Download citation
Download citation
link to html
Clindamycin hydro­chloride, an anti­biotic of the lincomycin family, was crystallized as the monohydrate, namely (2S,4R)-2-(N-{(1S,2S)-2-chloro-1-[(3R,4S,5R,6R)-3,4,5-trihydr­oxy-6-(methyl­sulfanyl)perhydro­pyran-2-yl]propyl}amino­carbonyl)-4-propyl­pyrrolidinium chloride monohydrate, C18H34ClN2O5S+·Cl-·H2O, (I), and as the monohydrate ethanol solvate, C18H34ClN2O5S+·Cl-·H2O·C2H6O, (II). The conformation of the clindamycin mol­ecule in both crystal structures is the same and is found to be similar to that in enzyme-bound clindamycin. The simultaneous presence of free chloride ions and water mol­ecules in (I) and of additional ethanol mol­ecules in (II) provides an inter­esting network of hydrogen bonds. The significance of this study lies in the inter­actions in these structures and the aggregations occurring via hydrogen bonds in the hydrated and solvated crystalline forms of the title compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110000958/sf3125sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110000958/sf3125Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110000958/sf3125IIsup3.hkl
Contains datablock II

CCDC references: 774040; 774041

Comment top

Clindamycin is a lincosamide antibiotic. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoan diseases, such as malaria. It is a common topical treatment for acne, and can be useful against some methicillin-resistant Staphylococcus aureus (MRSA) infections (Daun, 2007). Clindamycin is also used in veterinary medications. It is marketed under various trade names, including Dalacin, Clindacin, Cleocin, and Evovlin (clindamycin by itself), Duac, BenzaClin and Arcanya (in combination with benzoyl peroxide), and Ziana (with tretinoin). Clindamycin is a semisynthetic derivative of lincomycin, a natural antibiotic produced by the actinobacterium Streptomyces lincolnensis. It is obtained by 7(S)-chloro-substitution of the 7(R)-hydroxyl group of lincomycin. We report here the crystal structures of clindamycin hydrochloride monohydrate, (I), and its ethanol solvate, (II), as a part of our ongoing studies of the structural characterization of drug molecules.

The clindamycin molecule consists of a derivative of the amino acid trans-L-4-n-propyl-hygrinic acid joined to a sulfur-containing octose derivative. Views of the molecules of (I) and (II), showing the atom-labelling, are presented in Fig. 1(a) and (b). The bond distances and angles in (I) and (II) are in the normal ranges (Allen et al., 1987) and are comparable with the corresponding values observed in lincomycin hydrochloride (Rajeswaran & Srikrishnan, 2004) and clindamycin 2-phosphate hydrate (Leban et al., 1994). An earlier initial study of clindamycin hydrochloride monohydrate in which only the unit-cell dimensions were reported [a = 9.47 Å, b = 9.91 Å, c = 13.50 Å, β = 104.5° and V = 1226.589 Å3, monoclinic space group P21; Cambridge Structural Database (CSD; Allen, 2002) refcode DECLMY (Duchamp, 1967)], is similar to (I).

In both (I) and (II), the propyl side chain is disordered; in (I), atoms C15/C16/C17 are disordered over two sites with occupancies of 0.760 (6) and 0.240 (6), and in (II), atoms C16/C17 are disordered over two sites with occupancies of 0.709 (8) and 0.291 (8). Additionally, the ethanoll solvent molecule (atoms C19/C20/O6) in (II) is disordered over two sites with occupancies of 0.709 (8) and 0.291 (8).

The central amide linkage plays an active role in the solid-state conformation and governs the overall shape of the clindamycin molecule in (I) and (II). It is planar and in an extended conformation (Fig. 2). Atom N2 of the terminal pyrrolidine ring is protonated to form the pyrrolidinium cation in both (I) and (II). Fig. 2 shows an overlay of the clindamycin molecules of (I) and (II) with the extracted clindamycin ligand from the crystal structure of the complex of clindamycin bound to the G2099A mutant 50S ribosomal subunit of Haloarcula marismortul [Tu et al., 2005; Protein Data Bank (PDB; Berman et al., 2000) entry 1YJN], clindamycin 2-phosphate hydrate and lincomycin. It can be seen that the clindamycin molecules prefer to adopt the same configuration and similar conformations in spite of having significant sites for drug activation.

In structures of both (I) and (II), the pyranoside ring is of the galactopyranose stereochemistry with a 4C1 chair form, with configuration 1a2e3e4a5e (a = axial and e = equatorial), where 1,2,3,4 and 5 represent atoms C2, C3, C4, C5 and C1, respectively. A similar conformation has been observed in the structures of lincomycin hydrochloride and clindamycin 2-phosphate hydrate.

The pyrrolidinium ring in both structures is in an envelope conformation with C12 being the flip atom. The flip angle of the envelope, defined as the dihedral angle between the planes of atoms N2/C10/C11/C13 and C11/C12/C13, is 38.0 (2)° in (I) and 38.7 (2)° in (II). On the other hand, even though the pyrrolidine ring is in an envelope conformation in the structures of lincomycin hydrochloride, clindamycin 2-phosphate hydrate and 1YJN, it is observed that the atom corresponding to C13 occupies the flip position. The sum of the bond angles around the pyrrolidinium N2 atom (ΣN2) is 335.5 (2)° in (I) and 335.1 (2)° in (II) and this atom tends to be coplanar with the central carboxamide plane [deviation of N2 = 0.001 (2) Å in (I) and 0.182 (3) Å in (II)]. We believe that this tendency towards coplanarity of atom N2 may be related to the antibacterial activity, since N2 bears a positive charge facilitating binding at the active site. The corresponding deviations of N2 found in lincomycin hydrochloride, clindamycin 2-phosphate hydrate and 1YJN are 0.173, 0.068/0.802/0.087 (three molecules in the asymmetric unit) and 0.035 Å, respectively.

The crystal packing in (I) and (II) is influenced by the presence of the free Cl- ion and the single water molecule, which appears to be crucial for crystal formation. As observed in the crystal structures of small-molecule hydrates (Jeffrey & Saenger, 1991), the water molecule in (I) is four-coordinated, with each molecule acting as a donor in two hydrogen bonds and an acceptor in two (Table 1). Thus, the water molecules and the free Cl2- ions connect the three moieties (pyrrolidinium, amide and pyranoside) of the clindamycin molecules and form an intricate three-dimensional intermolecular hydrogen-bond network (Fig.3). The presence of an additional ethanol molecule in (II) supports the water molecule in hydrogen bonding (Table 2). The water molecule of (II) is three-coordinated, with each molecule acting as a donor to two hydrogen bonds and an acceptor to just one. Similarly, the ethanol molecule also acts as a donor and an acceptor. Thus, the water molecules, mediated by the ethanol molecules and free Cl2- ions, connect the three moieties of the clindamycin molecules to form a complex three-dimensional intermolecular hydrogen-bond network (Fig. 4). It is interesting to note that the pyranoside atom O1, the bonded atom Cl1 and the carboxamide atom O5 (excluding its intramolecular hydrogen bonding) do not participate in the hydrogen-bonding network in either structure. This may provide some insight into the nature of drug-binding interactions at the enzyme active site. In (I), non-classical C—H···O, C—H···Cl and C—H···S interactions are observed, while in (II) only a C—H···O interaction is observed.

In conclusion, this structural analysis can facilitate in understanding the solid-state features of the drug and its hydrogen-bonding interactions in the hydrated and solvated environments.

Experimental top

Clindamycin hydrochloride (Pharmacology Department, IICT, Hyderabad) (50 mg) was dissolved in mixture of ethanol (5 ml) and water (2 ml). After 4 d, crystals of (I) and (II) were obtained and were distinguished by their distinct crystal habits, needles and plates, respectively. After 8 d it was observed that the plate-shaped crystals (II) turned opaque. Hence for (II), data were collected on a crystal in a sealed vial with mother liquor solution.

Refinement top

The site-occupancy factors of disordered atoms C15/C16/C17 (propyl group) of (I) refined to 0.760 (6) and 0.240 (6), while atoms C16/C17 (propyl group) and C19/C20/O6 (ethanol solvent molecule) of (II) refined to 0.709 (8) and 0.291 (8). The anisotropic displacement parameters and bond distances of the major and minor components of the disordered atoms were restrained to be similar using SIMU and SAME instructions (SHELXL97; Sheldrick, 2008). The C—C distances of the disordered groups were restraint to be 1.55 (1) Å and the C—O distances to be 1.45 (1) Å. Except for the disordered ethanol solvent molecule in (II), all N-bound H atoms, O-bound H atoms and water H atoms of (I) and (II) were located in difference Fourier maps and their positions were refined subject to O—H distance restraints of 0.89 (2) Å for O1W—H1W, O1W—H2W and O3—H3O of (I) and for O1W—H1W, O1W—H2W, O2—H2O and O4—H4O of (II), an H1W···H2W distance restraint of 1.55 (2) Å for (I) and an N2—H2N distance restraint of 0.82 (2) Å for (II). The isotropic displacement of these H atoms were set at Uiso(O) = 1.5Ueq(N,O). The O-bound H atom of the disordered ethanol solvent molecule in (II) was found in a difference Fourier map and subsequently placed in an idealized position, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). All other H atoms were located in difference density maps, positioned geometrically and included as riding atoms, with C—H = 0.96–0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C) for the other H atoms. The methyl groups were allowed to rotate but not to tip. The absolute configuration of the procured material was known in advance and was confirmed by unambiguous refinement of the absolute structure parameter (Flack & Bernardinelli, 2000).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Views of (a) clindamycin hydrochloride monohydrate, (I), and (b) clindamycin hydrochloride monohydrate ethanol solvate, (II), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bond. Only major part of the disordered atoms of the propyl side chain [C15/C16/C17 in (I) and (C16/C17) in (II)] and ethanol solvate [(C19/C20/O6) in (II)] are shown.
[Figure 2] Fig. 2. A superposition of the molecular conformations of clindamycin molecules, showing the planar central carboxamide groups. The overlay was made by making a least-squares fit through the planar carboxamide atoms of clindamycin, (I). The labels and r.m.s deviations (Å) of the carboxamide atoms are as follows: clindamycin HCl hydrate ethanol solvate, (II), 0.025; 1YJN, (III), 0.050; lincomycin hydrochloride, (IV), 0.025; clindamycin 2-phosphate hydrate, (V), 0.091 (even though there are three molecules in the asymmetric unit and their overlay is almost exact, only one molecule is represented here). Disordered atoms C151/C161/C171 of (I) and C161/C171 of (II) and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal packing of (I), illustrating the intricate hydrogen-bond network. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity. Only major part of the disordered atoms of the propyl side chain (C15/C16/C17) is shown. Selected atoms of the molecules present in the asymmetric unit are labelled, primarily to provide a key for the coding of the atoms. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 1; (ii) -x, y + 1/2, -z + 1; (iii) -x + 1, y - 1/2, -z + 1.]
[Figure 4] Fig. 4. Part of the crystal packing of (II), illustrating the complex hydrogen-bond network. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity. Only major part of the disordered atoms of the propyl side chain (C16/C17) and ethanol solvate (C19/C20/O6) are shown. Selected atoms of the molecules present in the asymmetric unit are labelled, primarily to provide a key for the coding of the atoms. [Symmetry codes: (i) x + 1/2, -y - 1/2, -z; (ii) x, y + 1, z; (iii) x - 1/2, -y - 1/2, -z.]
(I) (2S,4R)-2-(N-{(1S,2S)-2-chloro-1- [(3R,4S,5R,6R)-3,4,5-trihydroxy-6- (methylsulfanyl)perhydropyran-2-yl]propyl}aminocarbonyl)-4-propylpyrrolidinium chloride monohydrate top
Crystal data top
C18H34ClN2O5S+·Cl·H2OF(000) = 512
Mr = 479.45Dx = 1.298 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8726 reflections
a = 9.4669 (6) Åθ = 2.2–28.0°
b = 9.9255 (6) ŵ = 0.38 mm1
c = 13.4949 (8) ÅT = 294 K
β = 104.601 (1)°Needle, colourless
V = 1227.08 (13) Å30.15 × 0.10 × 0.06 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4211 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω scansh = 1111
11796 measured reflectionsk = 1111
4321 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.1659P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4321 reflectionsΔρmax = 0.26 e Å3
323 parametersΔρmin = 0.20 e Å3
68 restraintsAbsolute structure: Flack & Bernardinelli (1983), with XXXX Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C18H34ClN2O5S+·Cl·H2OV = 1227.08 (13) Å3
Mr = 479.45Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.4669 (6) ŵ = 0.38 mm1
b = 9.9255 (6) ÅT = 294 K
c = 13.4949 (8) Å0.15 × 0.10 × 0.06 mm
β = 104.601 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4211 reflections with I > 2σ(I)
11796 measured reflectionsRint = 0.016
4321 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.26 e Å3
S = 1.05Δρmin = 0.20 e Å3
4321 reflectionsAbsolute structure: Flack & Bernardinelli (1983), with XXXX Friedel pairs
323 parametersAbsolute structure parameter: 0.02 (5)
68 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4725 (2)0.67929 (18)0.70806 (14)0.0356 (4)
H10.55610.70330.76460.043*
C20.59163 (19)0.47578 (17)0.67785 (14)0.0365 (4)
H20.57320.37890.66850.044*
C30.61592 (19)0.53051 (17)0.57766 (14)0.0353 (4)
H30.53240.50410.52190.042*
C40.6237 (2)0.68397 (18)0.58082 (14)0.0361 (4)
H40.71030.70930.63450.043*
C50.48997 (18)0.74371 (17)0.60980 (14)0.0347 (4)
H50.50950.83970.62380.042*
C60.3310 (2)0.72023 (19)0.73529 (15)0.0409 (4)
H60.24980.68320.68230.049*
C70.3200 (3)0.6614 (3)0.8376 (2)0.0663 (7)
H70.33390.56370.83510.080*
C80.1736 (4)0.6866 (4)0.8611 (3)0.0887 (10)
H8A0.15740.78180.86390.133*
H8B0.17340.64660.92580.133*
H8C0.09730.64720.80830.133*
C90.1884 (2)0.9256 (2)0.68982 (15)0.0391 (4)
C100.1932 (2)1.0789 (2)0.68848 (16)0.0446 (4)
H100.26011.10950.64830.054*
C110.2323 (3)1.1447 (3)0.7932 (2)0.0736 (8)
H11A0.28741.22690.79230.088*
H11B0.28951.08420.84430.088*
C120.0854 (3)1.1751 (4)0.8153 (2)0.0746 (7)
H120.04541.09430.83990.090*
C130.0055 (3)1.2160 (4)0.7132 (2)0.0802 (9)
H13A0.10841.20370.70940.096*
H13B0.01141.30980.69960.096*
C140.0246 (3)1.1903 (4)0.5365 (2)0.0775 (8)
H14A0.07701.20470.50470.116*
H14B0.06531.13130.49460.116*
H14C0.07521.27500.54410.116*
C150.0937 (6)1.2941 (5)0.8915 (3)0.0791 (12)0.760 (6)
H15A0.16441.35940.88050.095*0.760 (6)
H15B0.00061.33830.87780.095*0.760 (6)
C160.1359 (5)1.2494 (5)1.0010 (3)0.0819 (11)0.760 (6)
H16A0.22791.20141.01350.098*0.760 (6)
H16B0.06281.18691.01230.098*0.760 (6)
C170.1513 (10)1.3634 (6)1.0773 (3)0.0920 (16)0.760 (6)
H17A0.23111.42041.07200.138*0.760 (6)
H17B0.16981.32721.14530.138*0.760 (6)
H17C0.06281.41511.06290.138*0.760 (6)
C1510.0858 (16)1.2084 (12)0.9313 (9)0.078 (3)0.240 (6)
H15C0.01241.20620.94080.094*0.240 (6)
H15D0.14611.14480.97810.094*0.240 (6)
C1610.1486 (16)1.3478 (11)0.9475 (9)0.080 (3)0.240 (6)
H16C0.09561.40550.89260.097*0.240 (6)
H16D0.24951.34480.94380.097*0.240 (6)
C1710.142 (3)1.4093 (14)1.0491 (10)0.087 (4)0.240 (6)
H17D0.04521.44121.04480.131*0.240 (6)
H17E0.20971.48321.06490.131*0.240 (6)
H17F0.16811.34241.10200.131*0.240 (6)
C180.6901 (4)0.4069 (3)0.8801 (2)0.0722 (7)
H18A0.60570.45160.89160.108*
H18B0.76600.40560.94260.108*
H18C0.66500.31620.85790.108*
N10.31560 (19)0.86645 (17)0.73195 (13)0.0406 (4)
H1N0.394 (3)0.918 (2)0.7448 (16)0.061 (6)*
N20.04062 (19)1.12764 (19)0.63980 (15)0.0454 (4)
H2N0.008 (3)1.055 (3)0.630 (2)0.068 (7)*
O10.46370 (13)0.53521 (12)0.69777 (11)0.0389 (3)
O20.74418 (15)0.47869 (15)0.55603 (11)0.0446 (3)
H2O0.727 (3)0.400 (3)0.539 (2)0.069 (8)*
O30.63906 (16)0.74001 (14)0.48705 (11)0.0439 (3)
H3O0.574 (2)0.706 (3)0.4420 (16)0.066 (7)*
O40.36222 (15)0.73406 (15)0.52863 (11)0.0415 (3)
H4O0.343 (3)0.657 (3)0.520 (2)0.062 (8)*
O50.07332 (16)0.86606 (16)0.65446 (14)0.0571 (4)
S10.75350 (5)0.49602 (6)0.78280 (4)0.04994 (14)
Cl10.46173 (11)0.72733 (13)0.94037 (5)0.1044 (3)
Cl20.42970 (6)0.59125 (5)0.29038 (4)0.05418 (14)
O1W0.24161 (16)0.50065 (18)0.43547 (16)0.0594 (4)
H1W0.257 (5)0.511 (5)0.375 (2)0.089 (2)*
H2W0.262 (5)0.427 (3)0.473 (3)0.089 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (9)0.0259 (8)0.0456 (10)0.0037 (7)0.0162 (8)0.0022 (7)
C20.0396 (9)0.0227 (8)0.0482 (10)0.0039 (7)0.0127 (7)0.0023 (7)
C30.0348 (8)0.0273 (9)0.0452 (9)0.0027 (7)0.0128 (7)0.0040 (7)
C40.0382 (9)0.0276 (8)0.0452 (10)0.0007 (7)0.0157 (8)0.0032 (7)
C50.0378 (9)0.0212 (8)0.0465 (9)0.0026 (6)0.0134 (8)0.0025 (7)
C60.0409 (10)0.0329 (10)0.0529 (10)0.0078 (8)0.0193 (8)0.0007 (8)
C70.0793 (16)0.0557 (14)0.0796 (16)0.0196 (12)0.0492 (14)0.0146 (12)
C80.100 (2)0.084 (2)0.111 (2)0.0205 (17)0.079 (2)0.0254 (18)
C90.0372 (10)0.0385 (10)0.0445 (10)0.0058 (8)0.0156 (8)0.0044 (8)
C100.0374 (9)0.0366 (10)0.0599 (12)0.0064 (8)0.0123 (9)0.0024 (9)
C110.0613 (14)0.0560 (14)0.0898 (19)0.0174 (12)0.0063 (13)0.0306 (13)
C120.0747 (17)0.0827 (19)0.0691 (16)0.0016 (15)0.0232 (13)0.0204 (14)
C130.0599 (14)0.086 (2)0.0917 (19)0.0281 (15)0.0129 (13)0.0261 (16)
C140.0527 (13)0.099 (2)0.0809 (17)0.0039 (14)0.0176 (12)0.0318 (17)
C150.109 (3)0.067 (2)0.060 (2)0.029 (2)0.019 (2)0.0048 (19)
C160.100 (3)0.081 (3)0.060 (2)0.003 (2)0.0128 (18)0.0035 (18)
C170.120 (3)0.092 (4)0.061 (2)0.012 (3)0.017 (3)0.015 (2)
C1510.105 (5)0.071 (5)0.062 (5)0.004 (5)0.028 (4)0.005 (5)
C1610.104 (5)0.072 (5)0.062 (5)0.004 (5)0.015 (4)0.003 (4)
C1710.122 (6)0.083 (7)0.055 (6)0.006 (7)0.020 (6)0.012 (6)
C180.094 (2)0.0692 (18)0.0524 (13)0.0163 (15)0.0173 (13)0.0111 (12)
N10.0372 (8)0.0335 (8)0.0533 (9)0.0062 (7)0.0153 (7)0.0036 (7)
N20.0357 (8)0.0389 (9)0.0633 (11)0.0073 (7)0.0159 (8)0.0058 (8)
O10.0405 (6)0.0260 (6)0.0543 (7)0.0036 (5)0.0196 (6)0.0026 (5)
O20.0431 (7)0.0328 (7)0.0623 (8)0.0029 (6)0.0217 (6)0.0101 (7)
O30.0484 (8)0.0371 (7)0.0511 (8)0.0008 (6)0.0217 (7)0.0027 (6)
O40.0438 (7)0.0296 (7)0.0496 (7)0.0057 (6)0.0087 (6)0.0020 (6)
O50.0410 (8)0.0435 (8)0.0838 (10)0.0016 (6)0.0099 (7)0.0110 (8)
S10.0473 (3)0.0488 (3)0.0500 (3)0.0105 (2)0.0053 (2)0.0029 (2)
Cl10.1098 (6)0.1549 (9)0.0513 (3)0.0394 (6)0.0256 (4)0.0028 (5)
Cl20.0579 (3)0.0430 (3)0.0619 (3)0.0056 (2)0.0157 (2)0.0045 (2)
O1W0.0429 (7)0.0453 (9)0.0910 (13)0.0017 (7)0.0186 (8)0.0082 (9)
Geometric parameters (Å, º) top
C1—O11.437 (2)C12—H120.9800
C1—C51.518 (3)C13—N21.470 (3)
C1—C61.531 (2)C13—H13A0.9700
C1—H10.9800C13—H13B0.9700
C2—O11.432 (2)C14—N21.498 (3)
C2—C31.527 (3)C14—H14A0.9600
C2—S11.8167 (18)C14—H14B0.9600
C2—H20.9800C14—H14C0.9600
C3—O21.415 (2)C15—C161.497 (5)
C3—C41.525 (2)C15—H15A0.9700
C3—H30.9800C15—H15B0.9700
C4—O31.423 (2)C16—C171.511 (5)
C4—C51.535 (2)C16—H16A0.9700
C4—H40.9800C16—H16B0.9700
C5—O41.416 (2)C17—H17A0.9600
C5—H50.9800C17—H17B0.9600
C6—N11.458 (2)C17—H17C0.9600
C6—C71.526 (3)C151—C1611.500 (6)
C6—H60.9800C151—H15C0.9700
C7—C81.519 (4)C151—H15D0.9700
C7—Cl11.793 (3)C161—C1711.515 (7)
C7—H70.9800C161—H16C0.9700
C8—H8A0.9600C161—H16D0.9700
C8—H8B0.9600C171—H17D0.9600
C8—H8C0.9600C171—H17E0.9600
C9—O51.226 (3)C171—H17F0.9600
C9—N11.331 (3)C18—S11.807 (3)
C9—C101.523 (3)C18—H18A0.9600
C10—N21.507 (3)C18—H18B0.9600
C10—C111.516 (3)C18—H18C0.9600
C10—H100.9800N1—H1N0.88 (2)
C11—C121.524 (4)N2—H2N0.85 (3)
C11—H11A0.9700O2—H2O0.82 (3)
C11—H11B0.9700O3—H3O0.822 (17)
C12—C131.485 (4)O4—H4O0.78 (3)
C12—C151.556 (5)O1W—H1W0.870 (18)
C12—C1511.600 (10)O1W—H2W0.888 (18)
O1—C1—C5110.55 (15)C13—C12—H12110.8
O1—C1—C6104.73 (14)C11—C12—H12110.8
C5—C1—C6113.10 (15)C15—C12—H12110.8
O1—C1—H1109.4C151—C12—H1275.1
C5—C1—H1109.4N2—C13—C12105.1 (2)
C6—C1—H1109.4N2—C13—H13A110.7
O1—C2—C3110.05 (14)C12—C13—H13A110.7
O1—C2—S1113.28 (12)N2—C13—H13B110.7
C3—C2—S1111.42 (12)C12—C13—H13B110.7
O1—C2—H2107.3H13A—C13—H13B108.8
C3—C2—H2107.3N2—C14—H14A109.5
S1—C2—H2107.3N2—C14—H14B109.5
O2—C3—C4109.33 (15)H14A—C14—H14B109.5
O2—C3—C2112.44 (15)N2—C14—H14C109.5
C4—C3—C2110.32 (15)H14A—C14—H14C109.5
O2—C3—H3108.2H14B—C14—H14C109.5
C4—C3—H3108.2C16—C15—C12112.6 (3)
C2—C3—H3108.2C16—C15—H15A109.1
O3—C4—C3112.36 (16)C12—C15—H15A109.1
O3—C4—C5110.58 (15)C16—C15—H15B109.1
C3—C4—C5110.86 (15)C12—C15—H15B109.1
O3—C4—H4107.6H15A—C15—H15B107.8
C3—C4—H4107.6C15—C16—C17114.0 (4)
C5—C4—H4107.6C15—C16—H16A108.8
O4—C5—C1112.80 (14)C17—C16—H16A108.8
O4—C5—C4112.04 (14)C15—C16—H16B108.8
C1—C5—C4109.76 (14)C17—C16—H16B108.8
O4—C5—H5107.3H16A—C16—H16B107.7
C1—C5—H5107.3C161—C151—C12103.7 (8)
C4—C5—H5107.3C161—C151—H15C111.0
N1—C6—C7112.33 (17)C12—C151—H15C111.0
N1—C6—C1110.08 (15)C161—C151—H15D111.0
C7—C6—C1112.25 (17)C12—C151—H15D111.0
N1—C6—H6107.3H15C—C151—H15D109.0
C7—C6—H6107.3C151—C161—C171113.5 (6)
C1—C6—H6107.3C151—C161—H16C108.9
C8—C7—C6113.5 (2)C171—C161—H16C108.9
C8—C7—Cl1108.8 (2)C151—C161—H16D108.9
C6—C7—Cl1110.59 (18)C171—C161—H16D108.9
C8—C7—H7107.9H16C—C161—H16D107.7
C6—C7—H7107.9C161—C171—H17D109.5
Cl1—C7—H7107.9C161—C171—H17E109.5
C7—C8—H8A109.5H17D—C171—H17E109.5
C7—C8—H8B109.5C161—C171—H17F109.5
H8A—C8—H8B109.5H17D—C171—H17F109.5
C7—C8—H8C109.5H17E—C171—H17F109.5
H8A—C8—H8C109.5S1—C18—H18A109.5
H8B—C8—H8C109.5S1—C18—H18B109.5
O5—C9—N1125.00 (19)H18A—C18—H18B109.5
O5—C9—C10120.19 (18)S1—C18—H18C109.5
N1—C9—C10114.81 (18)H18A—C18—H18C109.5
N2—C10—C11104.49 (17)H18B—C18—H18C109.5
N2—C10—C9107.34 (17)C9—N1—C6121.63 (18)
C11—C10—C9114.9 (2)C9—N1—H1N117.1 (15)
N2—C10—H10110.0C6—N1—H1N119.9 (15)
C11—C10—H10110.0C13—N2—C14113.7 (2)
C9—C10—H10110.0C13—N2—C10108.21 (18)
C10—C11—C12104.3 (2)C14—N2—C10113.56 (17)
C10—C11—H11A110.9C13—N2—H2N111.8 (17)
C12—C11—H11A110.9C14—N2—H2N106.4 (18)
C10—C11—H11B110.9C10—N2—H2N102.7 (18)
C12—C11—H11B110.9C2—O1—C1113.37 (13)
H11A—C11—H11B108.9C3—O2—H2O107 (2)
C13—C12—C11102.5 (2)C4—O3—H3O105.6 (18)
C13—C12—C15109.1 (3)C5—O4—H4O108 (2)
C11—C12—C15112.5 (3)C18—S1—C298.23 (12)
C13—C12—C151135.2 (6)H1W—O1W—H2W125 (3)
C11—C12—C151117.1 (6)
O1—C2—C3—O2177.86 (14)C10—C11—C12—C1337.7 (3)
S1—C2—C3—O251.34 (17)C10—C11—C12—C15154.7 (3)
O1—C2—C3—C455.52 (19)C10—C11—C12—C151164.0 (5)
S1—C2—C3—C471.00 (16)C11—C12—C13—N237.6 (3)
O2—C3—C4—O358.7 (2)C15—C12—C13—N2157.0 (3)
C2—C3—C4—O3177.11 (14)C151—C12—C13—N2170.2 (6)
O2—C3—C4—C5176.96 (14)C13—C12—C15—C16159.8 (4)
C2—C3—C4—C552.8 (2)C11—C12—C15—C1687.1 (5)
O1—C1—C5—O469.97 (18)C151—C12—C15—C1618.5 (9)
C6—C1—C5—O447.1 (2)C12—C15—C16—C17177.5 (5)
O1—C1—C5—C455.74 (18)C13—C12—C151—C16175.7 (12)
C6—C1—C5—C4172.81 (15)C11—C12—C151—C16173.6 (11)
O3—C4—C5—O451.98 (19)C15—C12—C151—C16118.8 (7)
C3—C4—C5—O473.33 (19)C12—C151—C161—C171172.6 (14)
O3—C4—C5—C1178.11 (15)O5—C9—N1—C63.2 (3)
C3—C4—C5—C152.8 (2)C10—C9—N1—C6177.36 (17)
O1—C1—C6—N1171.00 (16)C7—C6—N1—C997.0 (2)
C5—C1—C6—N150.6 (2)C1—C6—N1—C9137.17 (18)
O1—C1—C6—C763.1 (2)C12—C13—N2—C14150.6 (3)
C5—C1—C6—C7176.47 (18)C12—C13—N2—C1023.5 (3)
N1—C6—C7—C862.0 (3)C11—C10—N2—C130.4 (3)
C1—C6—C7—C8173.3 (2)C9—C10—N2—C13122.0 (2)
N1—C6—C7—Cl160.7 (2)C11—C10—N2—C14126.8 (3)
C1—C6—C7—Cl164.0 (2)C9—C10—N2—C14110.8 (2)
O5—C9—C10—N20.3 (3)C3—C2—O1—C160.68 (19)
N1—C9—C10—N2179.24 (16)S1—C2—O1—C164.78 (18)
O5—C9—C10—C11116.0 (2)C5—C1—O1—C261.28 (19)
N1—C9—C10—C1163.5 (2)C6—C1—O1—C2176.59 (14)
N2—C10—C11—C1223.4 (3)O1—C2—S1—C1860.84 (16)
C9—C10—C11—C1293.9 (3)C3—C2—S1—C18174.43 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl2i0.88 (2)2.53 (2)3.3540 (19)157.2 (19)
N2—H2N···O1Wii0.85 (3)2.23 (3)2.897 (3)136 (2)
N2—H2N···O50.85 (3)2.02 (3)2.616 (2)126 (2)
O2—H2O···O4iii0.82 (3)1.97 (3)2.763 (2)164 (3)
O3—H3O···Cl20.82 (2)2.44 (2)3.2403 (17)166 (2)
O4—H4O···O1W0.78 (3)2.02 (3)2.744 (2)153 (3)
O1W—H1W···Cl20.87 (2)2.36 (3)3.094 (2)142 (4)
O1W—H2W···O3iii0.89 (2)2.08 (3)2.910 (2)155 (4)
C5—H5···Cl2i0.982.753.712 (2)167
C14—H14B···O2i0.962.583.484 (4)158
C15—H15B···S1iv0.972.833.763 (5)162
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x1, y+1, z.
(II) (2S,4R)-2-(N-{(1S,2S)-2-chloro-1- [(3R,4S,5R,6R)-3,4,5-trihydroxy-6- (methylsulfanyl)perhydropyran-2-yl]propyl}aminocarbonyl)-4-propylpyrrolidinium chloride monohydrate ethanol solvate top
Crystal data top
C18H34ClN2O5S+·Cl·H2O·C2H6OF(000) = 1128
Mr = 525.52Dx = 1.244 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5339 reflections
a = 9.9630 (16) Åθ = 2.2–25.2°
b = 10.6998 (17) ŵ = 0.34 mm1
c = 26.324 (4) ÅT = 294 K
V = 2806.2 (8) Å3Plates, colourless
Z = 40.13 × 0.11 × 0.05 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4748 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω scansh = 1111
27108 measured reflectionsk = 1212
4937 independent reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0537P)2 + 1.0157P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
4937 reflectionsΔρmax = 0.45 e Å3
364 parametersΔρmin = 0.19 e Å3
125 restraintsAbsolute structure: Flack & Bernardinelli (1983), with XXXX Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
C18H34ClN2O5S+·Cl·H2O·C2H6OV = 2806.2 (8) Å3
Mr = 525.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9630 (16) ŵ = 0.34 mm1
b = 10.6998 (17) ÅT = 294 K
c = 26.324 (4) Å0.13 × 0.11 × 0.05 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4748 reflections with I > 2σ(I)
27108 measured reflectionsRint = 0.027
4937 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119Δρmax = 0.45 e Å3
S = 1.18Δρmin = 0.19 e Å3
4937 reflectionsAbsolute structure: Flack & Bernardinelli (1983), with XXXX Friedel pairs
364 parametersAbsolute structure parameter: 0.00 (7)
125 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0068 (3)0.1469 (3)0.10524 (11)0.0366 (6)
H10.02300.20730.13090.044*
C20.2203 (3)0.2497 (3)0.09578 (12)0.0447 (7)
H20.31610.22940.09430.054*
C30.1809 (3)0.3007 (3)0.04361 (12)0.0421 (7)
H30.21150.24200.01750.050*
C40.0298 (3)0.3137 (3)0.03970 (11)0.0413 (7)
H40.00010.37800.06370.050*
C50.0386 (3)0.1897 (3)0.05313 (10)0.0362 (6)
H50.13530.20600.05520.043*
C60.0427 (3)0.0163 (3)0.11971 (11)0.0362 (6)
H60.00710.04310.09850.043*
C70.0112 (3)0.0165 (3)0.17472 (12)0.0521 (8)
H70.08470.00200.18050.062*
C80.0419 (4)0.1511 (4)0.18828 (16)0.0739 (12)
H8A0.13610.16660.18390.111*
H8B0.01740.16620.22300.111*
H8C0.00840.20580.16650.111*
C90.2263 (3)0.0992 (2)0.08183 (11)0.0368 (6)
C100.3742 (3)0.0975 (3)0.06618 (12)0.0403 (6)
H100.39320.02160.04660.048*
C110.4740 (3)0.1088 (4)0.11017 (14)0.0597 (9)
H11A0.43150.08760.14220.072*
H11B0.55030.05400.10500.072*
C120.5178 (3)0.2451 (3)0.10987 (14)0.0565 (8)
H120.44820.29570.12630.068*
C130.5203 (3)0.2749 (3)0.05441 (14)0.0533 (8)
H13A0.60130.24300.03860.064*
H13B0.51550.36440.04890.064*
C140.4057 (3)0.1843 (3)0.02158 (12)0.0518 (8)
H14A0.40920.26160.04010.078*
H14B0.32770.13790.03180.078*
H14C0.48480.13620.02870.078*
C150.6524 (4)0.2703 (5)0.13607 (16)0.0813 (12)
H15A0.71880.21360.12210.098*
H15B0.68050.35470.12790.098*
C160.6518 (11)0.2559 (9)0.1929 (3)0.099 (2)0.709 (8)
H16A0.74320.26410.20520.119*0.709 (8)
H16B0.62140.17220.20120.119*0.709 (8)
C170.5644 (11)0.3489 (12)0.2210 (4)0.122 (3)0.709 (8)
H17A0.57400.33650.25690.183*0.709 (8)
H17B0.47230.33680.21150.183*0.709 (8)
H17C0.59160.43230.21240.183*0.709 (8)
C1610.663 (3)0.206 (2)0.1884 (7)0.095 (3)0.291 (8)
H16C0.63950.11820.18510.114*0.291 (8)
H16D0.75420.21130.20080.114*0.291 (8)
C1710.569 (2)0.268 (3)0.2259 (9)0.108 (4)0.291 (8)
H17D0.58110.23190.25900.161*0.291 (8)
H17E0.47760.25610.21520.161*0.291 (8)
H17F0.58800.35600.22740.161*0.291 (8)
C180.2795 (7)0.2858 (6)0.19514 (19)0.121 (2)
H18A0.22600.21480.20450.181*
H18B0.28950.34000.22400.181*
H18C0.36640.25810.18410.181*
N10.1844 (2)0.0006 (2)0.10731 (9)0.0365 (5)
H1N0.232 (3)0.060 (3)0.1134 (10)0.055 (7)*
N20.3984 (2)0.2109 (2)0.03358 (10)0.0419 (6)
H2N0.332 (2)0.258 (3)0.0393 (11)0.063 (9)*
O10.15067 (18)0.13643 (19)0.10683 (8)0.0410 (5)
O20.2394 (2)0.4187 (2)0.03415 (10)0.0563 (6)
H2O0.320 (2)0.404 (4)0.0228 (14)0.085 (13)*
O30.0063 (2)0.3507 (2)0.01022 (9)0.0531 (6)
H3O0.070 (4)0.397 (3)0.0075 (13)0.080 (11)*
O40.0195 (2)0.0974 (2)0.01531 (8)0.0434 (5)
H4O0.061 (2)0.071 (3)0.0118 (14)0.065 (11)*
O50.1569 (2)0.1880 (2)0.07070 (10)0.0566 (6)
S10.19946 (11)0.36814 (9)0.14507 (4)0.0695 (3)
Cl10.10480 (14)0.08464 (12)0.21702 (4)0.0833 (3)
Cl20.24523 (8)0.52857 (7)0.00714 (4)0.0637 (3)
C190.2848 (14)0.0397 (10)0.1987 (3)0.147 (3)0.709 (8)
H19A0.32070.01730.22340.221*0.709 (8)
H19B0.33120.11810.20100.221*0.709 (8)
H19C0.19100.05240.20510.221*0.709 (8)
C200.3026 (11)0.0123 (8)0.1480 (3)0.125 (3)0.709 (8)
H20A0.26670.09650.14620.150*0.709 (8)
H20B0.39690.01440.13890.150*0.709 (8)
O60.2297 (10)0.0699 (9)0.1153 (3)0.135 (3)0.709 (8)
H6A0.24130.04890.08560.203*0.709 (8)
C1910.313 (3)0.046 (2)0.1873 (10)0.143 (4)0.291 (8)
H19D0.40770.06160.18410.214*0.291 (8)
H19E0.29150.03190.22240.214*0.291 (8)
H19F0.26430.11790.17520.214*0.291 (8)
C2010.276 (3)0.0634 (19)0.1573 (10)0.138 (3)0.291 (8)
H20C0.35320.09110.13770.166*0.291 (8)
H20D0.24990.13080.17980.166*0.291 (8)
O610.169 (2)0.0347 (19)0.1238 (8)0.121 (4)0.291 (8)
H6B0.19770.02540.09490.181*0.291 (8)
O1W0.1143 (3)0.3016 (3)0.10692 (12)0.0701 (7)
H1W0.089 (4)0.303 (4)0.0761 (9)0.105 (12)*
H2W0.133 (5)0.224 (3)0.1162 (19)0.105 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0247 (13)0.0382 (14)0.0468 (15)0.0004 (11)0.0032 (12)0.0061 (12)
C20.0233 (14)0.0499 (17)0.0610 (19)0.0052 (12)0.0027 (12)0.0028 (14)
C30.0306 (15)0.0381 (14)0.0574 (18)0.0009 (12)0.0107 (13)0.0004 (13)
C40.0308 (14)0.0420 (15)0.0510 (17)0.0072 (12)0.0056 (13)0.0030 (13)
C50.0203 (13)0.0450 (16)0.0434 (15)0.0007 (11)0.0037 (11)0.0006 (13)
C60.0279 (13)0.0355 (14)0.0453 (15)0.0021 (11)0.0002 (11)0.0059 (12)
C70.0443 (17)0.0545 (18)0.0575 (18)0.0084 (15)0.0051 (15)0.0077 (16)
C80.076 (3)0.067 (2)0.078 (3)0.007 (2)0.011 (2)0.031 (2)
C90.0314 (15)0.0327 (14)0.0462 (15)0.0003 (12)0.0023 (11)0.0000 (12)
C100.0305 (14)0.0330 (14)0.0573 (17)0.0004 (11)0.0009 (12)0.0045 (13)
C110.0335 (16)0.071 (2)0.074 (2)0.0087 (16)0.0066 (16)0.0197 (19)
C120.0358 (16)0.064 (2)0.070 (2)0.0051 (16)0.0000 (16)0.0068 (17)
C130.0387 (16)0.0376 (16)0.084 (2)0.0083 (13)0.0003 (16)0.0031 (16)
C140.0431 (17)0.0518 (18)0.061 (2)0.0039 (15)0.0046 (15)0.0097 (15)
C150.051 (2)0.111 (3)0.082 (3)0.021 (2)0.0106 (19)0.016 (3)
C160.065 (4)0.141 (6)0.090 (4)0.023 (5)0.016 (3)0.024 (4)
C170.100 (5)0.169 (8)0.097 (5)0.022 (7)0.003 (4)0.023 (6)
C1610.059 (5)0.136 (8)0.091 (6)0.016 (7)0.015 (5)0.024 (6)
C1710.079 (6)0.150 (8)0.094 (6)0.015 (8)0.009 (5)0.020 (7)
C180.135 (5)0.158 (5)0.070 (3)0.003 (5)0.024 (3)0.015 (3)
N10.0277 (12)0.0314 (12)0.0504 (14)0.0020 (10)0.0031 (10)0.0019 (11)
N20.0301 (12)0.0338 (12)0.0619 (15)0.0006 (11)0.0037 (12)0.0035 (11)
O10.0245 (9)0.0428 (10)0.0556 (11)0.0007 (8)0.0032 (8)0.0032 (9)
O20.0378 (12)0.0461 (11)0.0848 (16)0.0000 (10)0.0199 (12)0.0093 (12)
O30.0397 (12)0.0591 (13)0.0603 (14)0.0133 (11)0.0084 (11)0.0177 (11)
O40.0309 (10)0.0517 (12)0.0478 (11)0.0038 (9)0.0043 (9)0.0081 (10)
O50.0321 (11)0.0429 (12)0.0947 (17)0.0085 (10)0.0092 (11)0.0197 (12)
S10.0670 (6)0.0635 (5)0.0780 (6)0.0195 (5)0.0064 (5)0.0195 (5)
Cl10.1103 (9)0.0914 (7)0.0480 (5)0.0012 (7)0.0112 (5)0.0074 (5)
Cl20.0366 (4)0.0415 (4)0.1129 (8)0.0002 (3)0.0096 (5)0.0166 (4)
C190.202 (7)0.128 (6)0.113 (5)0.001 (6)0.035 (6)0.003 (5)
C200.171 (6)0.097 (5)0.108 (4)0.004 (5)0.028 (5)0.009 (4)
O60.186 (7)0.119 (5)0.100 (4)0.045 (5)0.026 (5)0.017 (3)
C1910.192 (8)0.116 (7)0.120 (7)0.008 (7)0.032 (7)0.009 (7)
C2010.185 (7)0.117 (6)0.113 (5)0.010 (6)0.025 (6)0.010 (6)
O610.162 (8)0.093 (7)0.107 (6)0.000 (6)0.026 (6)0.019 (5)
O1W0.0680 (18)0.0633 (17)0.079 (2)0.0137 (14)0.0106 (15)0.0138 (15)
Geometric parameters (Å, º) top
C1—O11.438 (3)C15—C161.504 (9)
C1—C51.515 (4)C15—C1611.544 (17)
C1—C61.531 (4)C15—H15A0.9700
C1—H10.9800C15—H15B0.9700
C2—O11.427 (4)C16—C171.515 (9)
C2—C31.529 (4)C16—H16A0.9700
C2—S11.825 (3)C16—H16B0.9700
C2—H20.9800C17—H17A0.9600
C3—O21.413 (4)C17—H17B0.9600
C3—C41.515 (4)C17—H17C0.9600
C3—H30.9800C161—C1711.515 (9)
C4—O31.419 (4)C161—H16C0.9700
C4—C51.533 (4)C161—H16D0.9700
C4—H40.9800C171—H17D0.9600
C5—O41.415 (3)C171—H17E0.9600
C5—H50.9800C171—H17F0.9600
C6—N11.459 (4)C18—S11.775 (6)
C6—C71.523 (4)C18—H18A0.9600
C6—H60.9800C18—H18B0.9600
C7—C81.515 (5)C18—H18C0.9600
C7—Cl11.811 (4)N1—H1N0.81 (3)
C7—H70.9800N2—H2N0.843 (18)
C8—H8A0.9600O2—H2O0.868 (19)
C8—H8B0.9600O3—H3O0.81 (4)
C8—H8C0.9600O4—H4O0.852 (19)
C9—O51.211 (3)C19—C201.456 (10)
C9—N11.329 (4)C19—H19A0.9600
C9—C101.530 (4)C19—H19B0.9600
C10—N21.506 (4)C19—H19C0.9600
C10—C111.531 (4)C20—O61.430 (9)
C10—H100.9800C20—H20A0.9700
C11—C121.522 (5)C20—H20B0.9700
C11—H11A0.9700O6—H6A0.8200
C11—H11B0.9700C191—C2011.463 (14)
C12—C131.495 (5)C191—H19D0.9600
C12—C151.532 (5)C191—H19E0.9600
C12—H120.9800C191—H19F0.9600
C13—N21.498 (4)C201—O611.421 (14)
C13—H13A0.9700C201—H20C0.9700
C13—H13B0.9700C201—H20D0.9700
C14—N21.481 (4)O61—H6B0.8200
C14—H14A0.9600O1W—H1W0.850 (19)
C14—H14B0.9600O1W—H2W0.89 (2)
C14—H14C0.9600
O1—C1—C5110.4 (2)C16—C15—C12115.2 (5)
O1—C1—C6104.0 (2)C12—C15—C161112.4 (11)
C5—C1—C6113.9 (2)C16—C15—H15A108.5
O1—C1—H1109.5C12—C15—H15A108.5
C5—C1—H1109.5C161—C15—H15A90.8
C6—C1—H1109.5C16—C15—H15B108.5
O1—C2—C3111.2 (2)C12—C15—H15B108.5
O1—C2—S1112.9 (2)C161—C15—H15B126.5
C3—C2—S1111.2 (2)H15A—C15—H15B107.5
O1—C2—H2107.1C15—C16—C17114.9 (8)
C3—C2—H2107.1C15—C16—H16A108.5
S1—C2—H2107.1C17—C16—H16A108.5
O2—C3—C4108.4 (2)C15—C16—H16B108.5
O2—C3—C2111.8 (3)C17—C16—H16B108.5
C4—C3—C2110.4 (2)H16A—C16—H16B107.5
O2—C3—H3108.7C16—C17—H17A109.5
C4—C3—H3108.7C16—C17—H17B109.5
C2—C3—H3108.7H17A—C17—H17B109.5
O3—C4—C3109.9 (2)C16—C17—H17C109.5
O3—C4—C5110.0 (2)H17A—C17—H17C109.5
C3—C4—C5110.3 (2)H17B—C17—H17C109.5
O3—C4—H4108.9C171—C161—C15110.1 (17)
C3—C4—H4108.9C171—C161—H16C109.6
C5—C4—H4108.9C15—C161—H16C109.6
O4—C5—C1112.7 (2)C171—C161—H16D109.6
O4—C5—C4112.4 (2)C15—C161—H16D109.6
C1—C5—C4109.7 (2)H16C—C161—H16D108.1
O4—C5—H5107.2C161—C171—H17D109.5
C1—C5—H5107.2C161—C171—H17E109.5
C4—C5—H5107.2H17D—C171—H17E109.5
N1—C6—C7112.7 (2)C161—C171—H17F109.5
N1—C6—C1111.2 (2)H17D—C171—H17F109.5
C7—C6—C1112.4 (2)H17E—C171—H17F109.5
N1—C6—H6106.7S1—C18—H18A109.5
C7—C6—H6106.7S1—C18—H18B109.5
C1—C6—H6106.7H18A—C18—H18B109.5
C8—C7—C6113.7 (3)S1—C18—H18C109.5
C8—C7—Cl1108.6 (3)H18A—C18—H18C109.5
C6—C7—Cl1109.9 (2)H18B—C18—H18C109.5
C8—C7—H7108.1C9—N1—C6120.7 (2)
C6—C7—H7108.1C9—N1—H1N123 (2)
Cl1—C7—H7108.1C6—N1—H1N115 (2)
C7—C8—H8A109.5C14—N2—C13114.0 (3)
C7—C8—H8B109.5C14—N2—C10114.3 (2)
H8A—C8—H8B109.5C13—N2—C10106.8 (2)
C7—C8—H8C109.5C14—N2—H2N109 (2)
H8A—C8—H8C109.5C13—N2—H2N107 (2)
H8B—C8—H8C109.5C10—N2—H2N105 (2)
O5—C9—N1124.9 (3)C2—O1—C1114.3 (2)
O5—C9—C10119.6 (3)C3—O2—H2O106 (3)
N1—C9—C10115.4 (2)C4—O3—H3O107 (3)
N2—C10—C9107.3 (2)C5—O4—H4O116 (3)
N2—C10—C11105.3 (2)C18—S1—C297.6 (2)
C9—C10—C11114.9 (3)C20—C19—H19A109.5
N2—C10—H10109.7C20—C19—H19B109.5
C9—C10—H10109.7H19A—C19—H19B109.5
C11—C10—H10109.7C20—C19—H19C109.5
C12—C11—C10104.9 (3)H19A—C19—H19C109.5
C12—C11—H11A110.8H19B—C19—H19C109.5
C10—C11—H11A110.8O6—C20—C19104.8 (8)
C12—C11—H11B110.8O6—C20—H20A110.8
C10—C11—H11B110.8C19—C20—H20A110.8
H11A—C11—H11B108.8O6—C20—H20B110.8
C13—C12—C11102.4 (3)C19—C20—H20B110.8
C13—C12—C15112.8 (3)H20A—C20—H20B108.9
C11—C12—C15114.6 (3)C20—O6—H6A109.5
C13—C12—H12108.9C201—C191—H19D109.5
C11—C12—H12108.9C201—C191—H19E109.5
C15—C12—H12108.9H19D—C191—H19E109.5
C12—C13—N2104.3 (3)C201—C191—H19F109.5
C12—C13—H13A110.9H19D—C191—H19F109.5
N2—C13—H13A110.9H19E—C191—H19F109.5
C12—C13—H13B110.9O61—C201—C191110.5 (19)
N2—C13—H13B110.9O61—C201—H20C109.5
H13A—C13—H13B108.9C191—C201—H20C109.5
N2—C14—H14A109.5O61—C201—H20D109.5
N2—C14—H14B109.5C191—C201—H20D109.5
H14A—C14—H14B109.5H20C—C201—H20D108.1
N2—C14—H14C109.5C201—O61—H6B109.5
H14A—C14—H14C109.5H1W—O1W—H2W110 (4)
H14B—C14—H14C109.5
O1—C2—C3—O2174.5 (2)C9—C10—C11—C12100.3 (3)
S1—C2—C3—O247.7 (3)C10—C11—C12—C1335.7 (3)
O1—C2—C3—C453.7 (3)C10—C11—C12—C15158.2 (3)
S1—C2—C3—C473.1 (3)C11—C12—C13—N240.4 (3)
O2—C3—C4—O362.3 (3)C15—C12—C13—N2164.1 (3)
C2—C3—C4—O3175.0 (2)C13—C12—C15—C16173.4 (5)
O2—C3—C4—C5176.3 (2)C11—C12—C15—C1670.0 (6)
C2—C3—C4—C553.5 (3)C13—C12—C15—C161163.7 (10)
O1—C1—C5—O469.5 (3)C11—C12—C15—C16147.1 (10)
C6—C1—C5—O447.0 (3)C12—C15—C16—C1764.9 (9)
O1—C1—C5—C456.6 (3)C161—C15—C16—C17152 (4)
C6—C1—C5—C4173.1 (2)C16—C15—C161—C17133 (3)
O3—C4—C5—O450.4 (3)C12—C15—C161—C17169.6 (19)
C3—C4—C5—O471.0 (3)O5—C9—N1—C66.4 (4)
O3—C4—C5—C1176.7 (2)C10—C9—N1—C6173.5 (2)
C3—C4—C5—C155.3 (3)C7—C6—N1—C9101.9 (3)
O1—C1—C6—N1165.1 (2)C1—C6—N1—C9131.0 (3)
C5—C1—C6—N145.0 (3)C12—C13—N2—C14157.3 (3)
O1—C1—C6—C767.5 (3)C12—C13—N2—C1030.1 (3)
C5—C1—C6—C7172.3 (2)C9—C10—N2—C14102.7 (3)
N1—C6—C7—C861.2 (4)C11—C10—N2—C14134.5 (3)
C1—C6—C7—C8172.2 (3)C9—C10—N2—C13130.2 (3)
N1—C6—C7—Cl160.8 (3)C11—C10—N2—C137.4 (3)
C1—C6—C7—Cl165.7 (3)C3—C2—O1—C157.3 (3)
O5—C9—C10—N25.6 (4)S1—C2—O1—C168.5 (3)
N1—C9—C10—N2174.4 (2)C5—C1—O1—C259.1 (3)
O5—C9—C10—C11111.1 (3)C6—C1—O1—C2178.4 (2)
N1—C9—C10—C1168.9 (3)O1—C2—S1—C1863.6 (3)
N2—C10—C11—C1217.5 (3)C3—C2—S1—C18170.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1Wi0.81 (3)2.14 (3)2.917 (4)161 (3)
N2—H2N···Cl2ii0.84 (2)2.59 (2)3.253 (3)137 (3)
O2—H2O···O4iii0.87 (2)1.89 (2)2.738 (3)165 (4)
O3—H3O···Cl20.81 (4)2.28 (4)3.082 (3)175 (3)
O4—H4O···Cl2iii0.85 (2)2.26 (2)3.104 (2)169 (4)
O6—H6A···Cl2iii0.822.233.046 (9)173
O61—H6B···Cl2iii0.822.453.26 (3)170
O1W—H1W···O30.85 (2)2.04 (2)2.863 (4)163 (4)
O1W—H2W···O60.89 (2)1.91 (3)2.741 (9)156 (5)
O1W—H2W···O610.89 (2)2.07 (3)2.94 (2)169 (5)
C10—H10···O3i0.982.353.298 (4)162
C14—H14B···O2i0.962.443.206 (4)137
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z; (iii) x1/2, y1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H34ClN2O5S+·Cl·H2OC18H34ClN2O5S+·Cl·H2O·C2H6O
Mr479.45525.52
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121
Temperature (K)294294
a, b, c (Å)9.4669 (6), 9.9255 (6), 13.4949 (8)9.9630 (16), 10.6998 (17), 26.324 (4)
α, β, γ (°)90, 104.601 (1), 9090, 90, 90
V3)1227.08 (13)2806.2 (8)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.380.34
Crystal size (mm)0.15 × 0.10 × 0.060.13 × 0.11 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11796, 4321, 4211 27108, 4937, 4748
Rint0.0160.027
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.05 0.050, 0.119, 1.18
No. of reflections43214937
No. of parameters323364
No. of restraints68125
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.200.45, 0.19
Absolute structureFlack & Bernardinelli (1983), with XXXX Friedel pairsFlack & Bernardinelli (1983), with XXXX Friedel pairs
Absolute structure parameter0.02 (5)0.00 (7)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl2i0.88 (2)2.53 (2)3.3540 (19)157.2 (19)
N2—H2N···O1Wii0.85 (3)2.23 (3)2.897 (3)136 (2)
N2—H2N···O50.85 (3)2.02 (3)2.616 (2)126 (2)
O2—H2O···O4iii0.82 (3)1.97 (3)2.763 (2)164 (3)
O3—H3O···Cl20.822 (17)2.436 (18)3.2403 (17)166 (2)
O4—H4O···O1W0.78 (3)2.02 (3)2.744 (2)153 (3)
O1W—H1W···Cl20.870 (18)2.36 (3)3.094 (2)142 (4)
O1W—H2W···O3iii0.888 (18)2.08 (3)2.910 (2)155 (4)
C5—H5···Cl2i0.982.753.712 (2)167
C14—H14B···O2i0.962.583.484 (4)158
C15—H15B···S1iv0.972.833.763 (5)162
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x1, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1Wi0.81 (3)2.14 (3)2.917 (4)161 (3)
N2—H2N···Cl2ii0.843 (18)2.59 (2)3.253 (3)137 (3)
O2—H2O···O4iii0.868 (19)1.89 (2)2.738 (3)165 (4)
O3—H3O···Cl20.81 (4)2.28 (4)3.082 (3)175 (3)
O4—H4O···Cl2iii0.852 (19)2.26 (2)3.104 (2)169 (4)
O6—H6A···Cl2iii0.822.233.046 (9)172.6
O61—H6B···Cl2iii0.822.453.26 (3)170.3
O1W—H1W···O30.850 (19)2.04 (2)2.863 (4)163 (4)
O1W—H2W···O60.89 (2)1.91 (3)2.741 (9)156 (5)
O1W—H2W···O610.89 (2)2.07 (3)2.94 (2)169 (5)
C10—H10···O3i0.982.353.298 (4)162
C14—H14B···O2i0.962.443.206 (4)137
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z; (iii) x1/2, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds