Download citation
Download citation
link to html
Molecules of the title compounds N2-(benzoyl­oxy)­benz­ami­dine, C14H12N2O2, (I), N2-(2-hydroxy­benzoyl­oxy)­benz­ami­dine, C14H12N2O3, (II), and N2-benzoyloxy-2-hydroxybenzamidine, C14H12N2O3, (III), all have extended chain conformations, with the aryl groups remote from one another. In (I), the mol­ecules are linked into chains by a single N-H...N hydrogen bond [H...N = 2.15 Å, N...N = 3.029 (2) Å and N-H...N = 153°] and these chains are linked into sheets by means of aromatic [pi]-[pi] stacking interactions. There is one intramolecular O-H...O hydrogen bond in (II), and a combination of one three-centre N-H...(N,O) hydrogen bond [H...N = 2.46 Å, H...O = 2.31 Å, N...N = 3.190 (2) Å, N...O = 3.146 (2) Å, N-H...N = 138° and N-H...O = 154°] and one two-centre C-H...O hydrogen bond [H...O = 2.46 Å, C...O = 3.405 (2) Å and C-H...O = 173°] links the mol­ecules into sheets. In (III), an intramolecular O-H...N hydrogen bond and two N-H...O hydrogen bonds [H...O = 2.26 and 2.10 Å, N...O = 2.975 (2) and 2.954 (2) Å, and N-H...O = 138 and 163°] link the molecules into sheets.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103025435/sk1677sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025435/sk1677Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025435/sk1677IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025435/sk1677IIIsup4.hkl
Contains datablock III

CCDC references: 231059; 231060; 231061

Comment top

Acyloxyarylamidines, Ar1C(O)ON=C(NH2)Ar2, can in principle adopt a wide range of conformations, depending on both the configuration at the CN double bond, and the rotational freedom about the C—O and N—O single bonds. On the basis of ab initio calculations on the simple model compound HC(O)ON=CHNH2 and qualitative estimates of 1,4 interactions in the aryl analogues Ar1C(O)ON=C(NH2)Ar2, it has been suggested (Tucker et al., 2000) that the two most stable conformers, at least in the vapour phase, are those with chain-extended C(Ar)—C—O—N=C—C(Ar) spacer units. Consistent with this prediction, the structures of three derivatives [Ar1 is 1-naphthyl and Ar2 is 2-methylphenyl, Cambridge Structural Database (CSD; Allen, 2002) refcode QUNMER; Ar1 is 1-naphthyl and Ar2 is 2,6-dichlorophenyl, CSD refcode QUNMOB; Ar1 is 2-methylphenyl and Ar2 is 2,4-dichlorophenyl, CSD refcode QUNMIV] were all found to adopt nearly planar chain-extended conformations, with the aryl groups remote from one another. In this paper, we report the structure of three more compounds of this type, including the unsubstituted parent compound, N-benzoyloxybenzamidine, (I), and two isomeric hydroxy compounds, N-(2-hydroxybenzoyloxy)benzamidine, (II), and N-benzoyloxy-2-hydroxybenzamidine, (III). In these three compounds, there exists the possibility that the overall conformation may be influenced by intermolecular hydrogen bonding involving the substituted aryl rings.

The molecules of (I)–(III) (Figs. 1–3) all have chain-extended conformations, with the aryl groups remote from one another. In (III), the non-H atoms in the central spacer unit between atoms C11 and C21 are almost coplanar, as shown by the key torsion angles (Table 1), whereas in both (I) and (III), there is a modest twist about the central N2—O1 bond. The C—N and C—O distances in the spacer unit distinguish clearly between the formal single and double bonds; the C—N distances are, in addition, fully consistent with the location of the H atoms bonded to atom N4, as deduced from a difference map. The remaining bond distances and interbond angles show no unusual features.

Despite their very similar constitutions and their similar molecular geometries, the supramolecular structures of (I)–(III) are all different, with significant differences even between the isomeric compounds (II) and (III). No two structures employ the same combination of hard and soft (Desiraju & Steiner, 1999) interactions between the molecules.

In (I) (Fig. 1), where both aryl rings are unsubstituted, there are no intramolecular hydrogen bonds and only a single intermolecular hydrogen bond (N—H···O; Table 2). Amino atom N4 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H41, to imino atom N2 in the molecule at (0.5 + x, 0.5 − y, 0.5 + z), so producing a zigzag C(4) chain (Bernstein et al., 1995) running parallel to the [101] direction and generated by the n-glide plane at y = 0.25 (Fig. 4). The second N—H bond plays no role in the supramolecular aggregation, forming neither a hard N—H···O hydrogen bond nor a soft N—H···π(arene) hydrogen bond. Neither of the two O atoms plays any role in the supramolecular structure.

However, the chains in (I) are weakly linked into sheets by a single aromatic π···π stacking interaction. Phenyl rings C11–C16 and C21–C26 in the molecules at (x, y, z) and (0.5 + x, 0.5 − y, −0.5 + z), respectively, are nearly parallel, with an interplanar angle of only 5.1 (2)°; the ring-centroid separation is 3.852 (2) Å and the interplanar spacing is ca 3.50 Å, giving a centroid offset of ca 1.61 Å. Propagation of this interaction thus generates a chain running parallel to the [10–1] direction (Fig. 5), and the combination of [101] and [10–1] chains generates a (010) sheet. Two sheets pass through each unit cell, in the domains −0.02 < y < 0.52 and 0.48 < y < 1.02, but there are no direction-specific interactions between adjacent sheets.

There is an intramolecular hydrogen bond in (II) (Fig. 2) and there are two intermolecular hydrogen bonds, viz. one three-centred N—H···(N,O) bond and one two-centred C—H···O bond, both of which utilize the same O acceptor atom (Table 3). Amino atom N4 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H42, to imino atom N2 and to carbonyl atom O5, both in the molecule at (0.5 − x, 1 − y, −0.5 + z), thereby producing a C(4) C(7)[R21(5)] chain of rings running parallel to the [001] direction and generated by the 21 screw axis along (1/4, 1/2, z) (Fig. 6). At the same time, atom C12 at (x, y, z) acts as a hydrogen-bond donor to atom O5 in the molecule at (0.5 + x, y, 0.5 − z), so producing a zigzag C(8) chain parallel to [100] and generated by the a-glide plane at z = 0.25 (Fig. 7). The combination of the [100] and [001] chains generates a (010) sheet, two of which pass through each unit cell in the domains 0.26 < y < 0.74 and 0.76 < y < 1.24, respectively. There are no direction-specific interactions between adjacent sheets, although there is a single C—H···π(arene) hydrogen bond within the sheet (Table 3).

In (III), which is isomeric with (II), an intramolecular O—H···N hydrogen bond (Fig. 3) forms an S(6) motif and the supramolecular aggregation is dominated by two intermolecular N—H···O hydrogen bonds (Table 4). Amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atoms H1A and H1B, respectively, to phenol atom O1 in the molecule at (−0.5 + x, 0.5 − y, 0.5 + z) and to carbonyl atom O3 in the molecule at (0.5 + x, 0.5 − y, 0.5 + z), thereby producing C(6) and C(7) chains running parallel to the [−101] and [101] directions, respectively. The combination of these two chains produces a (010) sheet in the form of a (4,4)-net (Batten & Robson, 1998) containing equal numbers of S(6) and R45(22) rings (Fig. 8). This sheet, which is generated by the n-glide plane at y = 1/4, lies in the domain −0.02 < y < 0.52. A second such sheet, related to the first by inversion, lies in the domain 0.48 < y 1.02, this sheet being generated by the n-glide plane at y = 0.75. However, there are no direction-specific interactions between adjacent sheets; in particular, there are neither X—H···π(arene) hydrogen bonds (X = C, N or O) nor aromatic π···π stacking interactions in the structure.

In summary, the overall conformations adopted by (I)–(III) are similar to those of the analogues reported previously; this conformation appears to be independent of the presence or absence of intermolecular hydrogen bonding involving the carbonyl O atom, previously suggested as a contributory factor in the determination of molecular conformation (Tucker et al., 2000).

Experimental top

Samples of (I)–(III) were prepared by heating, under reflux for 1 h, a mixture containing equimolar quantities of the appropriate acyl chloride and the appropriate benzamidoxime in dry tetrahydrofuran solution, in the presence of triethylamine. After removal of triethylammonium chloride and evaporation of the solvent, the solid products were crystallized from acetonitrile

Refinement top

For compounds (I) and (III), space group P21/n was uniquely assigned from the systematic absences; space group Pbca was likewise assigned for (II). All H atoms were located from difference maps, which showed clearly that the NH2 groups were all pyramidal; all H atoms were then treated as riding atoms with C—H distances of 0.95 Å, N—H distances of 0.88–0.95 Å and O—H distances of 0.84 Å.

Computing details top

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003). Software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999) for (I), (II); SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999) for (III).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of a C(4) hydrogen-bonded chain along [101]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (0.5 + x, 0.5 − y, 0.5 + z), (−0.5 + x, 0.5 − y, −0.5 + z) and (−1 + x, y, −1 + z), respectively.
[Figure 5] Fig. 5. A steroview of part of the crystal structure of (I), showing the formation of a π-stacked chain along [10–1]. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 6] Fig. 6. Part of the crystal structure of (II), showing the formation of a chain of rings along [001], built from hard hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (0.5 − x, 1 − y, 0.5 + z), (0.5 − x, 1 − y, −0.5 + z) and (x, y, 1 + z), respectively.
[Figure 7] Fig. 7. Part of the crystal structure of (II), showing the formation of a C(8) chain along [100], built from soft hydrogen bonds. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (0.5 + x, y, 0.5 − z) and (−0.5 + x, y, 0.5 − z), respectively.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of (I), showing the formation of a (010) sheet of S(6) and R45(22) rings. For the sake of clarity, H atoms bonded to C atoms have been omitted.
(I) N2-(Benzoyloxy)benzamidine top
Crystal data top
C14H12N2O2F(000) = 504
Mr = 240.26Dx = 1.381 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2614 reflections
a = 7.0415 (2) Åθ = 3.2–27.5°
b = 21.4704 (7) ŵ = 0.09 mm1
c = 8.0570 (3) ÅT = 120 K
β = 108.4804 (16)°Plate, colourless
V = 1155.27 (7) Å30.25 × 0.20 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2614 independent reflections
Radiation source: rotating anode1708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.967, Tmax = 0.993k = 2727
10316 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.0022P]
where P = (Fo2 + 2Fc2)/3
2614 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H12N2O2V = 1155.27 (7) Å3
Mr = 240.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0415 (2) ŵ = 0.09 mm1
b = 21.4704 (7) ÅT = 120 K
c = 8.0570 (3) Å0.25 × 0.20 × 0.08 mm
β = 108.4804 (16)°
Data collection top
Nonius KappaCCD
diffractometer
2614 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
1708 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.993Rint = 0.056
10316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.96Δρmax = 0.21 e Å3
2614 reflectionsΔρmin = 0.27 e Å3
165 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68674 (18)0.20793 (5)1.03591 (14)0.0222 (3)
O50.62128 (19)0.11800 (5)0.87945 (15)0.0265 (3)
N20.6429 (2)0.23953 (6)0.86857 (17)0.0220 (3)
N40.8343 (2)0.31800 (7)1.05407 (17)0.0218 (3)
C30.7286 (2)0.29369 (7)0.8972 (2)0.0186 (4)
C50.6621 (2)0.14541 (8)1.0169 (2)0.0189 (4)
C110.6990 (2)0.33248 (7)0.7376 (2)0.0180 (4)
C120.6842 (2)0.30402 (8)0.5786 (2)0.0216 (4)
C130.6554 (2)0.33948 (8)0.4299 (2)0.0252 (4)
C140.6435 (3)0.40380 (8)0.4378 (2)0.0263 (4)
C150.6600 (3)0.43238 (8)0.5957 (2)0.0254 (4)
C160.6863 (2)0.39696 (8)0.7450 (2)0.0214 (4)
C210.6908 (2)0.11529 (7)1.1906 (2)0.0182 (4)
C220.7371 (2)0.14931 (8)1.3457 (2)0.0207 (4)
C230.7585 (3)0.11870 (8)1.5029 (2)0.0244 (4)
C240.7311 (3)0.05492 (8)1.5044 (2)0.0270 (4)
C250.6868 (3)0.02098 (8)1.3499 (2)0.0283 (4)
C260.6678 (3)0.05123 (8)1.1937 (2)0.0230 (4)
H120.69390.26000.57250.026*
H130.64370.31980.32160.030*
H140.62400.42810.33530.032*
H150.65340.47650.60170.030*
H160.69570.41680.85270.026*
H220.75400.19321.34410.025*
H230.79190.14161.60920.029*
H240.74260.03421.61140.032*
H250.66960.02291.35150.034*
H260.63880.02801.08830.028*
H410.89590.29071.14870.026*
H420.92230.35161.05440.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0294 (6)0.0216 (7)0.0139 (6)0.0021 (5)0.0044 (5)0.0035 (5)
O50.0353 (7)0.0260 (7)0.0171 (6)0.0000 (5)0.0068 (5)0.0015 (5)
N40.0255 (8)0.0222 (7)0.0150 (7)0.0020 (6)0.0028 (6)0.0002 (6)
N20.0276 (8)0.0231 (8)0.0126 (7)0.0019 (6)0.0026 (6)0.0054 (5)
C30.0188 (8)0.0208 (9)0.0162 (8)0.0012 (6)0.0057 (7)0.0006 (6)
C50.0154 (8)0.0222 (9)0.0185 (9)0.0008 (6)0.0044 (6)0.0020 (7)
C110.0151 (8)0.0220 (9)0.0163 (8)0.0013 (6)0.0039 (7)0.0013 (6)
C120.0229 (9)0.0217 (9)0.0195 (8)0.0009 (7)0.0056 (7)0.0000 (7)
C130.0255 (9)0.0316 (10)0.0183 (9)0.0023 (7)0.0068 (7)0.0020 (7)
C140.0258 (9)0.0308 (10)0.0196 (9)0.0030 (7)0.0032 (7)0.0092 (7)
C150.0258 (9)0.0207 (9)0.0258 (9)0.0016 (7)0.0029 (8)0.0038 (7)
C160.0194 (8)0.0239 (9)0.0199 (9)0.0009 (7)0.0045 (7)0.0014 (7)
C210.0134 (7)0.0231 (9)0.0168 (8)0.0020 (6)0.0030 (6)0.0017 (6)
C220.0204 (8)0.0208 (9)0.0203 (8)0.0003 (7)0.0054 (7)0.0026 (7)
C230.0252 (9)0.0299 (10)0.0164 (8)0.0026 (7)0.0042 (7)0.0005 (7)
C240.0317 (10)0.0275 (10)0.0222 (9)0.0036 (8)0.0090 (8)0.0094 (7)
C250.0366 (10)0.0188 (9)0.0294 (10)0.0018 (8)0.0104 (8)0.0048 (8)
C260.0252 (9)0.0216 (9)0.0219 (9)0.0002 (7)0.0071 (7)0.0014 (7)
Geometric parameters (Å, º) top
O1—C51.356 (2)C14—H140.95
O1—N21.452 (2)C15—C161.385 (2)
O5—C51.206 (2)C15—H150.95
N4—C31.352 (2)C16—H160.95
N4—H410.95C21—C261.386 (2)
N4—H420.95C21—C221.394 (2)
N2—C31.297 (2)C22—C231.392 (2)
C3—C111.490 (2)C22—H220.95
C5—C211.496 (2)C23—C241.383 (2)
C11—C161.390 (2)C23—H230.95
C11—C121.393 (2)C24—C251.389 (3)
C12—C131.379 (2)C24—H240.95
C12—H120.95C25—C261.384 (2)
C13—C141.386 (3)C25—H250.95
C13—H130.95C26—H260.95
C14—C151.383 (3)
C5—O1—N2112.07 (12)C16—C15—H15119.9
C3—N4—H41119.2C14—C15—H15119.9
C3—N4—H42117.4C15—C16—C11120.16 (16)
H41—N4—H42109.5C15—C16—H16119.9
C3—N2—O1107.69 (12)C11—C16—H16119.9
N2—C3—N4126.84 (14)C26—C21—C22119.93 (15)
N2—C3—C11114.70 (14)C26—C21—C5117.66 (14)
N4—C3—C11118.43 (14)C22—C21—C5122.41 (15)
O5—C5—O1124.86 (14)C23—C22—C21119.71 (16)
O5—C5—C21124.77 (15)C23—C22—H22120.1
O1—C5—C21110.37 (13)C21—C22—H22120.1
C16—C11—C12119.28 (15)C24—C23—C22119.98 (16)
C16—C11—C3120.87 (15)C24—C23—H23120.0
C12—C11—C3119.84 (14)C22—C23—H23120.0
C13—C12—C11120.28 (16)C25—C24—C23120.26 (16)
C13—C12—H12119.9C25—C24—H24119.9
C11—C12—H12119.9C23—C24—H24119.9
C12—C13—C14120.28 (16)C24—C25—C26119.84 (16)
C12—C13—H13119.9C24—C25—H25120.1
C14—C13—H13119.9C26—C25—H25120.1
C15—C14—C13119.72 (16)C25—C26—C21120.26 (16)
C15—C14—H14120.1C25—C26—H26119.9
C13—C14—H14120.1C21—C26—H26119.9
C16—C15—C14120.27 (16)
C5—O1—N2—C3160.0 (2)C12—C11—C16—C150.2 (2)
O1—N2—C3—N42.1 (2)C3—C11—C16—C15179.58 (15)
O1—N2—C3—C11179.8 (2)O5—C5—C21—C260.4 (2)
N2—O1—C5—O54.5 (2)O1—C5—C21—C26179.11 (14)
N2—O1—C5—C21175.0 (2)O5—C5—C21—C22179.73 (15)
N2—C3—C11—C16146.99 (15)O1—C5—C21—C220.2 (2)
N4—C3—C11—C1631.2 (2)C26—C21—C22—C230.5 (2)
N2—C3—C11—C1233.2 (2)C5—C21—C22—C23178.86 (15)
N4—C3—C11—C12148.57 (16)C21—C22—C23—C240.9 (2)
C16—C11—C12—C130.6 (2)C22—C23—C24—C251.5 (3)
C3—C11—C12—C13179.58 (15)C23—C24—C25—C260.7 (3)
C11—C12—C13—C140.8 (3)C24—C25—C26—C210.6 (3)
C12—C13—C14—C150.2 (3)C22—C21—C26—C251.2 (2)
C13—C14—C15—C160.7 (3)C5—C21—C26—C25178.13 (16)
C14—C15—C16—C110.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···N2i0.952.153.029 (2)153
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(II) N2-(2-Hydroxybenzoyloxy)benzamidine top
Crystal data top
C14H12N2O3F(000) = 1072
Mr = 256.26Dx = 1.408 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2758 reflections
a = 9.3808 (1) Åθ = 3.1–27.5°
b = 24.9553 (4) ŵ = 0.10 mm1
c = 10.3277 (1) ÅT = 120 K
V = 2417.72 (5) Å3Block, colourless
Z = 80.55 × 0.32 × 0.28 mm
Data collection top
Nonius KappaCCD
diffractometer
2758 independent reflections
Radiation source: rotating anode2308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 129
Tmin = 0.966, Tmax = 0.972k = 3232
17440 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0581P)2 + 1.0166P]
where P = (Fo2 + 2Fc2)/3
2758 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H12N2O3V = 2417.72 (5) Å3
Mr = 256.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.3808 (1) ŵ = 0.10 mm1
b = 24.9553 (4) ÅT = 120 K
c = 10.3277 (1) Å0.55 × 0.32 × 0.28 mm
Data collection top
Nonius KappaCCD
diffractometer
2758 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
2308 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.972Rint = 0.065
17440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.97Δρmax = 0.23 e Å3
2758 reflectionsΔρmin = 0.28 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16042 (9)0.57063 (3)0.07061 (8)0.0186 (2)
O50.08972 (10)0.58517 (3)0.27676 (8)0.0219 (2)
O220.11487 (11)0.65582 (4)0.31260 (9)0.0254 (2)
N20.24819 (12)0.52822 (4)0.12648 (10)0.0185 (2)
N40.18746 (12)0.48525 (4)0.07198 (10)0.0200 (2)
C30.25882 (13)0.48989 (5)0.04147 (11)0.0162 (3)
C50.09289 (13)0.59851 (4)0.16295 (12)0.0164 (2)
C110.35734 (13)0.44605 (5)0.08089 (11)0.0157 (2)
C120.48275 (13)0.45869 (5)0.14659 (12)0.0183 (3)
C130.57522 (15)0.41826 (5)0.18447 (12)0.0214 (3)
C140.54277 (15)0.36493 (5)0.15761 (13)0.0221 (3)
C150.41747 (15)0.35224 (5)0.09349 (13)0.0222 (3)
C160.32460 (14)0.39244 (5)0.05472 (12)0.0193 (3)
C210.01932 (13)0.64654 (4)0.11252 (12)0.0168 (3)
C220.08237 (14)0.67216 (5)0.19139 (12)0.0185 (3)
C230.15664 (14)0.71658 (5)0.14315 (13)0.0227 (3)
C240.12627 (15)0.73610 (5)0.02098 (14)0.0235 (3)
C250.02321 (15)0.71186 (5)0.05625 (13)0.0232 (3)
C260.04785 (14)0.66696 (5)0.01138 (12)0.0203 (3)
H220.05930.63110.33470.038*
H410.13090.51290.09560.024*
H420.23020.46650.13660.024*
H120.50490.49500.16540.022*
H130.66090.42700.22880.026*
H140.60650.33730.18320.027*
H150.39500.31580.07600.027*
H160.23900.38360.01050.023*
H230.22800.73330.19450.027*
H240.17640.76650.01070.028*
H250.00180.72610.13940.028*
H260.11650.64980.06490.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (5)0.0150 (4)0.0166 (4)0.0062 (3)0.0012 (3)0.0003 (3)
O50.0300 (5)0.0184 (4)0.0174 (5)0.0056 (4)0.0018 (4)0.0019 (3)
O220.0324 (5)0.0234 (5)0.0204 (5)0.0085 (4)0.0038 (4)0.0003 (4)
N20.0233 (6)0.0145 (5)0.0178 (5)0.0062 (4)0.0019 (4)0.0015 (4)
N40.0230 (6)0.0195 (5)0.0175 (5)0.0036 (4)0.0025 (4)0.0027 (4)
C30.0168 (6)0.0161 (5)0.0156 (5)0.0015 (5)0.0024 (5)0.0012 (4)
C50.0187 (6)0.0133 (5)0.0174 (6)0.0013 (4)0.0008 (5)0.0010 (4)
C110.0180 (6)0.0149 (5)0.0141 (5)0.0008 (4)0.0027 (4)0.0000 (4)
C120.0222 (6)0.0155 (5)0.0171 (6)0.0019 (5)0.0003 (5)0.0009 (4)
C130.0222 (6)0.0211 (6)0.0209 (6)0.0004 (5)0.0042 (5)0.0005 (5)
C140.0263 (7)0.0174 (6)0.0227 (6)0.0042 (5)0.0010 (5)0.0019 (5)
C150.0269 (7)0.0138 (5)0.0257 (7)0.0007 (5)0.0018 (5)0.0021 (5)
C160.0204 (6)0.0174 (6)0.0199 (6)0.0019 (5)0.0003 (5)0.0025 (5)
C210.0190 (6)0.0128 (5)0.0185 (6)0.0009 (4)0.0034 (5)0.0014 (4)
C220.0225 (6)0.0143 (5)0.0188 (6)0.0012 (5)0.0034 (5)0.0024 (4)
C230.0246 (7)0.0161 (6)0.0274 (7)0.0038 (5)0.0040 (5)0.0053 (5)
C240.0278 (7)0.0125 (5)0.0303 (7)0.0015 (5)0.0101 (6)0.0004 (5)
C250.0297 (7)0.0177 (6)0.0222 (6)0.0021 (5)0.0048 (6)0.0041 (5)
C260.0224 (6)0.0181 (6)0.0202 (6)0.0018 (5)0.0006 (5)0.0005 (5)
Geometric parameters (Å, º) top
O1—C51.340 (2)C13—H130.95
O1—N21.460 (2)C14—C151.3858 (19)
O5—C51.222 (2)C14—H140.95
O22—C221.3514 (15)C15—C161.3876 (18)
O22—H220.84C15—H150.95
N2—C31.302 (2)C16—H160.95
N4—C31.354 (2)C21—C261.4030 (17)
N4—H410.90C21—C221.4080 (18)
N4—H420.91C22—C231.4008 (17)
C3—C111.4890 (16)C23—C241.382 (2)
C5—C211.4780 (16)C23—H230.95
C11—C121.3942 (17)C24—C251.392 (2)
C11—C161.3992 (16)C24—H240.95
C12—C131.3868 (18)C25—C261.3837 (18)
C12—H120.95C25—H250.95
C13—C141.3932 (17)C26—H260.95
C5—O1—N2111.21 (9)C16—C15—C14120.36 (11)
C22—O22—H22109.5C16—C15—H15119.8
C3—N2—O1108.01 (9)C14—C15—H15119.8
C3—N4—H41117.3C15—C16—C11119.84 (12)
C3—N4—H42117.5C15—C16—H16120.1
H41—N4—H42117.0C11—C16—H16120.1
N2—C3—N4127.46 (11)C26—C21—C22119.47 (11)
N2—C3—C11113.76 (10)C26—C21—C5121.79 (11)
N4—C3—C11118.72 (10)C22—C21—C5118.74 (11)
O5—C5—O1123.69 (11)O22—C22—C23117.13 (11)
O5—C5—C21123.27 (11)O22—C22—C21123.48 (11)
O1—C5—C21113.02 (10)C23—C22—C21119.38 (11)
C12—C11—C16119.70 (11)C24—C23—C22120.07 (12)
C12—C11—C3119.39 (10)C24—C23—H23120.0
C16—C11—C3120.90 (11)C22—C23—H23120.0
C13—C12—C11120.04 (11)C23—C24—C25120.87 (12)
C13—C12—H12120.0C23—C24—H24119.6
C11—C12—H12120.0C25—C24—H24119.6
C12—C13—C14120.14 (12)C26—C25—C24119.65 (12)
C12—C13—H13119.9C26—C25—H25120.2
C14—C13—H13119.9C24—C25—H25120.2
C15—C14—C13119.91 (12)C25—C26—C21120.51 (12)
C15—C14—H14120.0C25—C26—H26119.7
C13—C14—H14120.0C21—C26—H26119.7
C5—O1—N2—C3152.4 (2)C3—C11—C16—C15179.40 (11)
O1—N2—C3—N48.37 (17)O5—C5—C21—C26166.77 (12)
O1—N2—C3—C11174.47 (9)O1—C5—C21—C2614.64 (16)
N2—O1—C5—O59.63 (16)O5—C5—C21—C2213.45 (18)
N2—O1—C5—C21171.77 (9)O1—C5—C21—C22165.14 (11)
N2—C3—C11—C1238.13 (16)C26—C21—C22—O22178.88 (11)
N4—C3—C11—C12144.44 (12)C5—C21—C22—O221.33 (18)
N2—C3—C11—C16140.84 (12)C26—C21—C22—C232.06 (18)
N4—C3—C11—C1636.59 (17)C5—C21—C22—C23177.73 (11)
C16—C11—C12—C130.70 (18)O22—C22—C23—C24178.54 (12)
C3—C11—C12—C13179.69 (11)C21—C22—C23—C242.34 (19)
C11—C12—C13—C140.32 (19)C22—C23—C24—C250.7 (2)
C12—C13—C14—C150.3 (2)C23—C24—C25—C261.3 (2)
C13—C14—C15—C160.6 (2)C24—C25—C26—C211.59 (19)
C14—C15—C16—C110.23 (19)C22—C21—C26—C250.09 (18)
C12—C11—C16—C150.43 (18)C5—C21—C26—C25179.69 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O50.841.902.632 (2)144
N4—H42···O5i0.912.313.146 (2)154
N4—H42···N2i0.912.463.190 (2)138
C12—H12···O5ii0.952.463.405 (2)173
C16—H16···Cg1iii0.952.683.529 (2)149
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y, z+1/2; (iii) x, y+1, z.
(III) N2-Benzoyloxy-2-hydroxybenzamidine top
Crystal data top
C14H12N2O3F(000) = 536
Mr = 256.26Dx = 1.403 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2549 reflections
a = 4.6463 (3) Åθ = 3.3–27.5°
b = 22.1280 (13) ŵ = 0.10 mm1
c = 11.9551 (9) ÅT = 120 K
β = 99.202 (3)°Plate, colourless
V = 1213.33 (14) Å30.25 × 0.10 × 0.01 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2549 independent reflections
Radiation source: rotating anode1412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 55
Tmin = 0.970, Tmax = 0.998k = 2728
8910 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
2549 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H12N2O3V = 1213.33 (14) Å3
Mr = 256.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.6463 (3) ŵ = 0.10 mm1
b = 22.1280 (13) ÅT = 120 K
c = 11.9551 (9) Å0.25 × 0.10 × 0.01 mm
β = 99.202 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2549 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
1412 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.998Rint = 0.065
8910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 0.98Δρmax = 0.32 e Å3
2549 reflectionsΔρmin = 0.22 e Å3
173 parameters
Special details top

Experimental. ?.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3688 (3)0.18366 (6)0.20049 (11)0.0294 (4)
O50.2346 (3)0.15005 (7)0.02115 (12)0.0383 (4)
O1210.7525 (3)0.28621 (7)0.00167 (11)0.0359 (4)
N20.5570 (4)0.22553 (8)0.15460 (14)0.0289 (5)
N40.6513 (4)0.25484 (8)0.34554 (14)0.0301 (5)
C30.6859 (4)0.25965 (9)0.23640 (17)0.0240 (5)
C50.2209 (4)0.14696 (9)0.12101 (18)0.0268 (5)
C110.8891 (4)0.30561 (9)0.20344 (16)0.0241 (5)
C120.9117 (4)0.31623 (9)0.09000 (17)0.0252 (5)
C131.1034 (5)0.35978 (10)0.06161 (17)0.0314 (6)
C141.2743 (4)0.39237 (9)0.14485 (18)0.0302 (5)
C151.2559 (5)0.38254 (9)0.25700 (18)0.0305 (5)
C161.0651 (4)0.33982 (10)0.28583 (16)0.0289 (5)
C210.0454 (4)0.10209 (9)0.17318 (17)0.0270 (5)
C220.0324 (5)0.10087 (10)0.28767 (18)0.0315 (6)
C230.1280 (5)0.05619 (10)0.33122 (18)0.0356 (6)
C240.2764 (5)0.01349 (10)0.2605 (2)0.0344 (6)
C250.2657 (5)0.01489 (10)0.1465 (2)0.0397 (6)
C260.1052 (5)0.05889 (10)0.10217 (17)0.0358 (6)
H1210.65580.25870.02670.054*
H410.50670.23170.35900.045*
H420.70890.28480.39220.045*
H131.11620.36700.01580.038*
H141.40570.42180.12480.036*
H151.37440.40510.31440.037*
H161.05280.33340.36350.035*
H220.13300.13050.33660.038*
H230.13530.05510.41010.043*
H240.38620.01690.29070.041*
H250.36890.01450.09780.048*
H260.09780.05960.02320.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0340 (9)0.0321 (9)0.0235 (8)0.0059 (7)0.0090 (7)0.0010 (7)
O50.0509 (10)0.0413 (11)0.0231 (9)0.0070 (8)0.0071 (7)0.0016 (7)
O1210.0408 (9)0.0445 (11)0.0235 (9)0.0131 (8)0.0087 (7)0.0048 (7)
N20.0319 (11)0.0298 (11)0.0271 (11)0.0067 (8)0.0114 (9)0.0013 (8)
N40.0347 (10)0.0327 (11)0.0237 (11)0.0038 (8)0.0072 (8)0.0001 (8)
C30.0241 (12)0.0258 (13)0.0228 (12)0.0087 (9)0.0058 (10)0.0014 (9)
C50.0280 (12)0.0285 (13)0.0234 (12)0.0044 (10)0.0027 (9)0.0021 (10)
C110.0236 (11)0.0265 (12)0.0231 (12)0.0057 (9)0.0062 (9)0.0003 (9)
C120.0250 (12)0.0287 (13)0.0224 (12)0.0025 (9)0.0051 (9)0.0028 (10)
C130.0369 (13)0.0361 (14)0.0228 (12)0.0016 (11)0.0101 (10)0.0027 (10)
C140.0308 (13)0.0285 (13)0.0330 (14)0.0015 (10)0.0105 (10)0.0014 (10)
C150.0316 (12)0.0308 (14)0.0283 (13)0.0003 (10)0.0023 (10)0.0047 (10)
C160.0338 (13)0.0326 (13)0.0207 (11)0.0046 (10)0.0056 (10)0.0014 (10)
C210.0267 (12)0.0261 (13)0.0279 (13)0.0045 (10)0.0038 (10)0.0021 (10)
C220.0382 (13)0.0271 (13)0.0306 (13)0.0003 (10)0.0100 (10)0.0010 (10)
C230.0450 (14)0.0328 (14)0.0324 (13)0.0042 (11)0.0164 (11)0.0040 (11)
C240.0321 (13)0.0286 (14)0.0442 (15)0.0003 (10)0.0110 (11)0.0062 (11)
C250.0408 (14)0.0344 (15)0.0408 (16)0.0078 (11)0.0035 (12)0.0009 (12)
C260.0420 (14)0.0385 (15)0.0258 (13)0.0031 (11)0.0019 (11)0.0035 (11)
Geometric parameters (Å, º) top
O1—C51.351 (2)C14—C151.374 (3)
O1—N21.442 (2)C14—H140.95
O5—C51.208 (2)C15—C161.377 (3)
O121—C121.361 (2)C15—H150.95
O121—H1210.84C16—H160.95
N2—C31.303 (2)C21—C221.380 (3)
N4—C31.344 (2)C21—C261.391 (3)
N4—H410.88C22—C231.388 (3)
N4—H420.88C22—H220.95
C3—C111.483 (3)C23—C241.377 (3)
C5—C211.484 (3)C23—H230.95
C11—C121.397 (3)C24—C251.373 (3)
C11—C161.398 (3)C24—H240.95
C12—C131.391 (3)C25—C261.382 (3)
C13—C141.374 (3)C25—H250.95
C13—H130.95C26—H260.95
C5—O1—N2112.95 (15)C14—C15—C16119.72 (19)
C12—O121—H121109.5C14—C15—H15120.1
C3—N2—O1108.71 (16)C16—C15—H15120.1
C3—N4—H41115.9C15—C16—C11121.52 (19)
C3—N4—H42119.0C15—C16—H16119.2
H41—N4—H42119.1C11—C16—H16119.2
N2—C3—N4124.81 (19)C22—C21—C26119.6 (2)
N2—C3—C11115.69 (18)C22—C21—C5122.96 (19)
N4—C3—C11119.48 (18)C26—C21—C5117.39 (19)
O5—C5—O1124.06 (19)C21—C22—C23119.8 (2)
O5—C5—C21124.93 (19)C21—C22—H22120.1
O1—C5—C21111.00 (18)C23—C22—H22120.1
C12—C11—C16117.83 (19)C24—C23—C22120.3 (2)
C12—C11—C3121.54 (18)C24—C23—H23119.8
C16—C11—C3120.63 (19)C22—C23—H23119.8
O121—C12—C13116.01 (18)C25—C24—C23120.0 (2)
O121—C12—C11123.73 (19)C25—C24—H24120.0
C13—C12—C11120.26 (19)C23—C24—H24120.0
C14—C13—C12120.36 (19)C24—C25—C26120.3 (2)
C14—C13—H13119.8C24—C25—H25119.9
C12—C13—H13119.8C26—C25—H25119.9
C13—C14—C15120.3 (2)C25—C26—C21120.0 (2)
C13—C14—H14119.8C25—C26—H26120.0
C15—C14—H14119.8C21—C26—H26120.0
C5—O1—N2—C3178.82 (16)C13—C14—C15—C160.0 (3)
O1—N2—C3—N41.5 (3)C14—C15—C16—C110.4 (3)
O1—N2—C3—C11179.97 (15)C12—C11—C16—C150.2 (3)
N2—O1—C5—O52.7 (3)C3—C11—C16—C15179.77 (18)
N2—O1—C5—C21176.26 (14)O5—C5—C21—C22178.9 (2)
N2—C3—C11—C127.6 (3)O1—C5—C21—C222.1 (3)
N4—C3—C11—C12173.83 (17)O5—C5—C21—C262.7 (3)
N2—C3—C11—C16172.38 (18)O1—C5—C21—C26176.26 (17)
N4—C3—C11—C166.2 (3)C26—C21—C22—C230.7 (3)
C16—C11—C12—O121179.81 (18)C5—C21—C22—C23177.65 (19)
C3—C11—C12—O1210.2 (3)C21—C22—C23—C240.6 (3)
C16—C11—C12—C130.3 (3)C22—C23—C24—C250.1 (3)
C3—C11—C12—C13179.74 (19)C23—C24—C25—C260.3 (3)
O121—C12—C13—C14179.80 (19)C24—C25—C26—C210.2 (3)
C11—C12—C13—C140.6 (3)C22—C21—C26—C250.3 (3)
C12—C13—C14—C150.5 (3)C5—C21—C26—C25178.17 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O121i0.882.262.975 (2)138
N4—H42···O5ii0.882.102.954 (2)163
O121—H121···N20.841.822.550 (2)144
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC14H12N2O2C14H12N2O3C14H12N2O3
Mr240.26256.26256.26
Crystal system, space groupMonoclinic, P21/nOrthorhombic, PbcaMonoclinic, P21/n
Temperature (K)120120120
a, b, c (Å)7.0415 (2), 21.4704 (7), 8.0570 (3)9.3808 (1), 24.9553 (4), 10.3277 (1)4.6463 (3), 22.1280 (13), 11.9551 (9)
α, β, γ (°)90, 108.4804 (16), 9090, 90, 9090, 99.202 (3), 90
V3)1155.27 (7)2417.72 (5)1213.33 (14)
Z484
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.100.10
Crystal size (mm)0.25 × 0.20 × 0.080.55 × 0.32 × 0.280.25 × 0.10 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.967, 0.9930.966, 0.9720.970, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
10316, 2614, 1708 17440, 2758, 2308 8910, 2549, 1412
Rint0.0560.0650.065
(sin θ/λ)max1)0.6490.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 0.96 0.039, 0.105, 0.97 0.056, 0.133, 0.98
No. of reflections261427582549
No. of parameters165175173
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.270.23, 0.280.32, 0.22

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N4—H41···N2i0.952.153.029 (2)153
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O50.841.902.632 (2)144
N4—H42···O5i0.912.313.146 (2)154
N4—H42···N2i0.912.463.190 (2)138
C12—H12···O5ii0.952.463.405 (2)173
C16—H16···Cg1iii0.952.683.529 (2)149
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O121i0.882.262.975 (2)138
N4—H42···O5ii0.882.102.954 (2)163
O121—H121···N20.841.822.550 (2)144
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Selected geometric parameters (Å, °) for compounds (I) - (III) top
Parameter(I)(II)(III)
C3-N21.297 (2)1.302 (2)1.303 (2)
C3-N41.352 (2)1.354 (2)1.344 (2)
N2-O11.452 (2)1.460 (2)1.442 (2)
O1-C51.356 (2)1.340 (2)1.351 (2)
C5-O51.206 (2)1.222 (2)1.208 (2)
C11-C3-N2-O1179.8 (2)174.47 (9)180.0 (2)
C3-N2-O1-C5-160.0 (2)152.4 (2)178.8 (2)
N2-O1-C5-C21-175.0 (2)171.77 (9)176.3 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds