Download citation
Download citation
link to html
The title compound, [Ti(C5H7O2)2Cl2], adopts the cis configuration. The racemic compound crystallizes in space group P\overline 1 and each molecular site has 0.50 occupancy by each of the two enantiomorphs. The enantiomeric disorder is correlated in two dimensions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100019181/sk1440sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019181/sk1440Isup2.hkl
Contains datablock I

CCDC reference: 162553

Comment top

Pentane-2,4-dione, (CH3COCH2COCH3, Hacac), reacts with both titanium(IV) chloride and titanium(IV) alkoxides to yield neutral products [Ti(acac)2X2], where X = Cl (Dilthey, 1904) or X = OR (Yamamoto & Kambara, 1957). NMR studies suggest that, in solution, these products and the analogous complexes derived from other 1,3-diketones are all octahedral, containing bidentate O,O'-chelating diketonate ligands with a cis arrangement of the two ligands X (Fay & Lowry, 1967; Serpone & Fay, 1967; Bradley & Holloway, 1969). We have recently reported the structure of dichlorobis(2,2,6,6-tetramethyl-3,5-heptanedionato)titanium(IV), [(Me3CCOCHCOCMe3)2TiCl2] (Glidewell et al., 1996), where the molecules adopt the cis configuration with equal numbers of Λ and Δ enantiomers present in space group P21/c. However, apart from this, the only analogous structure recorded in the Cambridge Structural Database (Allen & Kennard, 1993) is that of [(PhCOCHCOPh)2TiCl2] (TOPZUT: Matilainen et al., 1996): here the molecules were again shown to adopt the cis configuration, but the final R value was 0.089 for a data to parameter ratio of only 7.6. It is striking that the structure of the simplest member of this series [(CH3COCHCOCH3)2TiCl2], (I), has not yet been reported; an attempted structure analysis of [Ti(acac)2Cl2] was thwarted by hydrolysis, and the compound actually studied was [{Ti(acac)2Cl}2O] (Watenpaugh & Caughlin, 1967), where the chloride and bridging oxide ligands occupy cis sites. Here we report the structure of (I) which shows an uncommon form of disorder, which itself may have hampered earlier attempts at structure analysis. \sch

Compound (I) crystallizes in the triclinic space group P1 with Z = 2. The molecules have the cis configuration (Fig. 1) and the centrosymmetric space group accommodates equal numbers of Λ and Δ enantiomers. However, each molecular site is occupied with equal probability by the two enantiomers: only the Ti and one of the Cl have sites common to both enantiomers, and several pairs of corresponding atoms in the two enantiomers occupy closely similar positions (Fig. 2). Because of this, a number of restraints were necessary in the refinement but, subject to these, the mean values of the leading geometric parameters are: Ti—Cl, 2.282 (4) Å; Ti—O (trans to Cl), 1.973 (7) Å; Ti—O (trans to O), 1.930 (7) Å; C—O, 1.266 (13) Å; C—C(ring), 1.374 (9) Å; CC(methyl), 1.480 (10) Å. The facial arrangement of the Cl sites (Fig. 2) precludes the presence of any trans isomer.

The nature of the disorder (Fig. 2) necessarily raises the question (Marsh, 1999): P1 or P1? Using coordinates derived from the disordered P1 refinement, a refinement in P1 with one Λ and one Δ enantiomorph in the unit cell led to R values above 0.10 accompanied by wholly unreasonable anisotropic displacement parameters and unsatisfactory intermolecular contacts: the ordered P1 model was therefore decisively rejected.

Equal occupancy by the two enantiomers of the average molecular site may be a reflection of spacial or temporal disorder, or of a combination of these. In compound (I), spacial disorder cannot however be merely a random distribution of the two enantiomers amongst all the molecular sites. The short intermolecular contacts C3···C13i [(i) x, y, z] and C23···C33ii [(ii) x, -1 + y, z] of 1.94 (2) and 2.15 (2) Å, respectively, preclude the presence of the same enantiomer at adjacent sites in both the [100] and [010] directions: hence, in the ab plane the Λ and Δ enantiomers must alternate in checkerboard fashion. There are no prohibitively short contacts in the [001] direction and hence there is no correlation of the arrangements in neighbouring (001) planes: thus the structure is correctly described in terms of the present unit cell with Z = 2, rather than of a larger cell having Z = 8.

Solution studies using NMR have indicated that the intramolecular Λ/Δ isomerization in (I) has a low activation barrier and hence is rapid at ambient temperature (Bradley & Holloway, 1969). It is possible that the disordered model derived from the X-ray diffraction data may also reflect, at least in part, rapid intramolecular exchange: again, because of the short intermolecular contacts, exchange events at adjacent sites in the ab plane would necessarily be correlated.

Related literature top

For related literature, see: Allen & Kennard (1993); Bradley & Holloway (1969); Dilthey (1904); Fay & Lowry (1967); Glidewell et al. (1996); Marsh (1999); Matilainen et al. (1996); Serpone & Fay (1967); Spek (2000); Watenpaugh & Caughlin (1967); Yamamoto & Kambara (1957).

Experimental top

Compound (I) was prepared by slow addition, under dinitrogen, of titanium(IV) chloride to a threefold molar excess of pentane-2,4-dione in sodium-dried toluene, followed by heating under reflux for 20 min. After removal of the solvent under reduced pressure, crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in toluene.

Refinement top

Compound (I) crystallized in the triclinic system; space group P1 was assumed and confirmed by the analysis. It was apparent at the structure-solution stage that there was significant disorder in the structure and the density maps could only be interpreted in terms of two (Λ and Δ) enantiomers occupying the same site with one Ti (Ti1) and one Cl (Cl1) in common. Careful selection of peaks from electron-density maps allowed all sites for all the non-H atoms to be determined. Because of the disorder we imposed several restraints and refined as free variables the distances Csp3—Csp2, Csp2—Csp2, Csp2—O, Ti—O(trans to O), Ti—O(trans to Cl) and Ti—Cl. H atoms were positioned on geometrical grounds and treated as riding atoms with C—H 0.93 Å (ring H) and 0.96 Å (methyl H). The methyl groups were each modelled using six H sites, each with occupancy 1/2, mutually offset by 60°. Examination of the structure with PLATON (Spek, 2000) showed that there were no solvent-accessible voids in the crystal lattice.

Computing details top

Data collection: CAD4 (Enraf-Nonius, 1992); cell refinement: SET4 and CELDIM (Enraf-Nonius, 1992); data reduction: DATRD2 in NRCVAX96 (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97 and WORDPERFECT.

Figures top
[Figure 1] Fig. 1. The Δ enantiomer of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for the sake of clarity.
[Figure 2] Fig. 2. The contents of a single molecular site in (I) showing the relative orientations of the two enantiomers. All sites except Ti1 and Cl1 have occupancy 0.50. Atoms are depicted as spheres whose radii are ranked thus: Ti > Cl > O > C: H atoms are omitted for the sake of clarity.
Racemic cis-dichlorobis(pentane-2,4-dionato)titanium(IV) top
Crystal data top
[Ti(C5H7O2)2Cl2]Z = 2
Mr = 317.01F(000) = 324
Triclinic, P1Dx = 1.514 Mg m3
a = 7.764 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8810 (15) ÅCell parameters from 25 reflections
c = 13.0470 (15) Åθ = 15.8–27.7°
α = 79.507 (6)°µ = 1.00 mm1
β = 78.790 (11)°T = 293 K
γ = 63.308 (11)°Block, orange
V = 695.5 (3) Å30.40 × 0.20 × 0.20 mm
Data collection top
Nonius CAD4
diffractometer
1283 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.0
Graphite monochromatorθmax = 27.0°, θmin = 2.9°
θ/2θ scansh = 99
Absorption correction: gaussian
(ABSCOR in NRCVAX; Gabe et al., 1989)
k = 99
Tmin = 0.691, Tmax = 0.825l = 016
3012 measured reflections3 standard reflections every 120 min
3012 independent reflections intensity decay: no decay, variation 0.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0894P)2]
where P = (Fo2 + 2Fc2)/3
3012 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.35 e Å3
51 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ti(C5H7O2)2Cl2]γ = 63.308 (11)°
Mr = 317.01V = 695.5 (3) Å3
Triclinic, P1Z = 2
a = 7.764 (3) ÅMo Kα radiation
b = 7.8810 (15) ŵ = 1.00 mm1
c = 13.0470 (15) ÅT = 293 K
α = 79.507 (6)°0.40 × 0.20 × 0.20 mm
β = 78.790 (11)°
Data collection top
Nonius CAD4
diffractometer
1283 reflections with I > 2σ(I)
Absorption correction: gaussian
(ABSCOR in NRCVAX; Gabe et al., 1989)
Rint = 0.0
Tmin = 0.691, Tmax = 0.8253 standard reflections every 120 min
3012 measured reflections intensity decay: no decay, variation 0.4%
3012 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05351 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 0.94Δρmax = 0.35 e Å3
3012 reflectionsΔρmin = 0.35 e Å3
277 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.64611 (14)0.73536 (14)0.23734 (8)0.0442 (3)
Cl10.3730 (2)0.9617 (2)0.32094 (12)0.0604 (5)
Cl210.7057 (7)0.9544 (7)0.1164 (3)0.0619 (12)0.50
C11.2306 (16)0.3843 (17)0.1103 (9)0.076 (4)0.50
C21.0751 (14)0.5073 (13)0.1864 (7)0.054 (3)0.50
O20.9004 (13)0.542 (2)0.1829 (18)0.047 (3)0.50
C31.1154 (16)0.5744 (17)0.2635 (8)0.066 (4)0.50
O40.802 (3)0.734 (4)0.3369 (13)0.0551 (13)0.50
C40.9815 (15)0.6835 (18)0.3388 (8)0.052 (3)0.50
C51.040 (3)0.737 (4)0.4253 (14)0.079 (7)0.50
C110.492 (2)0.3061 (17)0.4262 (10)0.045 (4)0.50
C120.5066 (16)0.4411 (14)0.3337 (7)0.054 (3)0.50
O120.614 (4)0.524 (2)0.3328 (14)0.0472 (18)0.50
C130.3956 (15)0.4789 (14)0.2546 (7)0.050 (3)0.50
O140.5123 (19)0.6815 (17)0.1466 (8)0.048 (3)0.50
C140.4062 (13)0.5926 (13)0.1627 (6)0.037 (2)0.50
C150.2917 (14)0.6226 (16)0.0778 (8)0.053 (3)0.50
Cl220.4809 (8)0.7502 (7)0.1079 (4)0.0628 (13)0.50
C211.0807 (17)0.2403 (18)0.1055 (9)0.071 (4)0.50
C220.9137 (13)0.3466 (13)0.1807 (7)0.046 (3)0.50
O220.8692 (15)0.524 (2)0.1711 (18)0.047 (3)0.50
C230.8173 (14)0.2599 (15)0.2533 (8)0.061 (3)0.50
O240.592 (4)0.536 (2)0.3265 (15)0.0472 (18)0.50
C240.6642 (15)0.3570 (15)0.3247 (7)0.049 (3)0.50
C250.576 (2)0.252 (2)0.4075 (15)0.074 (6)0.50
C310.979 (2)0.772 (4)0.4536 (13)0.070 (7)0.50
C320.8926 (15)0.8166 (15)0.3550 (8)0.051 (3)0.50
O320.798 (3)0.726 (4)0.3454 (13)0.0551 (13)0.50
C330.9073 (15)0.9558 (15)0.2770 (8)0.063 (3)0.50
O340.7470 (19)0.9119 (17)0.1616 (8)0.057 (3)0.50
C340.8328 (14)1.0012 (13)0.1827 (8)0.047 (3)0.50
C350.8608 (17)1.1436 (16)0.0992 (9)0.066 (3)0.50
H1A1.17280.35190.06270.114*0.25
H1B1.31590.26960.14780.114*0.25
H1C1.30330.45200.07140.114*0.25
H1D1.35520.36370.12520.114*0.25
H1E1.21210.44600.04020.114*0.25
H1F1.22470.26370.11650.114*0.25
H31.24530.54380.26530.079*0.50
H5A0.92560.81170.46960.118*0.25
H5B1.11190.81030.39630.118*0.25
H5C1.11910.62340.46600.118*0.25
H5D1.17880.68520.41830.118*0.25
H5E0.99250.68660.49160.118*0.25
H5F0.98530.87360.42200.118*0.25
H11A0.57660.29350.47440.067*0.25
H11B0.52820.18360.40390.067*0.25
H11C0.36010.35350.46040.067*0.25
H11D0.40000.26020.41810.067*0.25
H11E0.44840.37020.48860.067*0.25
H11F0.61660.20020.43210.067*0.25
H130.30870.42430.26410.060*0.50
H15A0.31940.70600.02050.080*0.25
H15B0.15570.67940.10370.080*0.25
H15C0.32550.50210.05380.080*0.25
H15D0.21430.55240.09820.080*0.25
H15E0.37800.57890.01490.080*0.25
H15F0.20830.75620.06490.080*0.25
H21A1.12750.32680.06180.107*0.25
H21B1.04070.18130.06230.107*0.25
H21C1.18250.14370.14320.107*0.25
H21D1.10630.10780.11650.107*0.25
H21E1.19300.25330.11590.107*0.25
H21F1.05130.29080.03500.107*0.25
H230.85760.12930.25430.074*0.50
H25A0.47140.34110.45050.111*0.25
H25B0.67300.16190.45040.111*0.25
H25C0.52720.18540.37510.111*0.25
H25D0.64300.11780.40020.111*0.25
H25E0.44140.29700.40030.111*0.25
H25F0.58720.27360.47550.111*0.25
H31A0.95310.67190.49740.105*0.25
H31B0.92310.88400.49000.105*0.25
H31C1.11690.73090.43750.105*0.25
H31D1.04240.85260.45260.105*0.25
H31E1.07230.64050.45990.105*0.25
H31F0.87850.79360.51240.105*0.25
H330.97211.02360.28890.076*0.50
H35A0.79751.15350.04070.099*0.25
H35B0.99731.10460.07680.099*0.25
H35C0.80601.26560.12580.099*0.25
H35D0.93631.19560.12150.099*0.25
H35E0.73661.24450.08540.099*0.25
H35F0.92781.08350.03640.099*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0436 (6)0.0440 (6)0.0507 (6)0.0254 (5)0.0010 (4)0.0078 (4)
Cl10.0527 (9)0.0603 (10)0.0574 (9)0.0170 (8)0.0035 (7)0.0117 (7)
Cl210.060 (3)0.059 (2)0.069 (3)0.036 (2)0.012 (2)0.007 (2)
C10.035 (6)0.077 (9)0.091 (10)0.011 (6)0.021 (6)0.018 (7)
C20.043 (7)0.045 (6)0.050 (7)0.007 (5)0.000 (5)0.009 (5)
O20.035 (3)0.049 (3)0.060 (5)0.017 (3)0.005 (4)0.015 (2)
C30.031 (6)0.095 (10)0.071 (9)0.022 (7)0.013 (6)0.012 (8)
O40.052 (3)0.067 (3)0.055 (3)0.033 (2)0.005 (2)0.008 (3)
C40.048 (8)0.067 (8)0.054 (7)0.032 (7)0.022 (6)0.001 (6)
C50.067 (13)0.096 (14)0.067 (13)0.034 (11)0.003 (11)0.006 (11)
C110.060 (11)0.050 (8)0.042 (7)0.041 (8)0.014 (7)0.005 (6)
C120.069 (8)0.045 (7)0.036 (6)0.024 (6)0.021 (6)0.008 (5)
O120.049 (5)0.042 (3)0.055 (3)0.026 (3)0.004 (3)0.003 (2)
C130.063 (7)0.069 (8)0.043 (6)0.047 (6)0.017 (6)0.002 (6)
O140.048 (7)0.064 (8)0.039 (7)0.034 (6)0.001 (4)0.004 (5)
C140.038 (6)0.039 (6)0.036 (5)0.018 (5)0.004 (4)0.006 (4)
C150.041 (6)0.067 (7)0.055 (7)0.025 (6)0.004 (5)0.021 (6)
Cl220.062 (3)0.069 (3)0.066 (3)0.030 (3)0.006 (2)0.027 (2)
C210.079 (9)0.075 (9)0.055 (8)0.027 (7)0.000 (7)0.021 (7)
C220.051 (7)0.043 (6)0.043 (6)0.018 (5)0.014 (5)0.002 (5)
O220.035 (3)0.049 (3)0.060 (5)0.017 (3)0.005 (4)0.015 (2)
C230.075 (9)0.029 (6)0.063 (8)0.010 (6)0.006 (7)0.002 (5)
O240.049 (5)0.042 (3)0.055 (3)0.026 (3)0.004 (3)0.003 (2)
C240.054 (8)0.058 (8)0.039 (6)0.030 (6)0.011 (5)0.002 (5)
C250.042 (10)0.074 (11)0.095 (14)0.024 (8)0.010 (9)0.015 (10)
C310.061 (13)0.121 (17)0.055 (11)0.062 (13)0.000 (9)0.022 (9)
C320.043 (7)0.050 (7)0.050 (7)0.016 (6)0.015 (6)0.015 (6)
O320.052 (3)0.067 (3)0.055 (3)0.033 (2)0.005 (2)0.008 (3)
C330.061 (8)0.078 (9)0.072 (9)0.050 (7)0.014 (7)0.031 (7)
O340.067 (7)0.071 (8)0.056 (8)0.048 (6)0.015 (6)0.007 (5)
C340.033 (6)0.045 (6)0.059 (7)0.016 (5)0.007 (5)0.011 (5)
C350.056 (8)0.064 (8)0.085 (9)0.036 (7)0.008 (6)0.004 (7)
Geometric parameters (Å, º) top
Ti1—Cl12.2976 (18)C15—H15B0.96
Ti1—Cl212.264 (4)C15—H15C0.96
Ti1—O21.969 (5)C15—H15D0.96
Ti1—O41.937 (7)C15—H15E0.96
Ti1—O121.973 (7)C15—H15F0.96
Ti1—O141.928 (7)C21—C221.475 (10)
Ti1—Cl222.269 (4)C21—H21A0.96
Ti1—O241.932 (7)C21—H21B0.96
Ti1—O341.924 (7)C21—H21C0.96
Ti1—O221.969 (5)C21—H21D0.96
Ti1—O321.979 (7)C21—H21E0.96
C1—C21.489 (9)C21—H21F0.96
C1—H1A0.96C22—O221.267 (13)
C1—H1B0.96C22—C231.369 (9)
C1—H1C0.96C23—C241.371 (9)
C1—H1D0.96C23—H230.93
C1—H1E0.96O24—C241.268 (13)
C1—H1F0.96C24—C251.488 (10)
C2—O21.267 (12)C25—H25A0.96
C2—C31.362 (10)C25—H25B0.96
C3—C41.376 (10)C25—H25C0.96
C3—H30.93C25—H25D0.96
O4—C41.269 (13)C25—H25E0.96
C4—C51.481 (11)C25—H25F0.96
C5—H5A0.96C31—C321.480 (11)
C5—H5B0.96C31—H31A0.96
C5—H5C0.96C31—H31B0.96
C5—H5D0.96C31—H31C0.96
C5—H5E0.96C31—H31D0.96
C5—H5F0.96C31—H31E0.96
C11—C121.481 (10)C31—H31F0.96
C11—H11A0.96C32—O321.266 (13)
C11—H11B0.96C32—C331.383 (9)
C11—H11C0.96C33—C341.381 (9)
C11—H11D0.96C33—H330.93
C11—H11E0.96O34—C341.256 (10)
C11—H11F0.96C34—C351.475 (10)
C12—O121.265 (13)C35—H35A0.96
C12—C131.378 (9)C35—H35B0.96
C13—C141.373 (9)C35—H35C0.96
C13—H130.93C35—H35D0.96
O14—C141.269 (10)C35—H35E0.96
C14—C151.474 (9)C35—H35F0.96
C15—H15A0.96
O34—Ti1—O14109.5 (4)C14—C13—H13118.2
O34—Ti1—O24168.5 (8)C12—C13—H13118.2
O14—Ti1—O2480.0 (7)C14—O14—Ti1133.1 (7)
O34—Ti1—O479.2 (7)O14—C14—C13121.9 (9)
O14—Ti1—O4168.3 (9)O14—C14—C15115.9 (8)
O24—Ti1—O490.6 (11)C13—C14—C15122.1 (9)
O34—Ti1—O2289.9 (7)C14—C15—H15A109.5
O14—Ti1—O2281.2 (7)C14—C15—H15B109.5
O24—Ti1—O2285.0 (10)H15A—C15—H15B109.5
O4—Ti1—O2291.2 (10)C14—C15—H15C109.5
O34—Ti1—O283.5 (7)H15A—C15—H15C109.5
O14—Ti1—O292.3 (7)H15B—C15—H15C109.5
O24—Ti1—O289.7 (8)C14—C15—H15D109.5
O4—Ti1—O280.7 (10)H15A—C15—H15D141.1
O22—Ti1—O211.5 (9)H15B—C15—H15D56.3
O34—Ti1—O12163.3 (8)H15C—C15—H15D56.3
O14—Ti1—O1284.1 (7)C14—C15—H15E109.5
O24—Ti1—O125.3 (14)H15A—C15—H15E56.3
O4—Ti1—O1286.1 (9)H15B—C15—H15E141.1
O22—Ti1—O1282.5 (8)H15C—C15—H15E56.3
O2—Ti1—O1286.4 (10)H15D—C15—H15E109.5
O34—Ti1—O3282.5 (7)C14—C15—H15F109.5
O14—Ti1—O32166.0 (8)H15A—C15—H15F56.3
O24—Ti1—O3287.4 (9)H15B—C15—H15F56.3
O4—Ti1—O323.4 (13)H15C—C15—H15F141.1
O22—Ti1—O3291.9 (10)H15D—C15—H15F109.5
O2—Ti1—O3281.6 (9)H15E—C15—H15F109.5
O12—Ti1—O3282.9 (11)C22—C21—H21A109.5
O34—Ti1—Cl2116.3 (3)C22—C21—H21B109.5
O14—Ti1—Cl2193.7 (3)H21A—C21—H21B109.5
O24—Ti1—Cl21173.1 (6)C22—C21—H21C109.5
O4—Ti1—Cl2195.4 (7)H21A—C21—H21C109.5
O22—Ti1—Cl2191.5 (6)H21B—C21—H21C109.5
O2—Ti1—Cl2188.0 (7)C22—C21—H21D109.5
O12—Ti1—Cl21173.9 (7)H21A—C21—H21D141.1
O32—Ti1—Cl2198.7 (7)H21B—C21—H21D56.3
O34—Ti1—Cl2295.2 (3)H21C—C21—H21D56.3
O14—Ti1—Cl2215.6 (3)C22—C21—H21E109.5
O24—Ti1—Cl2294.8 (7)H21A—C21—H21E56.3
O4—Ti1—Cl22174.1 (6)H21B—C21—H21E141.1
O22—Ti1—Cl2287.0 (6)H21C—C21—H21E56.3
O2—Ti1—Cl2297.0 (6)H21D—C21—H21E109.5
O12—Ti1—Cl2299.3 (7)C22—C21—H21F109.5
O32—Ti1—Cl22177.4 (6)H21A—C21—H21F56.3
Cl21—Ti1—Cl2279.02 (18)H21B—C21—H21F56.3
O34—Ti1—Cl195.5 (4)H21C—C21—H21F141.1
O14—Ti1—Cl196.2 (4)H21D—C21—H21F109.5
O24—Ti1—Cl189.7 (7)H21E—C21—H21F109.5
O4—Ti1—Cl190.6 (8)O22—C22—C23123.9 (11)
O22—Ti1—Cl1174.5 (5)O22—C22—C21113.6 (10)
O2—Ti1—Cl1171.3 (6)C23—C22—C21122.5 (10)
O12—Ti1—Cl192.4 (7)C22—O22—Ti1131.1 (13)
O32—Ti1—Cl189.7 (8)C22—C23—C24122.9 (10)
Cl21—Ti1—Cl193.49 (15)C22—C23—H23118.6
Cl22—Ti1—Cl191.70 (16)C24—C23—H23118.6
C2—C1—H1A109.5C24—O24—Ti1132.7 (15)
C2—C1—H1B109.5O24—C24—C23123.6 (13)
H1A—C1—H1B109.5O24—C24—C25116.1 (12)
C2—C1—H1C109.5C23—C24—C25120.3 (11)
H1A—C1—H1C109.5C24—C25—H25A109.5
H1B—C1—H1C109.5C24—C25—H25B109.5
C2—C1—H1D109.5H25A—C25—H25B109.5
H1A—C1—H1D141.1C24—C25—H25C109.5
H1B—C1—H1D56.3H25A—C25—H25C109.5
H1C—C1—H1D56.3H25B—C25—H25C109.5
C2—C1—H1E109.5C24—C25—H25D109.5
H1A—C1—H1E56.3H25A—C25—H25D141.1
H1B—C1—H1E141.1H25B—C25—H25D56.3
H1C—C1—H1E56.3H25C—C25—H25D56.3
H1D—C1—H1E109.5C24—C25—H25E109.5
C2—C1—H1F109.5H25A—C25—H25E56.3
H1A—C1—H1F56.3H25B—C25—H25E141.1
H1B—C1—H1F56.3H25C—C25—H25E56.3
H1C—C1—H1F141.1H25D—C25—H25E109.5
H1D—C1—H1F109.5C24—C25—H25F109.5
H1E—C1—H1F109.5H25A—C25—H25F56.3
O2—C2—C3118.9 (11)H25B—C25—H25F56.3
O2—C2—C1118.7 (10)H25C—C25—H25F141.1
C3—C2—C1122.2 (10)H25D—C25—H25F109.5
C2—O2—Ti1134.2 (10)H25E—C25—H25F109.5
C2—C3—C4126.0 (10)C32—C31—H31A109.5
C2—C3—H3117.0C32—C31—H31B109.5
C4—C3—H3117.0H31A—C31—H31B109.5
C4—O4—Ti1135.9 (16)C32—C31—H31C109.5
O4—C4—C3119.0 (14)H31A—C31—H31C109.5
O4—C4—C5118.6 (14)H31B—C31—H31C109.5
C3—C4—C5122.3 (12)C32—C31—H31D109.5
C4—C5—H5A109.5H31A—C31—H31D141.1
C4—C5—H5B109.5H31B—C31—H31D56.3
H5A—C5—H5B109.5H31C—C31—H31D56.3
C4—C5—H5C109.5C32—C31—H31E109.5
H5A—C5—H5C109.5H31A—C31—H31E56.3
H5B—C5—H5C109.5H31B—C31—H31E141.1
C4—C5—H5D109.5H31C—C31—H31E56.3
H5A—C5—H5D141.1H31D—C31—H31E109.5
H5B—C5—H5D56.3C32—C31—H31F109.5
H5C—C5—H5D56.3H31A—C31—H31F56.3
C4—C5—H5E109.5H31B—C31—H31F56.3
H5A—C5—H5E56.3H31C—C31—H31F141.1
H5B—C5—H5E141.1H31D—C31—H31F109.5
H5C—C5—H5E56.3H31E—C31—H31F109.5
H5D—C5—H5E109.5O32—C32—C33120.5 (15)
C4—C5—H5F109.5O32—C32—C31117.3 (13)
H5A—C5—H5F56.3C33—C32—C31122.1 (14)
H5B—C5—H5F56.3C32—O32—Ti1134.4 (16)
H5C—C5—H5F141.1C34—C33—C32124.7 (10)
H5D—C5—H5F109.5C34—C33—H33117.7
H5E—C5—H5F109.5C32—C33—H33117.7
C12—C11—H11A109.5C34—O34—Ti1136.4 (8)
C12—C11—H11B109.5O34—C34—C33120.4 (9)
H11A—C11—H11B109.5O34—C34—C35116.5 (9)
C12—C11—H11C109.5C33—C34—C35122.9 (9)
H11A—C11—H11C109.5C34—C35—H35A109.5
H11B—C11—H11C109.5C34—C35—H35B109.5
C12—C11—H11D109.5H35A—C35—H35B109.5
H11A—C11—H11D141.1C34—C35—H35C109.5
H11B—C11—H11D56.3H35A—C35—H35C109.5
H11C—C11—H11D56.3H35B—C35—H35C109.5
C12—C11—H11E109.5C34—C35—H35D109.5
H11A—C11—H11E56.3H35A—C35—H35D141.1
H11B—C11—H11E141.1H35B—C35—H35D56.3
H11C—C11—H11E56.3H35C—C35—H35D56.3
H11D—C11—H11E109.5C34—C35—H35E109.5
C12—C11—H11F109.5H35A—C35—H35E56.3
H11A—C11—H11F56.3H35B—C35—H35E141.1
H11B—C11—H11F56.3H35C—C35—H35E56.3
H11C—C11—H11F141.1H35D—C35—H35E109.5
H11D—C11—H11F109.5C34—C35—H35F109.5
H11E—C11—H11F109.5H35A—C35—H35F56.3
O12—C12—C13122.7 (12)H35B—C35—H35F56.3
O12—C12—C11118.5 (11)H35C—C35—H35F141.1
C13—C12—C11118.7 (11)H35D—C35—H35F109.5
C12—O12—Ti1131.4 (15)H35E—C35—H35F109.5
C14—C13—C12123.7 (9)
C3—C2—O2—Ti122 (3)C23—C22—O22—Ti18 (2)
C1—C2—O2—Ti1162.1 (16)C21—C22—O22—Ti1172.0 (14)
O34—Ti1—O2—C254 (2)O34—Ti1—O22—C22179.9 (18)
O14—Ti1—O2—C2164 (2)O14—Ti1—O22—C2270.3 (18)
O24—Ti1—O2—C2116 (2)O24—Ti1—O22—C2210.2 (19)
O4—Ti1—O2—C226 (2)O4—Ti1—O22—C22101 (2)
O22—Ti1—O2—C2178 (9)O2—Ti1—O22—C22124 (8)
O12—Ti1—O2—C2112 (2)O12—Ti1—O22—C2214.9 (19)
O32—Ti1—O2—C229 (2)O32—Ti1—O22—C2297.4 (19)
Cl21—Ti1—O2—C270 (2)Cl21—Ti1—O22—C22163.8 (18)
Cl22—Ti1—O2—C2149 (2)Cl22—Ti1—O22—C2284.9 (18)
O2—C2—C3—C41.9 (19)O22—C22—C23—C241.3 (18)
C1—C2—C3—C4177.8 (10)C21—C22—C23—C24178.9 (10)
O34—Ti1—O4—C464 (3)O34—Ti1—O24—C2472 (5)
O14—Ti1—O4—C475 (5)O14—Ti1—O24—C2474 (2)
O24—Ti1—O4—C4111 (3)O4—Ti1—O24—C2499 (2)
O22—Ti1—O4—C425 (3)O22—Ti1—O24—C248 (2)
O2—Ti1—O4—C421 (3)O2—Ti1—O24—C2418 (2)
O12—Ti1—O4—C4108 (3)O12—Ti1—O24—C2469 (13)
O32—Ti1—O4—C4127 (31)O32—Ti1—O24—C24100 (3)
Cl21—Ti1—O4—C466 (3)Cl22—Ti1—O24—C2479 (2)
Cl1—Ti1—O4—C4160 (3)Cl1—Ti1—O24—C24170 (2)
Ti1—O4—C4—C313 (4)Ti1—O24—C24—C233 (3)
Ti1—O4—C4—C5170 (2)Ti1—O24—C24—C25178.3 (17)
C2—C3—C4—O42 (2)C22—C23—C24—O244 (2)
C2—C3—C4—C5174.8 (15)C22—C23—C24—C25174.8 (12)
C13—C12—O12—Ti16 (3)C33—C32—O32—Ti12 (3)
C11—C12—O12—Ti1170.2 (14)C31—C32—O32—Ti1176.4 (19)
O34—Ti1—O12—C12160.7 (16)O34—Ti1—O32—C327 (2)
O14—Ti1—O12—C1215 (2)O14—Ti1—O32—C32156 (2)
O24—Ti1—O12—C1222 (12)O24—Ti1—O32—C32179 (3)
O4—Ti1—O12—C12171 (2)O4—Ti1—O32—C3217 (26)
O22—Ti1—O12—C1297 (2)O22—Ti1—O32—C3296 (2)
O2—Ti1—O12—C12108 (2)O2—Ti1—O32—C3291 (3)
O32—Ti1—O12—C12170 (2)O12—Ti1—O32—C32179 (2)
Cl22—Ti1—O12—C1211 (2)Cl21—Ti1—O32—C325 (3)
Cl1—Ti1—O12—C1281 (2)Cl1—Ti1—O32—C3289 (3)
O12—C12—C13—C147.3 (18)O32—C32—C33—C343 (2)
C11—C12—C13—C14176.0 (9)C31—C32—C33—C34178.8 (10)
O34—Ti1—O14—C14171.3 (13)O14—Ti1—O34—C34174.9 (15)
O24—Ti1—O14—C1415.5 (15)O24—Ti1—O34—C3441 (5)
O4—Ti1—O14—C1452 (4)O4—Ti1—O34—C3413.2 (17)
O22—Ti1—O14—C14102.0 (16)O22—Ti1—O34—C34104.4 (17)
O2—Ti1—O14—C14104.8 (15)O2—Ti1—O34—C3494.9 (17)
O12—Ti1—O14—C1418.7 (15)O12—Ti1—O34—C3442 (4)
O32—Ti1—O14—C1441 (4)O32—Ti1—O34—C3412.5 (18)
Cl21—Ti1—O14—C14167.1 (14)Cl21—Ti1—O34—C34160 (3)
Cl22—Ti1—O14—C14147 (3)Cl22—Ti1—O34—C34168.6 (15)
Cl1—Ti1—O14—C1473.2 (14)Cl1—Ti1—O34—C3476.4 (16)
Ti1—O14—C14—C1313 (2)Ti1—O34—C34—C3312 (2)
Ti1—O14—C14—C15165.5 (10)Ti1—O34—C34—C35172.3 (11)
C12—C13—C14—O144.4 (17)C32—C33—C34—O341.3 (17)
C12—C13—C14—C15177.1 (9)C32—C33—C34—C35176.6 (10)

Experimental details

Crystal data
Chemical formula[Ti(C5H7O2)2Cl2]
Mr317.01
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.764 (3), 7.8810 (15), 13.0470 (15)
α, β, γ (°)79.507 (6), 78.790 (11), 63.308 (11)
V3)695.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerNonius CAD4
diffractometer
Absorption correctionGaussian
(ABSCOR in NRCVAX; Gabe et al., 1989)
Tmin, Tmax0.691, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
3012, 3012, 1283
Rint0.0
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.171, 0.94
No. of reflections3012
No. of parameters277
No. of restraints51
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.35

Computer programs: CAD4 (Enraf-Nonius, 1992), SET4 and CELDIM (Enraf-Nonius, 1992), DATRD2 in NRCVAX96 (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2000), SHELXL97 and WORDPERFECT.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds