Download citation
Download citation
link to html
In the title complex of [Ni(C3H4N2)6](C8H7O3)2, the Ni atom is in an octahedral environment formed by the tertiary N atom of the imidazole moieties. The methoxy­benzoate moieties act as a bridge connecting two hexakis­(imidazole)nickel(II) mol­ecules through N-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013827/sk1338sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013827/sk1338Isup2.hkl
Contains datablock I

CCDC reference: 142728

Comment top

Imidazole is of considerable interest as a potential binding site for metal ions in many biological systems. It is an unidentate ligand and forms complexes with metal ions through its tertiary nitrogen atom. Some complexes of imidazole and its derivatives with transition-metal ions have been reported (Brooks & Davidson, 1960; Davis & Smith, 1971). Complexes of copper(II) and cobalt(II) atoms with carboxylate and imidazole ligands have been studied as models for metalloproteins since both contain functionalities in the side chain (Sigel, 1980; Bernarducci et al., 1983; Abuhijleh & Woods, 1992). In addition, some of these copper(II) complexes were found to have a variety of pharmacological activities (Tamura et al., 1987) and superoxide dismutase activities (Bhirud & Srivastava, 1990). Complexes of [Co(RCOO)2(Im)2] (Im = –CH3, –C2H5) and model complexes for cobalt(II)-substituted zinc metalloenzymes, have been reported by Horrocks group (Horrocks et al., 1982).

The asymmetric unit of the title complex is formed by one-half of the hexakis(imidazole)nickel(II) molecule; the other half is related by inversion symmetry through the Ni atom located at the inversion centre and one methoxybenzoate molecule. The Ni atom is in an octahedral environment formed by the tertiary N atom of the imidazole moieties. The bond distances involved in this octahedral geometry, (Ni1—N1, Ni1—N2, Ni1—N3) ranging from 2.127 (2) Å to 2.141 (2) Å are comparable with those found in the complex of hexakis(imidazole)nickel(II) disalicylate (Jian et al., 1999). All the imidazole rings are planar. The methoxybenzoate moiety is planar with the maximum deviation of 0.111 (2) Å for the O3 atom.

In the solid state, intermolecular C—H.·O(x, y − 1, z) interactions connect the methoxybenzoate with the NiN6 chromophore. The complex forms a three-dimensional network through N—H···O intermolecular hydrogen bonds with the methoxybenzoate moieties acting as a bridge connecting the two hexakis(imidazole) nickel(II) molecules (figure 2). In addition, intra- and intermolecular C—H···π interactions contribute to the molecular packing (C3—H3A = 0.93; H3A···Cg1 = 2.77; C3···Cg1 = 3.481 Å; C3—H3···Cg1 = 134°, C16—H16C = 0.93; H16A···Cg2(1 − x, 1 − y, 1 − z) = 2.836; C16···Cg2 = 3.664 Å; C16—H16A···Cg2 = 145°, Cg1 = centroid of imidazole ring N5, N6, C7—C9 and Cg2 = centroid of C10—C15 ring).

Experimental top

The title complex was prepared by the reaction of imidazole (1 g, 15 mmol) with Ni(p—CH3O·C6H4COO)2·4H2O (Ephraim & Pfister, 1925) (1 g, 2.5 mmol) in warm ethanol (50 ml). Single crystals suitable for X-ray analysis were obtained by recrystallization from ethanol.

Refinement top

After checking their presence in the difference map, all H-atoms were geometrically fixed and allowed to ride on their attached atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title complex. Displacement ellipsoids are shown at the 30% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Part of the three-dimensional network.
Hexakis(imidazole)nickel(II) di(p-methoxybenzoate), [Ni(Im)6(mB)2] (Im = imidazole, mB = p-methoxybenzoate) top
Crystal data top
[Ni(C3H4N2)6](C8H7O3)2Z = 1
Mr = 769.48F(000) = 402
Triclinic, P1Dx = 1.377 Mg m3
a = 9.8185 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5191 (4) ÅCell parameters from 5621 reflections
c = 10.8556 (5) Åθ = 2.7–61.1°
α = 61.474 (1)°µ = 0.58 mm1
β = 76.764 (1)°T = 293 K
γ = 70.973 (1)°Parallelopiped, pale blue
V = 927.62 (7) Å30.50 × 0.24 × 0.14 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
4138 independent reflections
Radiation source: fine-focus sealed tube3474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 1212
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1312
Tmin = 0.759, Tmax = 0.923l = 1414
6314 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0853P)2]
where P = (Fo2 + 2Fc2)/3
4140 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Ni(C3H4N2)6](C8H7O3)2γ = 70.973 (1)°
Mr = 769.48V = 927.62 (7) Å3
Triclinic, P1Z = 1
a = 9.8185 (4) ÅMo Kα radiation
b = 10.5191 (4) ŵ = 0.58 mm1
c = 10.8556 (5) ÅT = 293 K
α = 61.474 (1)°0.50 × 0.24 × 0.14 mm
β = 76.764 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
4138 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3474 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.923Rint = 0.039
6314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.00Δρmax = 0.74 e Å3
4140 reflectionsΔρmin = 1.05 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was −35°. Coverage of the unique set is over 97% complete. Crystal decay was monitored by repeating thirty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

The structure was solved by direct methods and refined by full-matrix.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00000.00000.02620 (14)
O10.7181 (2)0.5723 (2)0.37875 (19)0.0516 (5)
O20.4355 (2)0.11618 (19)0.35781 (16)0.0413 (4)
O30.4316 (2)0.28877 (18)0.13656 (16)0.0407 (4)
N10.9064 (2)0.0372 (2)0.20911 (19)0.0340 (4)
N20.7497 (3)0.0666 (3)0.3960 (2)0.0458 (5)
H2A0.66940.07180.44820.055*
N31.0730 (2)0.2351 (2)0.0674 (2)0.0330 (4)
N41.1969 (3)0.4591 (2)0.0882 (3)0.0473 (5)
H4A1.26120.52810.07060.057*
N51.1954 (2)0.0005 (2)0.0552 (2)0.0321 (4)
N61.3347 (2)0.0761 (3)0.1252 (2)0.0448 (5)
H6A1.36740.13410.13950.054*
C10.7706 (3)0.0366 (3)0.2592 (3)0.0386 (5)
H1A0.69810.01770.20610.046*
C20.8783 (4)0.0871 (4)0.4362 (3)0.0572 (8)
H2B0.89710.10890.52530.069*
C30.9751 (3)0.0696 (4)0.3213 (3)0.0503 (7)
H3A1.07290.07840.31900.060*
C41.0162 (3)0.3416 (3)0.1835 (3)0.0499 (7)
H4B0.93710.32190.24370.060*
C51.0932 (4)0.4790 (3)0.1967 (3)0.0583 (8)
H5A1.07760.57000.26690.070*
C61.1806 (3)0.3111 (3)0.0132 (3)0.0422 (6)
H6B1.23890.26750.06770.051*
C71.3081 (3)0.1177 (3)0.1186 (3)0.0411 (6)
H7A1.32360.21430.12890.049*
C81.3936 (3)0.0727 (3)0.1639 (3)0.0459 (6)
H8A1.47590.13170.21170.055*
C91.2171 (3)0.1152 (3)0.0613 (3)0.0418 (6)
H9A1.15720.21150.02510.050*
C100.6589 (3)0.4831 (3)0.3587 (2)0.0363 (5)
C110.6449 (3)0.3424 (3)0.4589 (2)0.0410 (6)
H11A0.67890.30090.54670.049*
C120.5797 (3)0.2634 (3)0.4272 (2)0.0363 (5)
H12A0.56930.16950.49500.044*
C130.5302 (2)0.3222 (2)0.2964 (2)0.0288 (4)
C140.5459 (3)0.4635 (3)0.1963 (2)0.0342 (5)
H14A0.51360.50420.10790.041*
C150.6089 (3)0.5440 (3)0.2267 (2)0.0378 (5)
H15A0.61790.63850.15930.045*
C160.7736 (4)0.5142 (4)0.5106 (3)0.0561 (8)
H16A0.81170.58700.51150.084*
H16B0.84910.42450.52450.084*
H16C0.69740.49190.58480.084*
C170.4598 (2)0.2357 (2)0.2626 (2)0.0289 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0262 (2)0.0272 (2)0.0262 (2)0.00938 (15)0.00287 (14)0.01298 (17)
O10.0689 (13)0.0571 (12)0.0438 (10)0.0382 (11)0.0003 (9)0.0219 (10)
O20.0572 (11)0.0391 (9)0.0270 (8)0.0267 (9)0.0030 (7)0.0078 (7)
O30.0645 (12)0.0300 (8)0.0280 (8)0.0128 (8)0.0131 (8)0.0086 (7)
N10.0356 (10)0.0363 (10)0.0303 (9)0.0111 (8)0.0053 (8)0.0169 (9)
N20.0548 (13)0.0442 (12)0.0365 (11)0.0219 (11)0.0201 (10)0.0207 (10)
N30.0337 (10)0.0293 (10)0.0340 (9)0.0098 (8)0.0004 (8)0.0123 (8)
N40.0540 (13)0.0300 (11)0.0570 (13)0.0038 (10)0.0074 (11)0.0217 (10)
N50.0309 (9)0.0344 (10)0.0338 (9)0.0110 (8)0.0004 (8)0.0165 (8)
N60.0446 (12)0.0496 (13)0.0551 (13)0.0161 (10)0.0082 (10)0.0302 (11)
C10.0414 (13)0.0406 (13)0.0354 (12)0.0160 (11)0.0079 (10)0.0192 (11)
C20.0655 (19)0.072 (2)0.0300 (13)0.0177 (16)0.0024 (13)0.0220 (14)
C30.0421 (14)0.072 (2)0.0339 (12)0.0145 (14)0.0006 (11)0.0220 (13)
C40.0624 (17)0.0394 (14)0.0413 (14)0.0205 (13)0.0099 (13)0.0139 (12)
C50.085 (2)0.0319 (13)0.0465 (15)0.0187 (14)0.0014 (15)0.0077 (13)
C60.0424 (13)0.0336 (12)0.0484 (14)0.0104 (10)0.0037 (11)0.0189 (11)
C70.0393 (13)0.0368 (13)0.0503 (14)0.0081 (10)0.0105 (11)0.0196 (12)
C80.0400 (13)0.0494 (15)0.0515 (15)0.0092 (11)0.0149 (12)0.0213 (13)
C90.0397 (13)0.0366 (13)0.0534 (15)0.0090 (11)0.0095 (11)0.0211 (12)
C100.0418 (12)0.0392 (12)0.0344 (12)0.0185 (10)0.0054 (10)0.0197 (11)
C110.0545 (15)0.0434 (14)0.0258 (11)0.0190 (12)0.0067 (10)0.0102 (10)
C120.0504 (14)0.0305 (11)0.0262 (10)0.0157 (10)0.0014 (10)0.0084 (9)
C130.0343 (11)0.0274 (10)0.0236 (9)0.0098 (9)0.0024 (8)0.0112 (9)
C140.0449 (13)0.0310 (11)0.0243 (10)0.0121 (10)0.0004 (9)0.0101 (9)
C150.0501 (14)0.0319 (12)0.0293 (11)0.0184 (11)0.0034 (10)0.0098 (10)
C160.0664 (19)0.068 (2)0.0525 (16)0.0307 (16)0.0052 (15)0.0326 (16)
C170.0320 (10)0.0276 (10)0.0251 (10)0.0070 (8)0.0028 (8)0.0126 (9)
Geometric parameters (Å, º) top
Ni1—N32.127 (2)C2—C31.358 (4)
Ni1—N3i2.1266 (19)C2—H2B0.9300
Ni1—N52.140 (2)C3—H3A0.9300
Ni1—N5i2.1395 (18)C4—C51.350 (4)
Ni1—N12.141 (2)C4—H4B0.9300
Ni1—N1i2.1406 (17)C5—H5A0.9300
O1—C101.370 (3)C6—H6B0.9300
O1—C161.422 (3)C7—C81.357 (3)
O2—C171.244 (2)C7—H7A0.9300
O3—C171.266 (3)C8—H8A0.9300
N1—C11.319 (3)C9—H9A0.9300
N1—C31.372 (3)C10—C111.385 (3)
N2—C11.342 (3)C10—C151.394 (3)
N2—C21.347 (4)C11—C121.392 (3)
N2—H2A0.8600C11—H11A0.9300
N3—C61.310 (3)C12—C131.384 (3)
N3—C41.375 (3)C12—H12A0.9300
N4—C61.342 (3)C13—C141.395 (3)
N4—C51.350 (4)C13—C171.511 (3)
N4—H4A0.8600C14—C151.382 (3)
N5—C91.324 (3)C14—H14A0.9300
N5—C71.370 (3)C15—H15A0.9300
N6—C91.330 (3)C16—H16A0.9600
N6—C81.362 (4)C16—H16B0.9600
N6—H6A0.8600C16—H16C0.9600
C1—H1A0.9300
N3—Ni1—N3i180.00 (17)C5—C4—H4B125.3
N3—Ni1—N590.40 (7)N3—C4—H4B125.3
N3i—Ni1—N589.60 (7)C4—C5—N4106.8 (2)
N3—Ni1—N5i89.60 (7)C4—C5—H5A126.6
N3i—Ni1—N5i90.40 (7)N4—C5—H5A126.6
N5—Ni1—N5i180.00 (11)N3—C6—N4112.0 (2)
N3—Ni1—N189.75 (7)N3—C6—H6B124.0
N3i—Ni1—N190.25 (7)N4—C6—H6B124.0
N5—Ni1—N188.57 (7)C8—C7—N5109.8 (2)
N5i—Ni1—N191.43 (7)C8—C7—H7A125.1
N3—Ni1—N1i90.25 (7)N5—C7—H7A125.1
N3i—Ni1—N1i89.75 (7)C7—C8—N6106.2 (2)
N5—Ni1—N1i91.43 (7)C7—C8—H8A126.9
N5i—Ni1—N1i88.57 (7)N6—C8—H8A126.9
N1—Ni1—N1i180.00 (12)N5—C9—N6112.0 (2)
C10—O1—C16117.6 (2)N5—C9—H9A124.0
C1—N1—C3104.8 (2)N6—C9—H9A124.0
C1—N1—Ni1127.63 (17)O1—C10—C11124.8 (2)
C3—N1—Ni1127.57 (16)O1—C10—C15115.3 (2)
C1—N2—C2107.1 (2)C11—C10—C15119.9 (2)
C1—N2—H2A126.5C10—C11—C12119.6 (2)
C2—N2—H2A126.5C10—C11—H11A120.2
C6—N3—C4104.9 (2)C12—C11—H11A120.2
C6—N3—Ni1129.20 (16)C13—C12—C11121.1 (2)
C4—N3—Ni1125.88 (17)C13—C12—H12A119.4
C6—N4—C5106.8 (2)C11—C12—H12A119.4
C6—N4—H4A126.6C12—C13—C14118.6 (2)
C5—N4—H4A126.6C12—C13—C17120.85 (19)
C9—N5—C7104.8 (2)C14—C13—C17120.58 (19)
C9—N5—Ni1124.70 (17)C15—C14—C13121.0 (2)
C7—N5—Ni1129.16 (15)C15—C14—H14A119.5
C9—N6—C8107.2 (2)C13—C14—H14A119.5
C9—N6—H6A126.4C14—C15—C10119.8 (2)
C8—N6—H6A126.4C14—C15—H15A120.1
N1—C1—N2111.9 (2)C10—C15—H15A120.1
N1—C1—H1A124.1O1—C16—H16A109.5
N2—C1—H1A124.1O1—C16—H16B109.5
N2—C2—C3106.7 (2)H16A—C16—H16B109.5
N2—C2—H2B126.6O1—C16—H16C109.5
C3—C2—H2B126.6H16A—C16—H16C109.5
C2—C3—N1109.5 (2)H16B—C16—H16C109.5
C2—C3—H3A125.2O2—C17—O3123.7 (2)
N1—C3—H3A125.2O2—C17—C13119.01 (19)
C5—C4—N3109.5 (3)O3—C17—C13117.28 (18)
N3—Ni1—N1—C197.2 (2)N2—C2—C3—N10.4 (4)
N3i—Ni1—N1—C182.8 (2)C1—N1—C3—C20.3 (3)
N5—Ni1—N1—C1172.4 (2)Ni1—N1—C3—C2179.2 (2)
N5i—Ni1—N1—C17.6 (2)C6—N3—C4—C50.8 (3)
N1i—Ni1—N1—C140 (100)Ni1—N3—C4—C5177.6 (2)
N3—Ni1—N1—C381.5 (2)N3—C4—C5—N40.7 (4)
N3i—Ni1—N1—C398.5 (2)C6—N4—C5—C40.3 (3)
N5—Ni1—N1—C38.9 (2)C4—N3—C6—N40.6 (3)
N5i—Ni1—N1—C3171.1 (2)Ni1—N3—C6—N4177.74 (16)
N1i—Ni1—N1—C3139 (100)C5—N4—C6—N30.2 (3)
N3i—Ni1—N3—C6111 (100)C9—N5—C7—C81.2 (3)
N5—Ni1—N3—C667.2 (2)Ni1—N5—C7—C8165.85 (18)
N5i—Ni1—N3—C6112.8 (2)N5—C7—C8—N61.3 (3)
N1—Ni1—N3—C6155.8 (2)C9—N6—C8—C70.9 (3)
N1i—Ni1—N3—C624.2 (2)C7—N5—C9—N60.6 (3)
N3i—Ni1—N3—C467 (100)Ni1—N5—C9—N6167.19 (16)
N5—Ni1—N3—C4110.9 (2)C8—N6—C9—N50.2 (3)
N5i—Ni1—N3—C469.1 (2)C16—O1—C10—C112.1 (4)
N1—Ni1—N3—C422.3 (2)C16—O1—C10—C15178.7 (2)
N1i—Ni1—N3—C4157.7 (2)O1—C10—C11—C12178.6 (2)
N3—Ni1—N5—C9168.7 (2)C15—C10—C11—C120.6 (4)
N3i—Ni1—N5—C911.3 (2)C10—C11—C12—C130.8 (4)
N5i—Ni1—N5—C996 (93)C11—C12—C13—C140.4 (4)
N1—Ni1—N5—C979.0 (2)C11—C12—C13—C17179.9 (2)
N1i—Ni1—N5—C9101.0 (2)C12—C13—C14—C150.3 (4)
N3—Ni1—N5—C74.0 (2)C17—C13—C14—C15179.4 (2)
N3i—Ni1—N5—C7176.0 (2)C13—C14—C15—C100.6 (4)
N5i—Ni1—N5—C7100 (93)O1—C10—C15—C14179.4 (2)
N1—Ni1—N5—C785.7 (2)C11—C10—C15—C140.1 (4)
N1i—Ni1—N5—C794.3 (2)C12—C13—C17—O26.2 (3)
C3—N1—C1—N20.0 (3)C14—C13—C17—O2173.6 (2)
Ni1—N1—C1—N2178.94 (16)C12—C13—C17—O3172.4 (2)
C2—N2—C1—N10.2 (3)C14—C13—C17—O37.8 (3)
C1—N2—C2—C30.4 (3)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.862.523.057 (4)121
N2—H2A···O2ii0.862.022.790 (3)147
N4—H4A···O3iii0.862.042.803 (3)147
N6—H6A···O2iv0.862.513.157 (3)132
N6—H6A···O3iv0.861.912.762 (3)169
C4—H4B···O1v0.932.563.307 (4)137
C9—H9A···N3i0.932.573.075 (4)114
C14—H14A···O3vi0.932.583.303 (3)134
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z+1; (iii) x+1, y1, z; (iv) x+1, y, z; (v) x, y1, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C3H4N2)6](C8H7O3)2
Mr769.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8185 (4), 10.5191 (4), 10.8556 (5)
α, β, γ (°)61.474 (1), 76.764 (1), 70.973 (1)
V3)927.62 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.50 × 0.24 × 0.14
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.759, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
6314, 4138, 3474
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 1.00
No. of reflections4140
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 1.05

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Ni1—N32.127 (2)Ni1—N12.141 (2)
Ni1—N52.140 (2)
N3—Ni1—N590.40 (7)N5—Ni1—N188.57 (7)
N3—Ni1—N189.75 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.022.790 (3)147
N4—H4A···O3ii0.862.042.803 (3)147
N6—H6A···O3iii0.861.912.762 (3)169
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds