B0.29650.55830.07230.047*
H35C0.29190.56790.15260.047*
C3A0.13883 (18)0.58655 (8)0.30497 (9)0.0184 (4)
C40.12217 (19)0.64456 (8)0.27978 (10)0.0224 (5)
H4A0.02870.65780.28750.027*
H4B0.13390.64570.23040.027*
C50.22819 (19)0.68184 (9)0.31692 (10)0.0230 (5)
H5A0.32030.67360.30150.028*
H5B0.20650.72050.30570.028*
N60.22943 (15)0.67409 (7)0.39068 (8)0.0210 (4)
C610.31554 (19)0.71516 (8)0.42705 (10)0.0241 (5)
H61A0.40640.71580.40770.029*
H61B0.32970.70400.47520.029*
C620.25617 (19)0.77208 (9)0.42382 (9)0.0207 (4)
C630.33997 (19)0.81726 (9)0.41611 (10)0.0228 (5)
H630.43470.81180.41020.027*
C640.2882 (2)0.87014 (9)0.41688 (10)0.0275 (5)
H640.34760.90050.41210.033*
C650.1506 (2)0.87856 (9)0.42453 (10)0.0295 (5)
H650.11450.91470.42430.035*
C660.0654 (2)0.83407 (10)0.43247 (10)0.0287 (5)
H660.02930.83970.43810.034*
C670.11771 (19)0.78111 (9)0.43224 (10)0.0240 (5)
H670.05850.75080.43790.029*
C70.28340 (19)0.61963 (8)0.40883 (10)0.0241 (5)
H7A0.26880.61180.45700.029*
H7B0.38320.61860.40310.029*
C7A0.21248 (18)0.57710 (9)0.36460 (10)0.0213 (5)
S1'0.26646 (5)0.25753 (2)0.09285 (3)0.02383 (14)
C2'0.35061 (18)0.27771 (9)0.16840 (10)0.0203 (4)
N2'0.37412 (16)0.33189 (7)0.18532 (9)0.0221 (4)
H2'0.4126 (18)0.3366 (9)0.2259 (8)0.027*
C21'0.33013 (19)0.37565 (9)0.14570 (11)0.0246 (5)
O21'0.27215 (13)0.36837 (6)0.08921 (7)0.0305 (4)
N21'0.35199 (16)0.42622 (7)0.17308 (9)0.0262 (4)
C22'0.4264 (2)0.43664 (9)0.23938 (10)0.0280 (5)
H22C0.40640.40650.27080.034*
H22D0.39160.47100.25850.034*
C23'0.5795 (2)0.44123 (11)0.23601 (11)0.0411 (6)
H23D0.62210.44810.28160.062*
H23E0.60070.47160.20600.062*
H23F0.61550.40700.21830.062*
C24'0.3040 (2)0.47287 (9)0.13086 (11)0.0322 (5)
H24C0.29700.50550.16020.039*
H24D0.21090.46460.11050.039*
C25'0.3957 (2)0.48634 (10)0.07482 (11)0.0371 (6)
H25D0.35830.51790.04900.056*
H25E0.40070.45470.04450.056*
H25F0.48780.49520.09450.056*
C3'0.39015 (18)0.23366 (9)0.20913 (10)0.0209 (5)
C31'0.46682 (19)0.24265 (9)0.27454 (10)0.0234 (5)
O31'0.49274 (13)0.28790 (6)0.29859 (7)0.0287 (4)
O32'0.50591 (13)0.19556 (6)0.30506 (7)0.0264 (3)
C32'0.57434 (19)0.19510 (9)0.37424 (10)0.0258 (5)
C33'0.70977 (18)0.22647 (9)0.37673 (10)0.0277 (5)
H33D0.69140.26550.36880.042*
H33E0.76660.21240.34160.042*
H33F0.75820.22160.42140.042*
C34'0.4774 (2)0.21862 (10)0.42415 (10)0.0349 (6)
H34D0.46300.25770.41480.052*
H34E0.51770.21390.47060.052*
H34F0.38940.19940.41910.052*
C35'0.6000 (2)0.13466 (10)0.38634 (12)0.0392 (6)
H35D0.51220.11510.38430.059*
H35E0.64730.12940.43120.059*
H35F0.65690.12030.35140.059*
C3A'0.34624 (18)0.18201 (8)0.17856 (10)0.0203 (4)
C4'0.3600 (2)0.12545 (8)0.20794 (10)0.0236 (5)
H4'10.34160.12640.25660.028*
H4'20.45470.11200.20420.028*
C5'0.25900 (19)0.08669 (9)0.17014 (10)0.0238 (5)
H5'10.27910.04850.18460.029*
H5'20.16450.09560.18170.029*
N6'0.26842 (15)0.09128 (7)0.09670 (8)0.0223 (4)
C61'0.19034 (19)0.04783 (9)0.06019 (10)0.0251 (5)
H61C0.18500.05610.01100.030*
H61D0.09570.04750.07510.030*
C62'0.25277 (19)0.00810 (9)0.07156 (10)0.0219 (5)
C63'0.39345 (19)0.01599 (9)0.06918 (10)0.0243 (5)
H63'0.45070.01440.06100.029*
C64'0.4511 (2)0.06727 (9)0.07842 (10)0.0266 (5)
H64'0.54720.07190.07620.032*
C65'0.3693 (2)0.11202 (9)0.09088 (10)0.0287 (5)
H65'0.40910.14720.09820.034*
C66'0.2296 (2)0.10496 (10)0.09253 (10)0.0308 (5)
H66'0.17270.13560.10030.037*
C67'0.1715 (2)0.05340 (9)0.08288 (10)0.0267 (5)
H67'0.07500.04910.08400.032*
C7'0.2178 (2)0.14467 (9)0.07285 (10)0.0255 (5)
H7'10.11680.14580.07390.031*
H7'20.24120.15030.02530.031*
C7A'0.28013 (18)0.18939 (9)0.11657 (10)0.0215 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0260 (3)0.0176 (3)0.0223 (3)0.0004 (2)0.0030 (2)0.0013 (2)
C20.0175 (9)0.0165 (11)0.0225 (11)0.0016 (8)0.0023 (8)0.0000 (9)
N20.0272 (9)0.0162 (10)0.0225 (9)0.0011 (8)0.0021 (7)0.0002 (8)
C210.0179 (10)0.0201 (13)0.0281 (12)0.0003 (9)0.0016 (8)0.0012 (10)
O210.0298 (8)0.0236 (9)0.0293 (8)0.0015 (6)0.0070 (6)0.0021 (7)
N210.0294 (9)0.0160 (10)0.0275 (10)0.0002 (8)0.0017 (7)0.0009 (8)
C220.0331 (11)0.0196 (13)0.0232 (11)0.0003 (9)0.0009 (9)0.0042 (9)
C230.0331 (12)0.0409 (16)0.0241 (12)0.0063 (11)0.0020 (9)0.0003 (11)
C240.0312 (11)0.0147 (12)0.0387 (13)0.0057 (9)0.0038 (10)0.0013 (10)
C250.0351 (12)0.0221 (14)0.0360 (13)0.0024 (10)0.0066 (10)0.0031 (11)
C30.0198 (9)0.0173 (12)0.0179 (10)0.0004 (8)0.0012 (8)0.0001 (9)
C310.0229 (10)0.0187 (12)0.0217 (11)0.0006 (9)0.0031 (8)0.0001 (9)
O310.0403 (8)0.0154 (9)0.0255 (8)0.0026 (7)0.0063 (6)0.0007 (7)
O320.0296 (7)0.0165 (8)0.0214 (7)0.0006 (6)0.0076 (6)0.0005 (6)
C320.0261 (10)0.0203 (12)0.0199 (10)0.0012 (9)0.0057 (8)0.0004 (9)
C330.0397 (12)0.0325 (15)0.0251 (12)0.0045 (11)0.0040 (9)0.0036 (10)
C340.0434 (13)0.0250 (14)0.0340 (13)0.0050 (11)0.0121 (10)0.0037 (11)
C350.0280 (11)0.0377 (16)0.0283 (12)0.0019 (10)0.0030 (9)0.0026 (11)
C3A0.0199 (10)0.0155 (11)0.0198 (10)0.0000 (8)0.0022 (8)0.0006 (9)
C40.0289 (11)0.0180 (12)0.0198 (10)0.0023 (9)0.0025 (8)0.0027 (9)
C50.0271 (10)0.0196 (12)0.0220 (11)0.0028 (9)0.0003 (8)0.0012 (9)
N60.0261 (9)0.0166 (10)0.0196 (9)0.0022 (7)0.0028 (7)0.0012 (7)
C610.0252 (10)0.0200 (13)0.0263 (11)0.0002 (9)0.0031 (8)0.0031 (10)
C620.0253 (10)0.0203 (12)0.0161 (10)0.0001 (9)0.0013 (8)0.0009 (9)
C630.0240 (10)0.0231 (13)0.0212 (11)0.0018 (9)0.0013 (8)0.0017 (9)
C640.0375 (12)0.0203 (13)0.0247 (11)0.0047 (10)0.0032 (9)0.0010 (10)
C650.0401 (13)0.0229 (13)0.0253 (11)0.0073 (10)0.0010 (9)0.0014 (10)
C660.0272 (11)0.0316 (15)0.0272 (12)0.0042 (10)0.0012 (9)0.0042 (10)
C670.0275 (11)0.0221 (13)0.0224 (11)0.0031 (9)0.0000 (8)0.0003 (10)
C70.0279 (11)0.0196 (12)0.0242 (11)0.0004 (9)0.0035 (8)0.0001 (9)
C7A0.0232 (10)0.0177 (12)0.0230 (11)0.0004 (9)0.0007 (8)0.0014 (9)
S1'0.0251 (3)0.0198 (3)0.0257 (3)0.0006 (2)0.0045 (2)0.0002 (2)
C2'0.0191 (10)0.0190 (12)0.0231 (11)0.0028 (9)0.0025 (8)0.0025 (9)
N2'0.0259 (9)0.0164 (10)0.0238 (9)0.0025 (8)0.0007 (7)0.0003 (8)
C21'0.0212 (10)0.0196 (13)0.0334 (12)0.0028 (9)0.0042 (9)0.0001 (10)
O21'0.0319 (8)0.0274 (10)0.0309 (8)0.0038 (7)0.0078 (6)0.0010 (7)
N21'0.0310 (9)0.0168 (10)0.0306 (10)0.0005 (8)0.0008 (7)0.0005 (8)
C22'0.0348 (12)0.0224 (13)0.0274 (12)0.0018 (10)0.0064 (9)0.0059 (10)
C23'0.0373 (13)0.0572 (19)0.0284 (13)0.0051 (12)0.0000 (10)0.0019 (12)
C24'0.0337 (12)0.0192 (13)0.0430 (14)0.0041 (10)0.0018 (10)0.0008 (11)
C25'0.0467 (14)0.0287 (15)0.0348 (13)0.0030 (11)0.0056 (11)0.0052 (11)
C3'0.0217 (10)0.0190 (12)0.0219 (11)0.0010 (9)0.0022 (8)0.0017 (9)
C31'0.0241 (10)0.0238 (13)0.0226 (11)0.0031 (9)0.0028 (8)0.0002 (10)
O31'0.0374 (8)0.0207 (9)0.0271 (8)0.0040 (7)0.0047 (6)0.0049 (7)
O32'0.0317 (8)0.0222 (9)0.0239 (8)0.0042 (7)0.0083 (6)0.0008 (7)
C32'0.0278 (11)0.0270 (13)0.0213 (11)0.0030 (10)0.0090 (8)0.0002 (10)
C33'0.0234 (10)0.0328 (14)0.0266 (11)0.0028 (10)0.0001 (9)0.0017 (10)
C34'0.0275 (11)0.0522 (18)0.0245 (12)0.0051 (11)0.0016 (9)0.0060 (11)
C35'0.0443 (14)0.0296 (15)0.0410 (14)0.0066 (11)0.0168 (11)0.0072 (12)
C3A'0.0206 (10)0.0169 (12)0.0233 (11)0.0028 (9)0.0016 (8)0.0017 (9)
C4'0.0292 (11)0.0195 (12)0.0219 (11)0.0036 (9)0.0003 (8)0.0007 (9)
C5'0.0271 (11)0.0209 (12)0.0235 (11)0.0029 (9)0.0022 (8)0.0008 (9)
N6'0.0254 (9)0.0194 (10)0.0216 (9)0.0009 (7)0.0016 (7)0.0028 (8)
C61'0.0250 (10)0.0215 (13)0.0280 (12)0.0012 (9)0.0042 (9)0.0039 (10)
C62'0.0259 (10)0.0214 (12)0.0183 (10)0.0031 (9)0.0005 (8)0.0022 (9)
C63'0.0254 (11)0.0218 (13)0.0256 (11)0.0061 (9)0.0004 (8)0.0014 (10)
C64'0.0233 (11)0.0272 (14)0.0287 (12)0.0025 (10)0.0031 (9)0.0005 (10)
C65'0.0420 (13)0.0200 (13)0.0234 (11)0.0044 (10)0.0036 (9)0.0001 (10)
C66'0.0400 (13)0.0271 (14)0.0257 (12)0.0088 (11)0.0044 (9)0.0001 (10)
C67'0.0252 (11)0.0280 (14)0.0273 (12)0.0050 (10)0.0041 (9)0.0057 (10)
C7'0.0268 (11)0.0212 (13)0.0277 (11)0.0012 (9)0.0039 (9)0.0015 (10)
C7A'0.0242 (10)0.0161 (12)0.0241 (11)0.0000 (9)0.0012 (8)0.0001 (9)
Geometric parameters (Å, º) top
S1—C7A1.728 (2)S1'—C2'1.7258 (19)
S1—C21.7284 (19)S1'—C7A'1.731 (2)
C2—N21.373 (2)C2'—N2'1.380 (2)
C2—C31.389 (3)C2'—C3'1.382 (3)
N2—C211.376 (3)N2'—C21'1.376 (3)
N2—H20.881 (14)N2'—H2'0.870 (14)
C21—O211.235 (2)C21'—O21'1.229 (2)
C21—N211.358 (2)C21'—N21'1.359 (3)
N21—C241.462 (2)N21'—C24'1.469 (3)
N21—C221.465 (2)N21'—C22'1.476 (2)
C22—C231.512 (3)C22'—C23'1.506 (3)
C22—H22A0.9900C22'—H22C0.9900
C22—H22B0.9900C22'—H22D0.9900
C23—H23A0.9800C23'—H23D0.9800
C23—H23B0.9800C23'—H23E0.9800
C23—H23C0.9800C23'—H23F0.9800
C24—C251.516 (3)C24'—C25'1.507 (3)
C24—H24A0.9900C24'—H24C0.9900
C24—H24B0.9900C24'—H24D0.9900
C25—H25A0.9800C25'—H25D0.9800
C25—H25B0.9800C25'—H25E0.9800
C25—H25C0.9800C25'—H25F0.9800
C3—C3A1.449 (3)C3'—C3A'1.450 (3)
C3—C311.456 (3)C3'—C31'1.465 (3)
C31—O311.225 (2)C31'—O31'1.222 (2)
C31—O321.343 (2)C31'—O32'1.341 (2)
O32—C321.477 (2)O32'—C32'1.480 (2)
C32—C341.510 (3)C32'—C35'1.513 (3)
C32—C331.511 (3)C32'—C34'1.524 (3)
C32—C351.522 (3)C32'—C33'1.527 (3)
C33—H33A0.9800C33'—H33D0.9800
C33—H33B0.9800C33'—H33E0.9800
C33—H33C0.9800C33'—H33F0.9800
C34—H34A0.9800C34'—H34D0.9800
C34—H34B0.9800C34'—H34E0.9800
C34—H34C0.9800C34'—H34F0.9800
C35—H35A0.9800C35'—H35D0.9800
C35—H35B0.9800C35'—H35E0.9800
C35—H35C0.9800C35'—H35F0.9800
C3A—C7A1.358 (2)C3A'—C7A'1.357 (3)
C3A—C41.506 (3)C3A'—C4'1.500 (3)
C4—C51.529 (3)C4'—C5'1.525 (3)
C4—H4A0.9900C4'—H4'10.9900
C4—H4B0.9900C4'—H4'20.9900
C5—N61.468 (2)C5'—N6'1.463 (2)
C5—H5A0.9900C5'—H5'10.9900
C5—H5B0.9900C5'—H5'20.9900
N6—C611.465 (2)N6'—C7'1.461 (2)
N6—C71.466 (2)N6'—C61'1.467 (2)
C61—C621.506 (3)C61'—C62'1.506 (3)
C61—H61A0.9900C61'—H61C0.9900
C61—H61B0.9900C61'—H61D0.9900
C62—C631.388 (3)C62'—C67'1.389 (3)
C62—C671.392 (3)C62'—C63'1.392 (3)
C63—C641.387 (3)C63'—C64'1.380 (3)
C63—H630.9500C63'—H63'0.9500
C64—C651.379 (3)C64'—C65'1.385 (3)
C64—H640.9500C64'—H64'0.9500
C65—C661.384 (3)C65'—C66'1.379 (3)
C65—H650.9500C65'—H65'0.9500
C66—C671.390 (3)C66'—C67'1.389 (3)
C66—H660.9500C66'—H66'0.9500
C67—H670.9500C67'—H67'0.9500
C7—C7A1.496 (3)C7'—C7A'1.495 (3)
C7—H7A0.9900C7'—H7'10.9900
C7—H7B0.9900C7'—H7'20.9900
C7A—S1—C290.91 (9)C2'—S1'—C7A'90.97 (10)
N2—C2—C3125.19 (17)N2'—C2'—C3'124.70 (18)
N2—C2—S1122.69 (15)N2'—C2'—S1'123.01 (15)
C3—C2—S1112.11 (15)C3'—C2'—S1'112.28 (15)
C2—N2—C21123.67 (17)C21'—N2'—C2'124.48 (17)
C2—N2—H2111.3 (14)C21'—N2'—H2'121.4 (14)
C21—N2—H2124.8 (14)C2'—N2'—H2'113.8 (14)
O21—C21—N21122.46 (19)O21'—C21'—N21'122.9 (2)
O21—C21—N2120.40 (19)O21'—C21'—N2'120.7 (2)
N21—C21—N2117.13 (17)N21'—C21'—N2'116.39 (18)
C21—N21—C24116.39 (16)C21'—N21'—C24'116.27 (17)
C21—N21—C22123.85 (17)C21'—N21'—C22'124.35 (18)
C24—N21—C22119.43 (17)C24'—N21'—C22'119.28 (17)
N21—C22—C23114.28 (17)N21'—C22'—C23'113.91 (17)
N21—C22—H22A108.7N21'—C22'—H22C108.8
C23—C22—H22A108.7C23'—C22'—H22C108.8
N21—C22—H22B108.7N21'—C22'—H22D108.8
C23—C22—H22B108.7C23'—C22'—H22D108.8
H22A—C22—H22B107.6H22C—C22'—H22D107.7
C22—C23—H23A109.5C22'—C23'—H23D109.5
C22—C23—H23B109.5C22'—C23'—H23E109.5
H23A—C23—H23B109.5H23D—C23'—H23E109.5
C22—C23—H23C109.5C22'—C23'—H23F109.5
H23A—C23—H23C109.5H23D—C23'—H23F109.5
H23B—C23—H23C109.5H23E—C23'—H23F109.5
N21—C24—C25113.98 (17)N21'—C24'—C25'113.74 (17)
N21—C24—H24A108.8N21'—C24'—H24C108.8
C25—C24—H24A108.8C25'—C24'—H24C108.8
N21—C24—H24B108.8N21'—C24'—H24D108.8
C25—C24—H24B108.8C25'—C24'—H24D108.8
H24A—C24—H24B107.7H24C—C24'—H24D107.7
C24—C25—H25A109.5C24'—C25'—H25D109.5
C24—C25—H25B109.5C24'—C25'—H25E109.5
H25A—C25—H25B109.5H25D—C25'—H25E109.5
C24—C25—H25C109.5C24'—C25'—H25F109.5
H25A—C25—H25C109.5H25D—C25'—H25F109.5
H25B—C25—H25C109.5H25E—C25'—H25F109.5
C2—C3—C3A111.81 (16)C2'—C3'—C3A'111.77 (17)
C2—C3—C31119.94 (18)C2'—C3'—C31'120.17 (19)
C3A—C3—C31128.24 (18)C3A'—C3'—C31'128.06 (19)
O31—C31—O32123.30 (17)O31'—C31'—O32'123.68 (18)
O31—C31—C3124.45 (19)O31'—C31'—C3'123.9 (2)
O32—C31—C3112.25 (17)O32'—C31'—C3'112.38 (18)
C31—O32—C32121.55 (15)C31'—O32'—C32'121.24 (16)
O32—C32—C34102.01 (15)O32'—C32'—C35'102.30 (16)
O32—C32—C33110.30 (15)O32'—C32'—C34'109.39 (15)
C34—C32—C33110.86 (18)C35'—C32'—C34'111.64 (19)
O32—C32—C35110.54 (16)O32'—C32'—C33'111.27 (16)
C34—C32—C35110.88 (17)C35'—C32'—C33'110.49 (17)
C33—C32—C35111.85 (18)C34'—C32'—C33'111.41 (18)
C32—C33—H33A109.5C32'—C33'—H33D109.5
C32—C33—H33B109.5C32'—C33'—H33E109.5
H33A—C33—H33B109.5H33D—C33'—H33E109.5
C32—C33—H33C109.5C32'—C33'—H33F109.5
H33A—C33—H33C109.5H33D—C33'—H33F109.5
H33B—C33—H33C109.5H33E—C33'—H33F109.5
C32—C34—H34A109.5C32'—C34'—H34D109.5
C32—C34—H34B109.5C32'—C34'—H34E109.5
H34A—C34—H34B109.5H34D—C34'—H34E109.5
C32—C34—H34C109.5C32'—C34'—H34F109.5
H34A—C34—H34C109.5H34D—C34'—H34F109.5
H34B—C34—H34C109.5H34E—C34'—H34F109.5
C32—C35—H35A109.5C32'—C35'—H35D109.5
C32—C35—H35B109.5C32'—C35'—H35E109.5
H35A—C35—H35B109.5H35D—C35'—H35E109.5
C32—C35—H35C109.5C32'—C35'—H35F109.5
H35A—C35—H35C109.5H35D—C35'—H35F109.5
H35B—C35—H35C109.5H35E—C35'—H35F109.5
C7A—C3A—C3111.52 (18)C7A'—C3A'—C3'111.70 (18)
C7A—C3A—C4119.03 (17)C7A'—C3A'—C4'119.71 (18)
C3—C3A—C4129.44 (16)C3'—C3A'—C4'128.54 (17)
C3A—C4—C5110.27 (15)C3A'—C4'—C5'110.10 (16)
C3A—C4—H4A109.6C3A'—C4'—H4'1109.6
C5—C4—H4A109.6C5'—C4'—H4'1109.6
C3A—C4—H4B109.6C3A'—C4'—H4'2109.6
C5—C4—H4B109.6C5'—C4'—H4'2109.6
H4A—C4—H4B108.1H4'1—C4'—H4'2108.2
N6—C5—C4111.06 (16)N6'—C5'—C4'110.82 (16)
N6—C5—H5A109.4N6'—C5'—H5'1109.5
C4—C5—H5A109.4C4'—C5'—H5'1109.5
N6—C5—H5B109.4N6'—C5'—H5'2109.5
C4—C5—H5B109.4C4'—C5'—H5'2109.5
H5A—C5—H5B108.0H5'1—C5'—H5'2108.1
C61—N6—C7108.38 (14)C7'—N6'—C5'110.19 (16)
C61—N6—C5111.36 (15)C7'—N6'—C61'109.45 (14)
C7—N6—C5109.77 (16)C5'—N6'—C61'111.48 (16)
N6—C61—C62113.81 (15)N6'—C61'—C62'112.95 (15)
N6—C61—H61A108.8N6'—C61'—H61C109.0
C62—C61—H61A108.8C62'—C61'—H61C109.0
N6—C61—H61B108.8N6'—C61'—H61D109.0
C62—C61—H61B108.8C62'—C61'—H61D109.0
H61A—C61—H61B107.7H61C—C61'—H61D107.8
C63—C62—C67118.22 (19)C67'—C62'—C63'118.2 (2)
C63—C62—C61120.61 (17)C67'—C62'—C61'121.03 (17)
C67—C62—C61121.07 (18)C63'—C62'—C61'120.76 (18)
C64—C63—C62121.34 (19)C64'—C63'—C62'121.10 (19)
C64—C63—H63119.3C64'—C63'—H63'119.5
C62—C63—H63119.3C62'—C63'—H63'119.5
C65—C64—C63119.9 (2)C63'—C64'—C65'120.23 (19)
C65—C64—H64120.0C63'—C64'—H64'119.9
C63—C64—H64120.0C65'—C64'—H64'119.9
C64—C65—C66119.6 (2)C66'—C65'—C64'119.3 (2)
C64—C65—H65120.2C66'—C65'—H65'120.3
C66—C65—H65120.2C64'—C65'—H65'120.3
C65—C66—C67120.35 (19)C65'—C66'—C67'120.4 (2)
C65—C66—H66119.8C65'—C66'—H66'119.8
C67—C66—H66119.8C67'—C66'—H66'119.8
C66—C67—C62120.5 (2)C66'—C67'—C62'120.71 (19)
C66—C67—H67119.7C66'—C67'—H67'119.6
C62—C67—H67119.7C62'—C67'—H67'119.6
N6—C7—C7A109.97 (15)N6'—C7'—C7A'110.45 (16)
N6—C7—H7A109.7N6'—C7'—H7'1109.6
C7A—C7—H7A109.7C7A'—C7'—H7'1109.6
N6—C7—H7B109.7N6'—C7'—H7'2109.6
C7A—C7—H7B109.7C7A'—C7'—H7'2109.6
H7A—C7—H7B108.2H7'1—C7'—H7'2108.1
C3A—C7A—C7125.87 (19)C3A'—C7A'—C7'125.06 (19)
C3A—C7A—S1113.64 (15)C3A'—C7A'—S1'113.26 (16)
C7—C7A—S1120.47 (14)C7'—C7A'—S1'121.63 (14)
C7A—S1—C2—N2177.95 (16)C7A'—S1'—C2'—N2'178.31 (16)
C7A—S1—C2—C31.01 (15)C7A'—S1'—C2'—C3'1.41 (15)
C3—C2—N2—C21177.20 (18)C3'—C2'—N2'—C21'177.49 (18)
S1—C2—N2—C211.6 (3)S1'—C2'—N2'—C21'2.2 (3)
C2—N2—C21—O215.4 (3)C2'—N2'—C21'—O21'4.3 (3)
C2—N2—C21—N21173.60 (17)C2'—N2'—C21'—N21'174.37 (17)
O21—C21—N21—C243.5 (3)O21'—C21'—N21'—C24'0.9 (3)
N2—C21—N21—C24177.48 (16)N2'—C21'—N21'—C24'179.55 (16)
O21—C21—N21—C22176.85 (17)O21'—C21'—N21'—C22'177.22 (18)
N2—C21—N21—C224.2 (3)N2'—C21'—N21'—C22'4.1 (3)
C21—N21—C22—C2382.1 (2)C21'—N21'—C22'—C23'86.3 (2)
C24—N21—C22—C2391.0 (2)C24'—N21'—C22'—C23'90.0 (2)
C21—N21—C24—C2575.5 (2)C21'—N21'—C24'—C25'76.9 (2)
C22—N21—C24—C2598.1 (2)C22'—N21'—C24'—C25'99.7 (2)
N2—C2—C3—C3A177.82 (17)N2'—C2'—C3'—C3A'177.75 (17)
S1—C2—C3—C3A1.1 (2)S1'—C2'—C3'—C3A'2.0 (2)
N2—C2—C3—C311.1 (3)N2'—C2'—C3'—C31'2.2 (3)
S1—C2—C3—C31179.95 (14)S1'—C2'—C3'—C31'178.12 (14)
C2—C3—C31—O312.4 (3)C2'—C3'—C31'—O31'4.5 (3)
C3A—C3—C31—O31176.38 (18)C3A'—C3'—C31'—O31'175.36 (18)
C2—C3—C31—O32177.93 (16)C2'—C3'—C31'—O32'175.24 (16)
C3A—C3—C31—O323.3 (3)C3A'—C3'—C31'—O32'4.9 (3)
O31—C31—O32—C323.5 (3)O31'—C31'—O32'—C32'5.5 (3)
C3—C31—O32—C32176.18 (15)C3'—C31'—O32'—C32'174.77 (15)
C31—O32—C32—C34179.15 (16)C31'—O32'—C32'—C35'179.24 (16)
C31—O32—C32—C3363.0 (2)C31'—O32'—C32'—C34'62.3 (2)
C31—O32—C32—C3561.2 (2)C31'—O32'—C32'—C33'61.2 (2)
C2—C3—C3A—C7A0.6 (2)C2'—C3'—C3A'—C7A'1.6 (2)
C31—C3—C3A—C7A179.45 (18)C31'—C3'—C3A'—C7A'178.47 (18)
C2—C3—C3A—C4178.89 (18)C2'—C3'—C3A'—C4'175.48 (18)
C31—C3—C3A—C40.1 (3)C31'—C3'—C3A'—C4'4.4 (3)
C7A—C3A—C4—C516.7 (2)C7A'—C3A'—C4'—C5'16.4 (3)
C3—C3A—C4—C5162.80 (18)C3'—C3A'—C4'—C5'160.47 (18)
C3A—C4—C5—N649.7 (2)C3A'—C4'—C5'—N6'49.9 (2)
C4—C5—N6—C61171.56 (16)C4'—C5'—N6'—C7'68.3 (2)
C4—C5—N6—C768.4 (2)C4'—C5'—N6'—C61'169.99 (16)
C7—N6—C61—C62168.72 (16)C7'—N6'—C61'—C62'168.89 (16)
C5—N6—C61—C6270.4 (2)C5'—N6'—C61'—C62'68.9 (2)
N6—C61—C62—C63140.51 (18)N6'—C61'—C62'—C67'137.29 (19)
N6—C61—C62—C6743.1 (3)N6'—C61'—C62'—C63'44.4 (3)
C67—C62—C63—C640.2 (3)C67'—C62'—C63'—C64'0.6 (3)
C61—C62—C63—C64176.32 (17)C61'—C62'—C63'—C64'178.91 (19)
C62—C63—C64—C650.9 (3)C62'—C63'—C64'—C65'0.5 (3)
C63—C64—C65—C661.0 (3)C63'—C64'—C65'—C66'1.3 (3)
C64—C65—C66—C670.5 (3)C64'—C65'—C66'—C67'1.0 (3)
C65—C66—C67—C620.2 (3)C65'—C66'—C67'—C62'0.1 (3)
C63—C62—C67—C660.4 (3)C63'—C62'—C67'—C66'0.9 (3)
C61—C62—C67—C66176.83 (18)C61'—C62'—C67'—C66'179.23 (18)
C61—N6—C7—C7A171.03 (16)C5'—N6'—C7'—C7A'48.2 (2)
C5—N6—C7—C7A49.2 (2)C61'—N6'—C7'—C7A'171.12 (16)
C3—C3A—C7A—C7178.35 (17)C3'—C3A'—C7A'—C7'177.75 (17)
C4—C3A—C7A—C71.2 (3)C4'—C3A'—C7A'—C7'0.4 (3)
C3—C3A—C7A—S10.1 (2)C3'—C3A'—C7A'—S1'0.6 (2)
C4—C3A—C7A—S1179.71 (13)C4'—C3A'—C7A'—S1'176.83 (14)
N6—C7—C7A—C3A17.3 (3)N6'—C7'—C7A'—C3A'15.2 (3)
N6—C7—C7A—S1164.33 (13)N6'—C7'—C7A'—S1'167.81 (13)
C2—S1—C7A—C3A0.66 (16)C2'—S1'—C7A'—C3A'0.47 (16)
C2—S1—C7A—C7177.93 (16)C2'—S1'—C7A'—C7'176.84 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O310.88 (1)1.96 (2)2.684 (2)138 (2)
N2—H2···O310.87 (1)1.98 (2)2.674 (2)136 (2)
C64—H64···O21i0.952.543.448 (2)160
C66—H66···O21ii0.952.503.403 (2)159
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
(II) 7-Benzyl-2-diethylamino-5,6,7,8-tetrahydro-3-oxa-9-thia-1,7-diazafluoren-4-one top
Crystal data top
C20H23N3O2SF(000) = 784
Mr = 369.47Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3312 reflections
a = 12.0595 (4) Åθ = 1–27.5°
b = 8.9892 (3) ŵ = 0.19 mm1
c = 18.0483 (6) ÅT = 123 K
β = 106.503 (1)°Block, yellow
V = 1875.93 (11) Å30.60 × 0.50 × 0.30 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3374 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
rotation in phi and ω, 1 deg. scansh = 1515
10069 measured reflectionsk = 1110
4092 independent reflectionsl = 1623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.1983P]
where P = (Fo2 + 2Fc2)/3
4092 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H23N3O2SV = 1875.93 (11) Å3
Mr = 369.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0595 (4) ŵ = 0.19 mm1
b = 8.9892 (3) ÅT = 123 K
c = 18.0483 (6) Å0.60 × 0.50 × 0.30 mm
β = 106.503 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3374 reflections with I > 2σ(I)
10069 measured reflectionsRint = 0.026
4092 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.08Δρmax = 0.21 e Å3
4092 reflectionsΔρmin = 0.28 e Å3
235 parameters
Special details top

Experimental. dx = 40 mm, 40 sec./°., 1 °., 2 sets, 244 frames, mos.= 1.116 (2) °.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.55658 (8)0.51507 (11)0.11573 (5)0.0192 (2)
C20.53789 (10)0.65549 (13)0.12727 (6)0.0186 (2)
N20.62200 (8)0.74882 (11)0.16308 (6)0.0200 (2)
C210.60018 (11)0.90816 (14)0.16977 (7)0.0247 (3)
H21A0.54810.94340.12000.030*
H21B0.67430.96240.17880.030*
C220.54676 (13)0.94707 (17)0.23377 (8)0.0364 (3)
H22A0.53491.05490.23450.055*
H22B0.59860.91540.28360.055*
H22C0.47220.89620.22470.055*
C230.73978 (10)0.69133 (15)0.19616 (7)0.0244 (3)
H23A0.79590.76440.18710.029*
H23B0.74880.59800.16930.029*
C240.76704 (13)0.6615 (2)0.28142 (9)0.0472 (4)
H24A0.84610.62310.30070.071*
H24B0.71260.58790.29070.071*
H24C0.76030.75410.30850.071*
O30.43242 (7)0.72369 (9)0.10560 (5)0.02098 (19)
C40.32978 (9)0.64628 (14)0.06735 (7)0.0203 (3)
O40.24172 (7)0.71914 (10)0.05296 (5)0.0275 (2)
C4A0.34812 (9)0.49406 (13)0.05284 (6)0.0189 (3)
C4B0.26436 (9)0.38243 (14)0.01737 (7)0.0206 (3)
C50.13585 (10)0.40177 (15)0.01428 (8)0.0263 (3)
H5A0.11760.45240.06500.032*
H5B0.10660.46410.02130.032*
C60.07766 (11)0.24990 (15)0.02333 (8)0.0273 (3)
H6A0.08240.20830.02830.033*
H6B0.00510.26040.05220.033*
N70.13420 (9)0.14833 (12)0.06494 (6)0.0256 (2)
C710.06566 (11)0.01351 (16)0.09180 (8)0.0324 (3)
H71A0.01710.04070.11170.039*
H71B0.07410.05530.04770.039*
C720.10345 (10)0.06459 (15)0.15479 (7)0.0263 (3)
C730.17449 (12)0.18859 (15)0.13935 (8)0.0319 (3)
H730.19650.22930.08870.038*
C740.21427 (12)0.25465 (15)0.19670 (9)0.0350 (3)
H740.26470.33800.18470.042*
C750.18032 (12)0.19873 (17)0.27112 (8)0.0350 (3)
H750.20650.24400.31060.042*
C760.10778 (12)0.07623 (16)0.28757 (8)0.0333 (3)
H760.08400.03770.33870.040*
C770.06958 (10)0.00936 (16)0.23017 (7)0.0285 (3)
H770.02000.07470.24220.034*
C80.25010 (10)0.10833 (15)0.01587 (7)0.0253 (3)
H8A0.29290.05370.04670.030*
H8B0.24350.04310.02690.030*
C8A0.31368 (10)0.24800 (13)0.01616 (7)0.0215 (3)
S90.46362 (2)0.25101 (3)0.058234 (17)0.02160 (10)
C9A0.45968 (9)0.43939 (13)0.07814 (6)0.0193 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0188 (5)0.0187 (5)0.0187 (5)0.0006 (4)0.0031 (4)0.0001 (4)
C20.0194 (5)0.0218 (6)0.0145 (5)0.0009 (5)0.0048 (4)0.0023 (5)
N20.0212 (5)0.0178 (5)0.0202 (5)0.0019 (4)0.0043 (4)0.0013 (4)
C210.0295 (6)0.0188 (6)0.0252 (6)0.0022 (5)0.0071 (5)0.0020 (5)
C220.0438 (8)0.0348 (8)0.0331 (8)0.0026 (7)0.0149 (6)0.0074 (6)
C230.0187 (6)0.0231 (7)0.0298 (7)0.0027 (5)0.0046 (5)0.0004 (5)
C240.0339 (8)0.0697 (12)0.0338 (8)0.0166 (8)0.0027 (6)0.0149 (8)
O30.0199 (4)0.0202 (5)0.0207 (4)0.0025 (3)0.0024 (3)0.0003 (3)
C40.0194 (6)0.0244 (7)0.0161 (6)0.0005 (5)0.0033 (4)0.0015 (5)
O40.0225 (4)0.0292 (5)0.0281 (5)0.0063 (4)0.0029 (4)0.0010 (4)
C4A0.0191 (5)0.0225 (6)0.0145 (5)0.0003 (5)0.0039 (4)0.0010 (5)
C4B0.0197 (5)0.0250 (7)0.0167 (6)0.0023 (5)0.0043 (4)0.0003 (5)
C50.0191 (6)0.0316 (8)0.0269 (7)0.0015 (5)0.0043 (5)0.0024 (6)
C60.0205 (6)0.0356 (8)0.0260 (7)0.0065 (5)0.0067 (5)0.0025 (6)
N70.0218 (5)0.0310 (6)0.0233 (5)0.0094 (4)0.0055 (4)0.0050 (5)
C710.0309 (7)0.0381 (8)0.0295 (7)0.0168 (6)0.0109 (6)0.0060 (6)
C720.0247 (6)0.0276 (7)0.0243 (6)0.0137 (5)0.0031 (5)0.0032 (5)
C730.0359 (7)0.0270 (7)0.0266 (7)0.0112 (6)0.0008 (6)0.0026 (6)
C740.0345 (7)0.0232 (8)0.0422 (8)0.0046 (6)0.0027 (6)0.0034 (6)
C750.0362 (7)0.0357 (8)0.0330 (8)0.0111 (7)0.0097 (6)0.0121 (6)
C760.0342 (7)0.0399 (9)0.0212 (6)0.0120 (6)0.0006 (5)0.0009 (6)
C770.0234 (6)0.0302 (8)0.0275 (7)0.0056 (5)0.0001 (5)0.0007 (6)
C80.0260 (6)0.0238 (7)0.0252 (6)0.0049 (5)0.0059 (5)0.0019 (5)
C8A0.0214 (6)0.0245 (7)0.0176 (6)0.0036 (5)0.0042 (5)0.0005 (5)
S90.02096 (16)0.01875 (17)0.02313 (17)0.00013 (12)0.00312 (12)0.00123 (12)
C9A0.0216 (6)0.0204 (6)0.0158 (5)0.0010 (5)0.0052 (4)0.0008 (5)
Geometric parameters (Å, º) top
N1—C21.3093 (16)C5—H5A0.9900
N1—C9A1.3558 (14)C5—H5B0.9900
C2—N21.3334 (15)C6—N71.4675 (17)
C2—O31.3654 (13)C6—H6A0.9900
N2—C211.4674 (16)C6—H6B0.9900
N2—C231.4695 (15)N7—C711.4695 (16)
C21—C221.5148 (18)N7—C81.4710 (15)
C21—H21A0.9900C71—C721.5125 (19)
C21—H21B0.9900C71—H71A0.9900
C22—H22A0.9800C71—H71B0.9900
C22—H22B0.9800C72—C731.385 (2)
C22—H22C0.9800C72—C771.3959 (18)
C23—C241.5035 (19)C73—C741.391 (2)
C23—H23A0.9900C73—H730.9500
C23—H23B0.9900C74—C751.383 (2)
C24—H24A0.9800C74—H740.9500
C24—H24B0.9800C75—C761.385 (2)
C24—H24C0.9800C75—H750.9500
O3—C41.4169 (14)C76—C771.3849 (19)
C4—O41.2114 (14)C76—H760.9500
C4—C4A1.4222 (17)C77—H770.9500
C4A—C9A1.3824 (15)C8—C8A1.4989 (17)
C4A—C4B1.4386 (16)C8—H8A0.9900
C4B—C8A1.3498 (17)C8—H8B0.9900
C4B—C51.5018 (15)C8A—S91.7512 (12)
C5—C61.5225 (18)S9—C9A1.7345 (13)
C2—N1—C9A113.61 (10)N7—C6—C5110.23 (10)
N1—C2—N2122.83 (10)N7—C6—H6A109.6
N1—C2—O3125.16 (10)C5—C6—H6A109.6
N2—C2—O3112.01 (10)N7—C6—H6B109.6
C2—N2—C21121.64 (10)C5—C6—H6B109.6
C2—N2—C23119.34 (10)H6A—C6—H6B108.1
C21—N2—C23119.02 (10)C6—N7—C71112.48 (10)
N2—C21—C22114.40 (11)C6—N7—C8110.13 (10)
N2—C21—H21A108.7C71—N7—C8110.25 (10)
C22—C21—H21A108.7N7—C71—C72111.68 (10)
N2—C21—H21B108.7N7—C71—H71A109.3
C22—C21—H21B108.7C72—C71—H71A109.3
H21A—C21—H21B107.6N7—C71—H71B109.3
C21—C22—H22A109.5C72—C71—H71B109.3
C21—C22—H22B109.5H71A—C71—H71B107.9
H22A—C22—H22B109.5C73—C72—C77118.38 (13)
C21—C22—H22C109.5C73—C72—C71121.57 (12)
H22A—C22—H22C109.5C77—C72—C71120.02 (13)
H22B—C22—H22C109.5C72—C73—C74121.20 (13)
N2—C23—C24112.56 (10)C72—C73—H73119.4
N2—C23—H23A109.1C74—C73—H73119.4
C24—C23—H23A109.1C75—C74—C73119.86 (14)
N2—C23—H23B109.1C75—C74—H74120.1
C24—C23—H23B109.1C73—C74—H74120.1
H23A—C23—H23B107.8C74—C75—C76119.47 (14)
C23—C24—H24A109.5C74—C75—H75120.3
C23—C24—H24B109.5C76—C75—H75120.3
H24A—C24—H24B109.5C77—C76—C75120.58 (13)
C23—C24—H24C109.5C77—C76—H76119.7
H24A—C24—H24C109.5C75—C76—H76119.7
H24B—C24—H24C109.5C76—C77—C72120.48 (13)
C2—O3—C4122.20 (9)C76—C77—H77119.8
O4—C4—O3115.48 (11)C72—C77—H77119.8
O4—C4—C4A130.80 (11)N7—C8—C8A108.78 (10)
O3—C4—C4A113.72 (10)N7—C8—H8A109.9
C9A—C4A—C4117.96 (10)C8A—C8—H8A109.9
C9A—C4A—C4B113.17 (11)N7—C8—H8B109.9
C4—C4A—C4B128.81 (10)C8A—C8—H8B109.9
C8A—C4B—C4A112.01 (10)H8A—C8—H8B108.3
C8A—C4B—C5120.62 (11)C4B—C8A—C8125.22 (11)
C4A—C4B—C5127.35 (11)C4B—C8A—S9112.62 (9)
C4B—C5—C6109.36 (11)C8—C8A—S9122.16 (9)
C4B—C5—H5A109.8C9A—S9—C8A91.10 (5)
C6—C5—H5A109.8N1—C9A—C4A127.34 (11)
C4B—C5—H5B109.8N1—C9A—S9121.54 (9)
C6—C5—H5B109.8C4A—C9A—S9111.10 (9)
H5A—C5—H5B108.3
C9A—N1—C2—N2179.86 (10)N7—C71—C72—C73100.64 (15)
C9A—N1—C2—O30.89 (16)N7—C71—C72—C7777.42 (14)
N1—C2—N2—C21175.05 (11)C77—C72—C73—C741.84 (19)
O3—C2—N2—C215.62 (15)C71—C72—C73—C74176.25 (11)
N1—C2—N2—C234.42 (17)C72—C73—C74—C751.7 (2)
O3—C2—N2—C23174.92 (9)C73—C74—C75—C760.7 (2)
C2—N2—C21—C2280.24 (14)C74—C75—C76—C770.3 (2)
C23—N2—C21—C22100.29 (13)C75—C76—C77—C720.12 (19)
C2—N2—C23—C2497.92 (14)C73—C72—C77—C760.91 (18)
C21—N2—C23—C2482.60 (15)C71—C72—C77—C76177.20 (11)
N1—C2—O3—C40.04 (17)C6—N7—C8—C8A50.28 (13)
N2—C2—O3—C4179.28 (9)C71—N7—C8—C8A174.97 (10)
C2—O3—C4—O4178.37 (10)C4A—C4B—C8A—C8179.21 (11)
C2—O3—C4—C4A1.15 (15)C5—C4B—C8A—C80.56 (19)
O4—C4—C4A—C9A178.16 (12)C4A—C4B—C8A—S90.18 (13)
O3—C4—C4A—C9A1.27 (15)C5—C4B—C8A—S9178.47 (9)
O4—C4—C4A—C4B1.2 (2)N7—C8—C8A—C4B16.29 (17)
O3—C4—C4A—C4B178.25 (10)N7—C8—C8A—S9164.77 (8)
C9A—C4A—C4B—C8A0.39 (15)C4B—C8A—S9—C9A0.04 (10)
C4—C4A—C4B—C8A177.49 (11)C8—C8A—S9—C9A179.02 (11)
C9A—C4A—C4B—C5178.15 (11)C2—N1—C9A—C4A0.71 (17)
C4—C4A—C4B—C51.0 (2)C2—N1—C9A—S9178.81 (9)
C8A—C4B—C5—C615.71 (16)C4—C4A—C9A—N10.41 (18)
C4A—C4B—C5—C6162.71 (11)C4B—C4A—C9A—N1177.85 (11)
C4B—C5—C6—N749.80 (13)C4—C4A—C9A—S9177.86 (9)
C5—C6—N7—C71166.12 (11)C4B—C4A—C9A—S90.42 (13)
C5—C6—N7—C870.47 (13)C8A—S9—C9A—N1178.12 (10)
C6—N7—C71—C72161.71 (11)C8A—S9—C9A—C4A0.27 (9)
C8—N7—C71—C7274.95 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C73—H73···O4i0.952.503.4341 (16)167
Symmetry code: (i) x, y1, z.
(III) N-(7-Benzyl-4-oxo-5,6,7,8-tetrahydro-4H-3,9-dithia-1,7-diazafluoren- 2-yl)benzamide top
Crystal data top
C23H19N3O2S2F(000) = 904
Mr = 433.53Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3743 reflections
a = 9.2927 (2) Åθ = 1–27.5°
b = 29.3299 (6) ŵ = 0.30 mm1
c = 7.5645 (1) ÅT = 123 K
β = 106.015 (1)°Plate, yellow
V = 1981.72 (7) Å30.50 × 0.30 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3832 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
rotation in phi and ω, 1 deg. scansh = 1112
11671 measured reflectionsk = 3438
4398 independent reflectionsl = 95
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.6981P]
where P = (Fo2 + 2Fc2)/3
4398 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.46 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
C23H19N3O2S2V = 1981.72 (7) Å3
Mr = 433.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2927 (2) ŵ = 0.30 mm1
b = 29.3299 (6) ÅT = 123 K
c = 7.5645 (1) Å0.50 × 0.30 × 0.20 mm
β = 106.015 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3832 reflections with I > 2σ(I)
11671 measured reflectionsRint = 0.027
4398 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
4398 reflectionsΔρmin = 0.37 e Å3
274 parameters
Special details top

Experimental. dx = 40 mm, 30 sec./°., 1 °., 2 sets, 250 frames, mos.= 0.570 (2) °.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.79682 (14)0.52023 (4)0.51254 (17)0.0218 (3)
C20.86955 (15)0.55670 (5)0.57969 (19)0.0199 (3)
N210.92148 (14)0.58309 (4)0.45708 (17)0.0206 (2)
H210.9122 (19)0.5703 (6)0.353 (2)0.025*
C220.96165 (15)0.62857 (5)0.48298 (19)0.0214 (3)
O220.96154 (14)0.64889 (4)0.62344 (15)0.0324 (3)
C231.00622 (15)0.65129 (5)0.32982 (19)0.0190 (3)
C240.97997 (16)0.69825 (5)0.30824 (19)0.0221 (3)
H240.92460.71350.37910.027*
C251.03471 (17)0.72253 (5)0.1836 (2)0.0247 (3)
H251.01650.75430.16840.030*
C261.11642 (17)0.70023 (5)0.0810 (2)0.0252 (3)
H261.15650.71700.00190.030*
C271.13946 (16)0.65344 (5)0.0994 (2)0.0243 (3)
H271.19360.63820.02730.029*
C281.08349 (15)0.62903 (5)0.22295 (19)0.0212 (3)
H281.09820.59700.23420.025*
S30.91078 (4)0.575481 (12)0.80867 (5)0.02223 (10)
C40.84117 (15)0.53040 (5)0.9229 (2)0.0196 (3)
O40.87017 (11)0.53391 (4)1.09107 (14)0.0239 (2)
C4A0.75219 (14)0.49553 (5)0.81052 (19)0.0180 (3)
C4B0.66690 (15)0.46052 (5)0.87018 (19)0.0184 (3)
C50.64746 (16)0.45338 (5)1.05904 (19)0.0196 (3)
H5A0.63410.48311.11440.023*
H5B0.73750.43841.13920.023*
C60.51020 (15)0.42346 (5)1.0431 (2)0.0201 (3)
H6A0.50420.41501.16750.024*
H6B0.41860.44070.98120.024*
N70.51883 (13)0.38210 (4)0.93779 (16)0.0189 (2)
C710.40820 (16)0.34831 (5)0.9556 (2)0.0226 (3)
H71A0.40380.32370.86450.027*
H71B0.30840.36300.92650.027*
C720.44223 (15)0.32742 (5)1.14584 (19)0.0199 (3)
C730.58852 (16)0.32254 (5)1.2559 (2)0.0237 (3)
H730.66920.33401.21450.028*
C740.61748 (17)0.30106 (5)1.4256 (2)0.0260 (3)
H740.71770.29821.50000.031*
C750.50135 (18)0.28381 (5)1.4873 (2)0.0277 (3)
H750.52170.26871.60260.033*
C760.35499 (18)0.28879 (5)1.3794 (2)0.0297 (3)
H760.27470.27701.42070.036*
C770.32585 (16)0.31101 (5)1.2109 (2)0.0249 (3)
H770.22520.31501.13920.030*
C80.49702 (16)0.39339 (5)0.7437 (2)0.0226 (3)
H8A0.39080.40130.68620.027*
H8B0.52270.36670.67800.027*
C8A0.59499 (15)0.43299 (5)0.7290 (2)0.0205 (3)
S90.62725 (4)0.447965 (13)0.52184 (5)0.02424 (11)
C9A0.73944 (15)0.49314 (5)0.62306 (19)0.0204 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0270 (6)0.0212 (6)0.0186 (6)0.0054 (5)0.0088 (5)0.0005 (5)
C20.0215 (6)0.0212 (7)0.0181 (7)0.0009 (5)0.0073 (5)0.0011 (5)
N210.0263 (6)0.0203 (6)0.0173 (6)0.0049 (5)0.0094 (5)0.0012 (5)
C220.0225 (7)0.0214 (7)0.0211 (7)0.0026 (5)0.0075 (5)0.0001 (6)
O220.0521 (7)0.0248 (6)0.0258 (6)0.0084 (5)0.0201 (5)0.0048 (4)
C230.0182 (6)0.0196 (7)0.0179 (7)0.0036 (5)0.0028 (5)0.0001 (5)
C240.0241 (7)0.0214 (7)0.0191 (7)0.0002 (6)0.0032 (5)0.0030 (5)
C250.0301 (7)0.0195 (7)0.0214 (7)0.0017 (6)0.0019 (6)0.0023 (6)
C260.0287 (7)0.0245 (7)0.0221 (7)0.0054 (6)0.0063 (6)0.0046 (6)
C270.0256 (7)0.0257 (7)0.0235 (7)0.0033 (6)0.0100 (6)0.0008 (6)
C280.0222 (7)0.0187 (7)0.0226 (7)0.0025 (5)0.0061 (5)0.0001 (6)
S30.02805 (19)0.02204 (19)0.01761 (18)0.00751 (14)0.00801 (14)0.00200 (13)
C40.0195 (6)0.0208 (7)0.0194 (7)0.0004 (5)0.0068 (5)0.0003 (5)
O40.0289 (5)0.0262 (5)0.0172 (5)0.0061 (4)0.0073 (4)0.0019 (4)
C4A0.0192 (6)0.0184 (6)0.0172 (6)0.0008 (5)0.0065 (5)0.0009 (5)
C4B0.0190 (6)0.0180 (7)0.0185 (7)0.0007 (5)0.0058 (5)0.0001 (5)
C50.0242 (7)0.0184 (7)0.0171 (7)0.0031 (5)0.0073 (5)0.0012 (5)
C60.0225 (6)0.0189 (7)0.0203 (7)0.0021 (5)0.0084 (5)0.0018 (5)
N70.0222 (6)0.0177 (6)0.0173 (6)0.0043 (4)0.0062 (4)0.0007 (4)
C710.0236 (7)0.0226 (7)0.0206 (7)0.0066 (6)0.0041 (6)0.0008 (5)
C720.0243 (7)0.0147 (6)0.0202 (7)0.0029 (5)0.0055 (5)0.0005 (5)
C730.0228 (7)0.0219 (7)0.0263 (7)0.0033 (6)0.0065 (6)0.0001 (6)
C740.0278 (7)0.0205 (7)0.0257 (8)0.0003 (6)0.0005 (6)0.0006 (6)
C750.0408 (8)0.0186 (7)0.0225 (7)0.0017 (6)0.0067 (6)0.0026 (6)
C760.0327 (8)0.0295 (8)0.0297 (8)0.0070 (7)0.0132 (7)0.0030 (7)
C770.0231 (7)0.0253 (7)0.0259 (8)0.0022 (6)0.0063 (6)0.0008 (6)
C80.0281 (7)0.0224 (7)0.0171 (7)0.0067 (6)0.0057 (6)0.0010 (5)
C8A0.0234 (7)0.0198 (7)0.0187 (7)0.0021 (5)0.0066 (5)0.0007 (5)
S90.0337 (2)0.0241 (2)0.01515 (18)0.00952 (15)0.00706 (15)0.00207 (13)
C9A0.0234 (6)0.0199 (7)0.0183 (7)0.0016 (5)0.0062 (5)0.0007 (5)
Geometric parameters (Å, º) top
N1—C21.2920 (19)C5—H5A0.9900
N1—C9A1.3640 (18)C5—H5B0.9900
C2—N211.3927 (17)C6—N71.4655 (18)
C2—S31.7562 (14)C6—H6A0.9900
N21—C221.3844 (18)C6—H6B0.9900
N21—H210.855 (14)N7—C711.4608 (17)
C22—O221.2185 (17)N7—C81.4637 (18)
C22—C231.4908 (19)C71—C721.515 (2)
C23—C281.384 (2)C71—H71A0.9900
C23—C241.400 (2)C71—H71B0.9900
C24—C251.385 (2)C72—C771.392 (2)
C24—H240.9500C72—C731.392 (2)
C25—C261.390 (2)C73—C741.388 (2)
C25—H250.9500C73—H730.9500
C26—C271.390 (2)C74—C751.384 (2)
C26—H260.9500C74—H740.9500
C27—C281.387 (2)C75—C761.387 (2)
C27—H270.9500C75—H750.9500
C28—H280.9500C76—C771.390 (2)
S3—C41.7948 (14)C76—H760.9500
C4—O41.2299 (17)C77—H770.9500
C4—C4A1.4368 (19)C8—C8A1.4986 (19)
C4A—C9A1.3918 (19)C8—H8A0.9900
C4A—C4B1.4435 (18)C8—H8B0.9900
C4B—C8A1.359 (2)C8A—S91.7314 (14)
C4B—C51.5032 (19)S9—C9A1.7287 (14)
C5—C61.5253 (19)
C2—N1—C9A119.46 (12)N7—C6—H6A109.6
N1—C2—N21115.99 (13)C5—C6—H6A109.6
N1—C2—S3126.56 (11)N7—C6—H6B109.6
N21—C2—S3117.45 (10)C5—C6—H6B109.6
C22—N21—C2124.81 (12)H6A—C6—H6B108.1
C22—N21—H21120.6 (12)C71—N7—C8109.88 (11)
C2—N21—H21113.8 (12)C71—N7—C6111.46 (11)
O22—C22—N21121.98 (13)C8—N7—C6110.17 (11)
O22—C22—C23121.75 (13)N7—C71—C72113.23 (11)
N21—C22—C23116.27 (12)N7—C71—H71A108.9
C28—C23—C24119.84 (13)C72—C71—H71A108.9
C28—C23—C22122.90 (13)N7—C71—H71B108.9
C24—C23—C22116.96 (12)C72—C71—H71B108.9
C25—C24—C23120.00 (13)H71A—C71—H71B107.7
C25—C24—H24120.0C77—C72—C73118.62 (13)
C23—C24—H24120.0C77—C72—C71119.78 (13)
C24—C25—C26119.87 (14)C73—C72—C71121.55 (13)
C24—C25—H25120.1C74—C73—C72120.53 (13)
C26—C25—H25120.1C74—C73—H73119.7
C27—C26—C25120.08 (14)C72—C73—H73119.7
C27—C26—H26120.0C75—C74—C73120.50 (14)
C25—C26—H26120.0C75—C74—H74119.8
C28—C27—C26120.07 (14)C73—C74—H74119.8
C28—C27—H27120.0C74—C75—C76119.47 (14)
C26—C27—H27120.0C74—C75—H75120.3
C23—C28—C27120.09 (13)C76—C75—H75120.3
C23—C28—H28120.0C75—C76—C77120.01 (14)
C27—C28—H28120.0C75—C76—H76120.0
C2—S3—C4103.54 (7)C77—C76—H76120.0
O4—C4—C4A126.70 (13)C76—C77—C72120.83 (14)
O4—C4—S3115.54 (11)C76—C77—H77119.6
C4A—C4—S3117.69 (10)C72—C77—H77119.6
C9A—C4A—C4120.79 (12)N7—C8—C8A109.32 (11)
C9A—C4A—C4B112.52 (12)N7—C8—H8A109.8
C4—C4A—C4B126.69 (12)C8A—C8—H8A109.8
C8A—C4B—C4A111.74 (12)N7—C8—H8B109.8
C8A—C4B—C5120.15 (12)C8A—C8—H8B109.8
C4A—C4B—C5128.07 (12)H8A—C8—H8B108.3
C4B—C5—C6108.79 (11)C4B—C8A—C8125.41 (13)
C4B—C5—H5A109.9C4B—C8A—S9112.97 (10)
C6—C5—H5A109.9C8—C8A—S9121.61 (11)
C4B—C5—H5B109.9C9A—S9—C8A91.57 (7)
C6—C5—H5B109.9N1—C9A—C4A131.10 (13)
H5A—C5—H5B108.3N1—C9A—S9117.71 (10)
N7—C6—C5110.43 (11)C4A—C9A—S9111.18 (10)
C9A—N1—C2—N21178.52 (12)C5—C6—N7—C71166.99 (11)
C9A—N1—C2—S32.4 (2)C5—C6—N7—C870.76 (14)
N1—C2—N21—C22160.22 (14)C8—N7—C71—C72167.93 (12)
S3—C2—N21—C2220.61 (18)C6—N7—C71—C7269.66 (15)
C2—N21—C22—O223.8 (2)N7—C71—C72—C77152.40 (13)
C2—N21—C22—C23176.63 (12)N7—C71—C72—C7330.10 (19)
O22—C22—C23—C28144.27 (15)C77—C72—C73—C741.0 (2)
N21—C22—C23—C2835.30 (19)C71—C72—C73—C74176.50 (13)
O22—C22—C23—C2429.4 (2)C72—C73—C74—C750.6 (2)
N21—C22—C23—C24150.98 (13)C73—C74—C75—C761.1 (2)
C28—C23—C24—C251.7 (2)C74—C75—C76—C770.1 (2)
C22—C23—C24—C25172.21 (13)C75—C76—C77—C721.7 (2)
C23—C24—C25—C260.4 (2)C73—C72—C77—C762.2 (2)
C24—C25—C26—C271.9 (2)C71—C72—C77—C76175.39 (14)
C25—C26—C27—C281.3 (2)C71—N7—C8—C8A171.43 (12)
C24—C23—C28—C272.3 (2)C6—N7—C8—C8A48.26 (15)
C22—C23—C28—C27171.24 (13)C4A—C4B—C8A—C8179.95 (13)
C26—C27—C28—C230.8 (2)C5—C4B—C8A—C82.0 (2)
N1—C2—S3—C44.18 (15)C4A—C4B—C8A—S90.11 (15)
N21—C2—S3—C4174.90 (11)C5—C4B—C8A—S9178.04 (10)
C2—S3—C4—O4173.43 (11)N7—C8—C8A—C4B13.5 (2)
C2—S3—C4—C4A9.59 (12)N7—C8—C8A—S9166.44 (10)
O4—C4—C4A—C9A174.01 (14)C4B—C8A—S9—C9A0.63 (12)
S3—C4—C4A—C9A9.39 (18)C8—C8A—S9—C9A179.43 (12)
O4—C4—C4A—C4B6.8 (2)C2—N1—C9A—C4A4.9 (2)
S3—C4—C4A—C4B169.78 (11)C2—N1—C9A—S9173.64 (11)
C9A—C4A—C4B—C8A0.64 (17)C4—C4A—C9A—N11.8 (2)
C4—C4A—C4B—C8A179.87 (13)C4B—C4A—C9A—N1177.49 (14)
C9A—C4A—C4B—C5177.08 (13)C4—C4A—C9A—S9179.62 (11)
C4—C4A—C4B—C52.1 (2)C4B—C4A—C9A—S91.10 (15)
C8A—C4B—C5—C616.44 (18)C8A—S9—C9A—N1177.82 (12)
C4A—C4B—C5—C6161.11 (13)C8A—S9—C9A—C4A0.98 (11)
C4B—C5—C6—N751.47 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O4i0.86 (1)2.19 (1)3.0406 (16)175 (2)
Symmetry code: (i) x, y, z1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC24H33N3O3SC20H23N3O2SC23H19N3O2S2
Mr443.59369.47433.53
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)123123123
a, b, c (Å)9.7735 (2), 24.4098 (5), 19.7439 (5)12.0595 (4), 8.9892 (3), 18.0483 (6)9.2927 (2), 29.3299 (6), 7.5645 (1)
β (°) 93.865 (1) 106.503 (1) 106.015 (1)
V3)4699.57 (18)1875.93 (11)1981.72 (7)
Z844
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.170.190.30
Crystal size (mm)0.50 × 0.40 × 0.200.60 × 0.50 × 0.300.50 × 0.30 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28911, 10616, 6646 10069, 4092, 3374 11671, 4398, 3832
Rint0.0520.0260.027
(sin θ/λ)max1)0.6490.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.128, 0.97 0.033, 0.090, 1.08 0.033, 0.090, 1.04
No. of reflections1061640924398
No. of parameters565235274
No. of restraints201
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.290.21, 0.280.46, 0.37

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1990), SHELXTL (Sheldrick, 2001), SHELXL97 (Sheldrick, 1997); calculation of dihedral angels between planes and mean deviation of atoms from the plane: DIAMOND 3.1d (Brandenburg, 2006).

Selected geometric parameters (Å, º) for (I) top
N2—C211.376 (3)N2'—C21'1.376 (3)
C21—O211.235 (2)C21'—O21'1.229 (2)
C21—N211.358 (2)C21'—N21'1.359 (3)
C31—O311.225 (2)C31'—O31'1.222 (2)
C31—O321.343 (2)C31'—O32'1.341 (2)
N2—C2—C3125.19 (17)N2'—C2'—C3'124.70 (18)
C2—C3—C31119.94 (18)C2'—C3'—C31'120.17 (19)
O31—C31—C3124.45 (19)O31'—C31'—C3'123.9 (2)
C2—N2—C21—N21173.60 (17)C2'—N2'—C21'—N21'174.37 (17)
C2—C3—C31—O32177.93 (16)C2'—C3'—C31'—O32'175.24 (16)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O310.881 (14)1.961 (18)2.684 (2)138.4 (19)
N2'—H2'···O31'0.870 (14)1.983 (18)2.674 (2)135.5 (19)
C64'—H64'···O21i0.952.543.448 (2)160
C66—H66···O21'ii0.952.503.403 (2)159
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
N1—C21.3093 (16)O3—C41.4169 (14)
C2—N21.3334 (15)C4—O41.2114 (14)
C2—O31.3654 (13)
C2—N1—C9A113.61 (10)O3—C4—C4A113.72 (10)
N1—C2—O3125.16 (10)C9A—C4A—C4117.96 (10)
C2—O3—C4122.20 (9)N1—C9A—C4A127.34 (11)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C73—H73···O4i0.952.503.4341 (16)167
Symmetry code: (i) x, y1, z.
Selected geometric parameters (Å, º) for (III) top
N1—C21.2920 (19)S3—C41.7948 (14)
C2—N211.3927 (17)C4—O41.2299 (17)
C2—S31.7562 (14)
C2—N1—C9A119.46 (12)C4A—C4—S3117.69 (10)
N1—C2—S3126.56 (11)C9A—C4A—C4120.79 (12)
C2—S3—C4103.54 (7)N1—C9A—C4A131.10 (13)
N1—C2—N21—C22160.22 (14)C2—N21—C22—O223.8 (2)
S3—C2—N21—C2220.61 (18)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O4i0.855 (14)2.188 (14)3.0406 (16)174.5 (16)
Symmetry code: (i) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds