organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Methyl-1-(4-methyl­phen­yl)-N′-[1-(thio­phen-2-yl)ethyl­­idene]-1H-1,2,3-triazole-4-carbohydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, eDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, and fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by J. Simpson, University of Otago, New Zealand (Received 26 September 2018; accepted 28 September 2018; online 5 October 2018)

The asymmetric unit comprises a single mol­ecule of C17H17N5OS with twist angles between the planes through the thio­phenyl, methyl­triazolyl and tolyl groups of 12.3 (1) and 44.9 (1)°, respectively. A possible weak intra­molecular hydrogen bond forms between the methyl substituent on the triazole ring and the adjacent carbonyl O atom. In the crystal structure, ππ inter­actions occur between phenyl rings of pairs of mol­ecules related by inversion symmetry with a centroid–centroid separation of 3.7647 (18) Å. The shortest inter­molecular hydrogen bonding contact is a C—H⋯O inter­action that generates inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Acyl hydrazones possess diverse biological and pharmacological properties (Narang et al., 2012[Narang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569-612.]; Popiołek 2017[Popiołek, Ł. (2017). Med. Chem. Res. 26, 287-301.]; Rollas & Küçükgüzel, 2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]; Verma et al., 2014[Verma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M. R. & Alam, M. M. (2014). J. Pharm. Bioall Sci. 6, 69-80.]).

The asymmetric unit comprises a mol­ecule of C17H17N5OS (Fig. 1[link]). The twist angles between the planes through the thio­phenyl, methyl­triazolyl and tolyl groups are 12.3 (1)° and 44.9 (1)° respectively. A weak intra­molecular C10—H10B⋯O1 hydrogen bond (Table 1[link]) imposes a degree of planarity on the section of the mol­ecule incorporating the linked five-membered rings. In the crystal structure, inversion-related ππ inter­actions occur between the phenyl rings of pairs of mol­ecules with a centroid–centroid distance Cg3⋯Cg3ii = 3.7647 (18) Å, symmetry code: (ii) = 1 − x, 2 − y, −1 − z. Inversion-related C16—H16⋯O1 hydrogen bonds form dimers and generate R22(16) ring motifs (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1 0.96 2.53 3.124 (4) 120
C16—H16⋯O1i 0.93 2.55 3.437 (4) 161
Symmetry code: (i) -x+1, -y+2, -z.
[Figure 1]
Figure 1
An ORTEP representation showing 50% probability ellipsoids.
[Figure 2]
Figure 2
A view of the crystal packing approximately along the b axis. The ππ contact is shown as a dotted green line with the ring centroids drawn as red spheres. Hydrogen bonds are drawn as blue dotted lines.

Synthesis and crystallization

The title compound was synthesized from the reaction of a mixture of 5-methyl-1-(4-tol­yl)-1H-1,2,3-triazole-4-carbohydrazide and 1-(thio­phen-2-yl)ethanone in ethanol containing acetic acid as a catalyst under reflux conditions for 4 h. The crude product was recrystallized from di­methyl­formamide solution to give colourless crystals (85%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H17N5OS
Mr 339.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.0292 (7), 9.864 (1), 10.8754 (9)
α, β, γ (°) 111.021 (9), 105.103 (8), 96.945 (7)
V3) 847.86 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.43 × 0.18 × 0.02
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.690, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7552, 3957, 2493
Rint 0.032
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.174, 1.04
No. of reflections 3957
No. of parameters 220
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]),Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows and WinGX (Farrugia, 2012), and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

5-Methyl-1-(4-methylphenyl)-N'-[1-(thiophen-2-yl)ethylidene]-1H-1,2,3-triazole-4-carbohydrazide top
Crystal data top
C17H17N5OSZ = 2
Mr = 339.41F(000) = 356
Triclinic, P1Dx = 1.329 Mg m3
a = 9.0292 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.864 (1) ÅCell parameters from 1876 reflections
c = 10.8754 (9) Åθ = 4.2–26.3°
α = 111.021 (9)°µ = 0.21 mm1
β = 105.103 (8)°T = 296 K
γ = 96.945 (7)°Plate, colourless
V = 847.86 (14) Å30.43 × 0.18 × 0.02 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
diffractometer
2493 reflections with I > 2σ(I)
ω scansRint = 0.032
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 29.6°, θmin = 3.3°
Tmin = 0.690, Tmax = 1.000h = 1111
7552 measured reflectionsk = 1311
3957 independent reflectionsl = 1314
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.2305P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3957 reflectionsΔρmax = 0.27 e Å3
220 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1112 (3)0.4156 (4)0.3425 (4)0.0601 (8)
H10.1223780.4382000.4356580.072*
C20.0111 (4)0.3116 (4)0.2339 (4)0.0658 (9)
H20.0926230.2542890.2445110.079*
C30.0012 (3)0.2998 (3)0.1034 (3)0.0558 (8)
H30.0752800.2339820.0184060.067*
C40.1312 (3)0.3974 (3)0.1160 (3)0.0434 (6)
C50.1775 (3)0.4220 (3)0.0050 (3)0.0429 (6)
C60.0912 (3)0.3171 (3)0.1446 (3)0.0584 (8)
H6A0.0559840.3735590.1975890.088*
H6B0.0016580.2495160.1495530.088*
H6C0.1608030.2611770.1820980.088*
C70.4505 (3)0.6844 (3)0.0240 (3)0.0421 (6)
C80.4679 (3)0.7032 (3)0.1488 (3)0.0404 (6)
C90.5722 (3)0.8129 (3)0.1543 (3)0.0399 (6)
C100.7022 (3)0.9388 (3)0.0437 (3)0.0539 (7)
H10A0.7910560.9482320.0754630.081*
H10B0.7327370.9197210.0388360.081*
H10C0.6667151.0298320.0229300.081*
C110.6040 (3)0.8528 (3)0.3642 (3)0.0396 (6)
C120.6343 (3)0.7657 (3)0.4820 (3)0.0473 (7)
H120.6117360.6621640.5134140.057*
C130.6987 (3)0.8351 (3)0.5525 (3)0.0567 (8)
H130.7176770.7766170.6327540.068*
C140.7358 (3)0.9890 (3)0.5071 (3)0.0512 (7)
C150.7021 (3)1.0733 (3)0.3892 (3)0.0520 (7)
H150.7255501.1769410.3571280.062*
C160.6344 (3)1.0064 (3)0.3184 (3)0.0464 (6)
H160.6097481.0639960.2410440.056*
C170.8067 (4)1.0635 (4)0.5852 (4)0.0730 (10)
H17A0.8032691.1669310.5511800.110*
H17B0.7473811.0147610.6829200.110*
H17C0.9143431.0560500.5711430.110*
N10.2922 (2)0.5357 (2)0.0459 (2)0.0451 (5)
N20.3362 (2)0.5630 (2)0.0562 (2)0.0473 (6)
H2A0.2903620.5020990.1419720.057*
N30.3746 (2)0.6096 (2)0.2804 (2)0.0472 (6)
N40.4142 (3)0.6548 (2)0.3689 (2)0.0482 (6)
N50.5345 (2)0.7799 (2)0.2928 (2)0.0409 (5)
O10.5302 (2)0.7712 (2)0.0941 (2)0.0595 (6)
S10.24161 (8)0.49989 (8)0.28844 (8)0.0522 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0675 (19)0.076 (2)0.056 (2)0.0198 (16)0.0326 (16)0.0388 (17)
C20.0576 (18)0.078 (2)0.072 (2)0.0041 (16)0.0295 (17)0.0404 (19)
C30.0497 (15)0.0606 (18)0.055 (2)0.0010 (13)0.0169 (14)0.0255 (16)
C40.0449 (14)0.0430 (14)0.0450 (16)0.0106 (11)0.0177 (12)0.0188 (12)
C50.0432 (14)0.0444 (15)0.0435 (16)0.0108 (11)0.0164 (12)0.0190 (12)
C60.0608 (17)0.0615 (18)0.0431 (18)0.0035 (14)0.0146 (14)0.0157 (15)
C70.0494 (14)0.0451 (15)0.0360 (16)0.0141 (11)0.0199 (12)0.0162 (12)
C80.0453 (13)0.0402 (14)0.0364 (15)0.0092 (10)0.0169 (11)0.0142 (11)
C90.0463 (13)0.0399 (14)0.0350 (15)0.0118 (11)0.0151 (11)0.0154 (11)
C100.0639 (17)0.0500 (16)0.0406 (17)0.0021 (13)0.0122 (14)0.0175 (13)
C110.0453 (13)0.0437 (14)0.0332 (14)0.0104 (11)0.0143 (11)0.0185 (12)
C120.0600 (16)0.0440 (15)0.0440 (17)0.0136 (12)0.0238 (13)0.0194 (13)
C130.0719 (19)0.0639 (19)0.0479 (19)0.0236 (15)0.0332 (15)0.0259 (15)
C140.0498 (15)0.0613 (18)0.0529 (19)0.0113 (13)0.0191 (14)0.0337 (15)
C150.0564 (16)0.0446 (16)0.0527 (19)0.0063 (12)0.0109 (14)0.0239 (14)
C160.0556 (15)0.0453 (15)0.0392 (16)0.0126 (12)0.0174 (13)0.0166 (13)
C170.077 (2)0.088 (2)0.079 (3)0.0165 (18)0.0374 (19)0.054 (2)
N10.0508 (12)0.0516 (13)0.0391 (13)0.0097 (10)0.0199 (10)0.0225 (11)
N20.0565 (13)0.0517 (13)0.0335 (13)0.0030 (10)0.0177 (11)0.0180 (11)
N30.0510 (13)0.0505 (13)0.0385 (13)0.0037 (10)0.0160 (11)0.0180 (11)
N40.0544 (13)0.0484 (13)0.0357 (13)0.0005 (10)0.0138 (11)0.0149 (11)
N50.0478 (12)0.0430 (12)0.0338 (12)0.0092 (9)0.0156 (10)0.0169 (10)
O10.0732 (13)0.0607 (13)0.0347 (12)0.0031 (10)0.0198 (10)0.0131 (10)
S10.0562 (4)0.0576 (5)0.0451 (5)0.0080 (3)0.0177 (3)0.0243 (4)
Geometric parameters (Å, º) top
C1—C21.358 (5)C10—H10B0.9600
C1—S11.703 (3)C10—H10C0.9600
C1—H10.9300C11—C121.380 (4)
C2—C31.410 (5)C11—C161.380 (4)
C2—H20.9300C11—N51.435 (3)
C3—C41.385 (4)C12—C131.380 (4)
C3—H30.9300C12—H120.9300
C4—C51.462 (4)C13—C141.384 (4)
C4—S11.719 (3)C13—H130.9300
C5—N11.284 (3)C14—C151.388 (4)
C5—C61.504 (4)C14—C171.513 (4)
C6—H6A0.9600C15—C161.384 (4)
C6—H6B0.9600C15—H150.9300
C6—H6C0.9600C16—H160.9300
C7—O11.217 (3)C17—H17A0.9600
C7—N21.354 (3)C17—H17B0.9600
C7—C81.479 (4)C17—H17C0.9600
C8—N31.358 (3)N1—N21.372 (3)
C8—C91.375 (3)N2—H2A0.8600
C9—N51.358 (3)N3—N41.305 (3)
C9—C101.486 (4)N4—N51.364 (3)
C10—H10A0.9600
C2—C1—S1112.2 (3)H10B—C10—H10C109.5
C2—C1—H1123.9C12—C11—C16121.0 (2)
S1—C1—H1123.9C12—C11—N5118.6 (2)
C1—C2—C3112.8 (3)C16—C11—N5120.4 (2)
C1—C2—H2123.6C13—C12—C11118.8 (3)
C3—C2—H2123.6C13—C12—H12120.6
C4—C3—C2112.3 (3)C11—C12—H12120.6
C4—C3—H3123.8C12—C13—C14121.9 (3)
C2—C3—H3123.8C12—C13—H13119.0
C3—C4—C5128.1 (3)C14—C13—H13119.0
C3—C4—S1110.7 (2)C13—C14—C15117.8 (3)
C5—C4—S1121.11 (19)C13—C14—C17121.3 (3)
N1—C5—C4115.4 (2)C15—C14—C17120.8 (3)
N1—C5—C6125.0 (3)C16—C15—C14121.4 (3)
C4—C5—C6119.6 (2)C16—C15—H15119.3
C5—C6—H6A109.5C14—C15—H15119.3
C5—C6—H6B109.5C11—C16—C15119.0 (3)
H6A—C6—H6B109.5C11—C16—H16120.5
C5—C6—H6C109.5C15—C16—H16120.5
H6A—C6—H6C109.5C14—C17—H17A109.5
H6B—C6—H6C109.5C14—C17—H17B109.5
O1—C7—N2124.6 (3)H17A—C17—H17B109.5
O1—C7—C8122.6 (2)C14—C17—H17C109.5
N2—C7—C8112.8 (2)H17A—C17—H17C109.5
N3—C8—C9109.3 (2)H17B—C17—H17C109.5
N3—C8—C7122.5 (2)C5—N1—N2116.6 (2)
C9—C8—C7128.1 (2)C7—N2—N1121.1 (2)
N5—C9—C8103.6 (2)C7—N2—H2A119.5
N5—C9—C10124.4 (2)N1—N2—H2A119.5
C8—C9—C10131.9 (3)N4—N3—C8109.2 (2)
C9—C10—H10A109.5N3—N4—N5107.0 (2)
C9—C10—H10B109.5C9—N5—N4110.9 (2)
H10A—C10—H10B109.5C9—N5—C11129.9 (2)
C9—C10—H10C109.5N4—N5—C11119.1 (2)
H10A—C10—H10C109.5C1—S1—C492.00 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O10.962.533.124 (4)120
C16—H16···O1i0.932.553.437 (4)161
Symmetry code: (i) x+1, y+2, z.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

MHA thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia for financial support (award No. 020–0180).

References

First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNarang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569–612.  Web of Science CrossRef PubMed Google Scholar
First citationPopiołek, Ł. (2017). Med. Chem. Res. 26, 287–301.  Web of Science PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVerma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M. R. & Alam, M. M. (2014). J. Pharm. Bioall Sci. 6, 69–80.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds