Download citation
Download citation
link to html
The title complex, catena-poly[[[(2,2'-bipyridine-1[kappa]2N,N')tris­(methanol-2[kappa]O)(nitrato-2[kappa]2O,O')-[mu]-cyanido-1:2C:N-cyanido-1[kappa]C-iron(II)neodymium(III)]-di-[mu]-cyanido-1:2'C:N;2:1'N:C] methanol solvate], {[FeIINdIII(CN)4(NO3)(C10H8N2)(CH3OH)3]·CH3OH}n, is made up of ladder-like one-dimensional chains oriented along the c axis. Each ladder consists of two strands based on alternating FeII and NdIII centers connected by cyanide bridges. Furthermore, two such parallel chains are connected by additional cyanide cross-pieces (the `rungs' of the ladder), which likewise connect FeII and NdIII centers, such that each [Fe(CN)4(bipy)]2- unit (bipy is 2,2'-bipyridine) coordinates with three NdIII centers and each NdIII center connects with three different [Fe(CN)4(bipy)]2- units. In the complex, the iron(II) cation is six-coordinated with a distorted octa­hedral geometry and the neodymium(III) cation is eight-coordinated with a distorted dodeca­hedral environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109005344/sf3099sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005344/sf3099Isup2.hkl
Contains datablock I

CCDC reference: 735101

Comment top

There has been a growing interest in the preparation and study of mixed lanthanide–transition metal compounds because lanthanide ions have a rich coordination chemistry with high coordination numbers and significant coordination flexibility, which often leads to unanticipated but remarkable structures (Huang et al., 2008; Zhao et al., 2007; Yeung et al., 2006). A few supramolecular materials have been reported combining the hexacyanometalate ions, [M(CN)6]3- (M = Fe and Cr) or octacyanometalate ions [M(CN)8]3-/4- (M = Mo, W and Nb) as building blocks with lanthanide ions (Li et al., 2008; Sun et al., 2007; Przychodzen et al., 2007). However, as far as we know, examples of 3d–4f cyano-bridged coordination polymers that incorporate diamagnetic [FeII(L)(CN)4]2- [L is 2,2'-bipyridine (bipy) or 1,10-phenanthroline] building blocks (Zhao, Wang & Fang, 2004; Zhao, Wang, Fang & Chen, 2004) are rare. In this contribution, we report an interesting one-dimensional ladder-like 3d–4f cyano-bridged coordination polymer, (I), based on the [FeII(bipy)(CN)4]2- building block.

The asymmetric unit in the structure of (I) comprises one [FeII(bipy)(CN)4]2- anion, one [NdIII(NO3)(CH3OH)3]2+ cation and one solvent methanol molecule (Fig. 1). Selected geometric parameters are given in Table 1. The crystal structure of (I) consists of one-dimensioanl ladder-like bimetallic neutral chains, {[FeII(bipy)(CN)4][NdIII(NO3)(CH3OH)3]}n, built up from alternating FeII and NdIII metal centers linked through the cyano bridges (Fig. 2). The ladder-like bimetallic chains contain Fe2Nd2 centrosymmetric quadrangle motifs. The [Fe(bipy)(CN)4]2- fragment exhibits a distorted octahedral structure consisting of two N atoms from a planar bipy ligand and four C atoms from four CN- groups. The small bite angle subtended by the chelating bipy group [80.19 (16)° for N1—Fe1—N2] is one of the main factors accounting for this distortion. The values of the Fe—N(bipy) bond distances [2.003 (4) and 1.995 (4) Å] are practically the same as those observed in the low-spin iron(II) compound K2[FeII(bipy)(CN)4].2.5H2O [1.987 (4)–2.003 (4) Å; Nieuwenhuyzen et al., 1998] and in the mononuclear PPh4[Fe(bipy)(CN)4] and the trinuclear species [{FeIII(bipy)(CN)4}2MII(H2O)4].4H2O (M = Mn or Zn; Lescouezec et al., 2002). Three of the four cyano groups of the [Fe(bipy)(CN)4]2- unit in (I) are bridging, while the fourth is terminal. The Fe—C—N angles for both terminal [176.6 (4)°] and bridging [175.2 (4), 179.0 (5) and 179.4 (5)°] CN- groups deviate slightly from strict linearity. Each NdIII cation is eight-coordinated, connecting with two O atoms from the NO3 group, three O atoms from three CH3OH units and three N atoms from three CN- ligands, building distorted NdN3O5 dodecahedral surroundings (Fig. 1). The Nd—O bond lengths fall in a very narrow range [2.494 (3)–2.542 (3) Å for Nd—O(NO3) and 2.462 (3)–2.499 (3) Å for Nd—O(CH3OH)]. The Nd—N(cyanide) bond distances [2.459 (4)–2.509 (4) Å] are somewhat smaller than those from {[Ru(phen)(CN)4]3[Ln(terpy)(H2O)3]2.nH2O} [2.530 (9)–2.548 (11) Å; Baca et al., 2007]. The NO3- ion acts as a bidentate ligand toward NdIII through two of its three O atoms, which is different from previously reported cases (Yuan et al., 2004; Liu et al., 2008), in which an NO3- ion coordinated to a lanthanide ion acts as a monodenate ligand in lanthanide–transition metal complexes.

The angles of the cyanide–NdIII interactions are far from linear [Nd1ii—N3—C11 = 169.3 (4)°, Nd1—N6—C14 = 171.1 (4)°, Nd1—N5—C13 = 163.2 (4)°; symmetry code: (ii) -x + 1, -y, -z +1; Fig. 2]. The Fe···Nd separations across cyanide bridges are 5.499 (4), 5.518 (5) and 5.452 (4) Å, in good agreement with those of {[Ru(phen)(CN)4]3[Ln(terpy)(H2O)3]2.nH2O} (Baca et al., 2007). The uncoordinated solvent methanol molecules are involved in hydrogen-bonding interactions with the one terminal cyano group and a coordinated methanol molecule from another [NdIII(NO3)(CH3OH)3]2- unit (Table 2).

Adjacent ladder-like chains are also held together by weak hydrogen-bonds between the terminal cyanide ligands of the [Fe(bipy)(CN)4]2- units in one chain and the OH donors of CH3OH ligands from [NdIII(NO3)(CH3OH)3] units in neighboring chains (Table 2). The two-dimensional structure is formed by the chains stacking along the b direction, mainly via hydrogen-bonding interactions (Fig. 3).

Related literature top

For related literature, see: Huang et al. (2008); Lescouezec et al. (2002); Li et al. (2008); Liu et al. (2008); Nieuwenhuyzen et al. (1998); Przychodzen et al. (2007); Baca et al. (2007); Yeung et al. (2006); Yuan et al. (2004); Zhao et al. (2007); Zhao, Wang & Fang (2004a); Zhao, Wang, Fang & Chen (2004b).

Experimental top

Red–brown prismatic crystals of (I) were obtained by slow diffusion of a methanol solution of K2[Fe(bipy)(CN)4].3H2O (0.1 mmol) and an aqueous solution of Nd(NO3)3.6H2O (0.1 mmol) through an H-tube at room temperature. The resulting crystals were suitable for single-crystal X-ray diffraction analysis. The product is insoluble in water and methanol.

Refinement top

H atoms attached to C atoms of the bipy ligand were placed in calculated positions (C—H = 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The methyl H atoms of the methanol molecules were placed geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C). The hydroxy H atoms of the methanol molecules were located in a difference Fourier map and refined as riding, with O—H restraints (0.97 Å for O1—H, 0.93 Å for O2—H and O3—H and 0.96 Å for O7—H), and with Uiso(H) = 1.2Ueq(O) for O1, O2 and O3, and 1.5Ueq(O) for O7.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, y, z - 1; (ii) -x + 1, -y, -z +1; (iii) x, y, z + 1.]
[Figure 2] Fig. 2. The one-dimensional chain of (I). [Symmetry code: (ii) -x + 1, -y, -z +1.]
[Figure 3] Fig. 3. Schematic representation of the two-dimensional structure formed via hydrogen bonds (broken lines) between the bimetallic chains of (I). [Symmetry code: (v) x, -y + 1/2, z - 1/2; (vii) -x + 1, y - 1/2; -z + 1/2; (viii) -x + 1, y + 1/2, -z + 1/2.]
catena-poly[[[(2,2'-bipyridine-1κ2N,N')tris(methanol- 2κO)(nitrato-2κ2O,O')-µ-cyanido- 1:2C:N-cyanido-1κC-iron(II)neodymium(III)]-di-µ-cyanido- 1:2'C:N;2:1'N:C] methanol solvate] top
Crystal data top
[FeNd(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4OF(000) = 1292
Mr = 650.53Dx = 1.708 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3618 reflections
a = 12.9908 (17) Åθ = 2.1–25.1°
b = 18.311 (3) ŵ = 2.65 mm1
c = 10.9171 (14) ÅT = 291 K
β = 103.099 (2)°Block, red
V = 2529.3 (6) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4955 independent reflections
Radiation source: sealed tube3841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
phi and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1615
Tmin = 0.545, Tmax = 0.619k = 2222
19739 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0424P)2]
where P = (Fo2 + 2Fc2)/3
4955 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 1.11 e Å3
Crystal data top
[FeNd(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4OV = 2529.3 (6) Å3
Mr = 650.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9908 (17) ŵ = 2.65 mm1
b = 18.311 (3) ÅT = 291 K
c = 10.9171 (14) Å0.26 × 0.22 × 0.20 mm
β = 103.099 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4955 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3841 reflections with I > 2σ(I)
Tmin = 0.545, Tmax = 0.619Rint = 0.044
19739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.09Δρmax = 0.56 e Å3
4955 reflectionsΔρmin = 1.11 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1104 (4)0.1472 (3)0.6439 (5)0.0417 (11)
H10.15990.18320.63960.050*
C20.0048 (4)0.1676 (3)0.6356 (5)0.0443 (11)
H20.01630.21600.62230.053*
C30.0678 (4)0.1131 (3)0.6478 (5)0.0456 (12)
H30.13790.12500.64530.055*
C40.0336 (4)0.0401 (3)0.6639 (5)0.0429 (11)
H40.08010.00300.67330.052*
C50.0696 (4)0.0250 (3)0.6653 (5)0.0422 (11)
C60.1125 (4)0.0503 (3)0.6783 (5)0.0427 (11)
C70.0477 (4)0.1114 (3)0.6780 (4)0.0419 (11)
H70.02450.10740.67310.050*
C80.0989 (4)0.1783 (3)0.6856 (5)0.0429 (11)
H80.05910.22060.68400.051*
C90.2058 (4)0.1846 (2)0.6952 (4)0.0405 (10)
H90.23860.23000.70510.049*
C100.2641 (4)0.1210 (2)0.6898 (5)0.0421 (11)
H100.33600.12460.69250.050*
C110.4279 (4)0.0018 (2)0.7109 (5)0.0386 (10)
C120.3533 (3)0.1364 (2)0.6900 (4)0.0339 (9)
C130.2814 (3)0.0409 (2)0.5050 (5)0.0350 (10)
C140.3024 (4)0.0474 (2)0.1376 (5)0.0380 (10)
C150.1969 (4)0.0899 (3)0.0669 (5)0.0512 (13)
H15A0.12990.06530.04960.077*
H15B0.18790.13910.09270.077*
H15C0.22460.09030.00750.077*
C160.2492 (4)0.2207 (3)0.3813 (5)0.0441 (11)
H16A0.18950.23720.31860.066*
H16B0.27790.26090.43490.066*
H16C0.22740.18290.43080.066*
C170.5136 (4)0.1553 (3)0.0464 (5)0.0442 (12)
H17A0.53480.10500.05100.066*
H17B0.57480.18580.07200.066*
H17C0.47830.16710.03840.066*
C180.5989 (4)0.1361 (3)0.5553 (5)0.0447 (12)
H18A0.53990.10340.53340.067*
H18B0.66130.11240.54180.067*
H18C0.58500.17910.50390.067*
Fe10.29139 (5)0.04225 (3)0.68333 (6)0.03462 (16)
N10.1420 (3)0.0773 (2)0.6579 (4)0.0388 (9)
N20.2172 (3)0.0533 (2)0.6805 (4)0.0377 (9)
N30.5104 (3)0.0228 (2)0.7293 (4)0.0423 (9)
N40.3950 (3)0.1909 (2)0.6947 (4)0.0422 (9)
N50.2782 (3)0.0451 (2)0.3990 (4)0.0434 (9)
N60.3086 (3)0.0511 (2)0.0318 (4)0.0443 (9)
N70.1067 (3)0.1383 (2)0.0705 (4)0.0462 (10)
Nd10.315496 (19)0.079138 (13)0.19074 (3)0.03793 (9)
O10.2706 (3)0.05154 (17)0.1676 (3)0.0421 (8)
H1A0.33770.07610.17360.051*
O20.3303 (3)0.19201 (18)0.3197 (3)0.0448 (8)
H2A0.39270.21850.32980.054*
O30.4415 (2)0.16775 (16)0.1299 (3)0.0398 (7)
H3A0.44280.21430.16440.048*
O40.1896 (3)0.17472 (18)0.0718 (3)0.0467 (8)
O50.1186 (2)0.07882 (18)0.1272 (3)0.0458 (8)
O60.0222 (3)0.16498 (18)0.0162 (3)0.0488 (9)
O70.6147 (3)0.15657 (17)0.6873 (3)0.0422 (8)
H7C0.55270.18100.70050.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (2)0.042 (2)0.050 (3)0.010 (2)0.013 (2)0.002 (2)
C20.046 (3)0.043 (2)0.048 (3)0.008 (2)0.018 (2)0.009 (2)
C30.035 (3)0.053 (3)0.052 (3)0.000 (2)0.017 (2)0.011 (2)
C40.038 (2)0.045 (2)0.047 (3)0.007 (2)0.013 (2)0.003 (2)
C50.035 (2)0.047 (3)0.045 (3)0.001 (2)0.011 (2)0.004 (2)
C60.040 (3)0.042 (2)0.045 (3)0.007 (2)0.006 (2)0.006 (2)
C70.039 (3)0.047 (3)0.040 (3)0.004 (2)0.010 (2)0.004 (2)
C80.044 (3)0.040 (2)0.046 (3)0.009 (2)0.013 (2)0.006 (2)
C90.044 (3)0.038 (2)0.042 (3)0.006 (2)0.014 (2)0.004 (2)
C100.049 (3)0.036 (2)0.047 (3)0.006 (2)0.024 (2)0.011 (2)
C110.036 (3)0.035 (2)0.045 (3)0.0022 (18)0.010 (2)0.0100 (19)
C120.033 (2)0.037 (2)0.035 (2)0.0032 (18)0.0133 (19)0.0023 (19)
C130.035 (2)0.032 (2)0.042 (3)0.0031 (17)0.016 (2)0.0012 (19)
C140.038 (2)0.034 (2)0.043 (3)0.0078 (18)0.010 (2)0.009 (2)
C150.046 (3)0.050 (3)0.051 (3)0.008 (2)0.004 (2)0.014 (2)
C160.047 (3)0.044 (3)0.043 (3)0.004 (2)0.015 (2)0.001 (2)
C170.047 (3)0.050 (3)0.041 (3)0.007 (2)0.019 (2)0.020 (2)
C180.050 (3)0.042 (2)0.045 (3)0.017 (2)0.017 (2)0.004 (2)
Fe10.0329 (3)0.0333 (3)0.0377 (4)0.0018 (2)0.0081 (3)0.0008 (3)
N10.036 (2)0.043 (2)0.040 (2)0.0004 (17)0.0133 (17)0.0039 (18)
N20.042 (2)0.0375 (19)0.033 (2)0.0084 (16)0.0076 (17)0.0052 (16)
N30.043 (2)0.047 (2)0.038 (2)0.0098 (19)0.0093 (18)0.0068 (18)
N40.046 (2)0.040 (2)0.045 (2)0.0003 (18)0.0170 (19)0.0002 (18)
N50.035 (2)0.053 (2)0.046 (3)0.0093 (18)0.0183 (18)0.003 (2)
N60.047 (2)0.041 (2)0.044 (3)0.0116 (18)0.0100 (19)0.0070 (19)
N70.045 (2)0.048 (2)0.039 (2)0.007 (2)0.0043 (19)0.003 (2)
Nd10.03385 (14)0.03406 (13)0.04546 (17)0.00020 (10)0.00808 (10)0.00075 (11)
O10.0457 (18)0.0358 (16)0.0399 (18)0.0055 (14)0.0007 (14)0.0039 (14)
O20.0458 (19)0.0461 (18)0.046 (2)0.0101 (15)0.0166 (15)0.0165 (16)
O30.0452 (18)0.0357 (16)0.0399 (19)0.0041 (13)0.0126 (15)0.0059 (14)
O40.052 (2)0.0418 (17)0.041 (2)0.0062 (15)0.0002 (16)0.0144 (15)
O50.0346 (17)0.0510 (19)0.050 (2)0.0002 (15)0.0054 (15)0.0102 (17)
O60.0479 (19)0.0461 (18)0.041 (2)0.0163 (15)0.0140 (16)0.0033 (15)
O70.0434 (18)0.0420 (17)0.042 (2)0.0010 (14)0.0117 (15)0.0115 (14)
Geometric parameters (Å, º) top
C1—N11.341 (6)C16—O21.470 (6)
C1—C21.405 (6)C16—H16A0.9600
C1—H10.9300C16—H16B0.9600
C2—C31.400 (7)C16—H16C0.9600
C2—H20.9300C17—O31.465 (6)
C3—C41.407 (7)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.366 (6)C17—H17C0.9600
C4—H40.9300C18—O71.457 (6)
C5—N11.357 (6)C18—H18A0.9600
C5—C61.482 (6)C18—H18B0.9600
C6—N21.357 (6)C18—H18C0.9600
C6—C71.399 (6)Fe1—C14ii1.930 (5)
C7—C81.387 (7)Fe1—N21.995 (4)
C7—H70.9300Fe1—N12.003 (4)
C8—C91.374 (6)N3—Nd1iii2.459 (4)
C8—H80.9300N5—Nd12.509 (4)
C9—C101.397 (6)N6—Nd12.465 (4)
C9—H90.9300N7—O61.225 (5)
C10—N21.374 (6)N7—O51.245 (5)
C10—H100.9300N7—O41.265 (5)
C11—N31.138 (6)N7—Nd12.940 (4)
C11—Fe11.881 (5)Nd1—N3iii2.459 (4)
C12—N41.131 (6)Nd1—O12.462 (3)
C12—Fe11.896 (4)Nd1—O22.483 (3)
C13—N51.150 (6)Nd1—O52.494 (3)
C13—Fe11.922 (5)Nd1—O32.499 (3)
C14—N61.142 (6)Nd1—O42.542 (3)
C14—Fe1i1.930 (5)O1—H1A0.9700
C15—O11.463 (5)O2—H2A0.9300
C15—H15A0.9600O3—H3A0.9300
C15—H15B0.9600O7—H7C0.9605
C15—H15C0.9600
N1—C1—C2122.0 (4)C11—Fe1—N1175.29 (18)
N1—C1—H1119.0C12—Fe1—N195.93 (18)
C2—C1—H1119.0C13—Fe1—N191.30 (17)
C3—C2—C1118.3 (4)C14ii—Fe1—N188.40 (18)
C3—C2—H2120.9N2—Fe1—N180.19 (16)
C1—C2—H2120.9C1—N1—C5118.8 (4)
C2—C3—C4119.2 (4)C1—N1—Fe1125.7 (3)
C2—C3—H3120.4C5—N1—Fe1115.4 (3)
C4—C3—H3120.4C6—N2—C10117.7 (4)
C5—C4—C3118.4 (4)C6—N2—Fe1116.3 (3)
C5—C4—H4120.8C10—N2—Fe1125.9 (3)
C3—C4—H4120.8C11—N3—Nd1iii169.3 (4)
N1—C5—C4123.3 (4)C13—N5—Nd1163.2 (4)
N1—C5—C6114.3 (4)C14—N6—Nd1171.1 (4)
C4—C5—C6122.4 (4)O6—N7—O5126.0 (4)
N2—C6—C7124.5 (4)O6—N7—O4117.5 (4)
N2—C6—C5113.1 (4)O5—N7—O4116.5 (4)
C7—C6—C5122.1 (4)O6—N7—Nd1176.6 (4)
C8—C7—C6115.3 (4)O5—N7—Nd157.1 (2)
C8—C7—H7122.4O4—N7—Nd159.4 (2)
C6—C7—H7122.4N3iii—Nd1—O178.82 (12)
C9—C8—C7122.7 (4)N3iii—Nd1—N695.03 (14)
C9—C8—H8118.6O1—Nd1—N675.01 (12)
C7—C8—H8118.6N3iii—Nd1—O2101.60 (12)
C8—C9—C10118.4 (4)O1—Nd1—O2148.55 (11)
C8—C9—H9120.8N6—Nd1—O2135.47 (12)
C10—C9—H9120.8N3iii—Nd1—O5154.24 (12)
N2—C10—C9121.3 (4)O1—Nd1—O576.42 (11)
N2—C10—H10119.4N6—Nd1—O585.38 (13)
C9—C10—H10119.4O2—Nd1—O595.87 (11)
N3—C11—Fe1179.0 (5)N3iii—Nd1—O376.21 (12)
N4—C12—Fe1176.6 (4)O1—Nd1—O3139.26 (11)
N5—C13—Fe1175.2 (4)N6—Nd1—O375.70 (12)
N6—C14—Fe1i179.4 (5)O2—Nd1—O368.85 (11)
O1—C15—H15A109.5O5—Nd1—O3128.30 (10)
O1—C15—H15B109.5N3iii—Nd1—N585.71 (13)
H15A—C15—H15B109.5O1—Nd1—N576.21 (12)
O1—C15—H15C109.5N6—Nd1—N5150.48 (13)
H15A—C15—H15C109.5O2—Nd1—N572.49 (12)
H15B—C15—H15C109.5O5—Nd1—N581.64 (12)
O2—C16—H16A109.5O3—Nd1—N5132.46 (12)
O2—C16—H16B109.5N3iii—Nd1—O4154.64 (12)
H16A—C16—H16B109.5O1—Nd1—O4120.45 (11)
O2—C16—H16C109.5N6—Nd1—O476.36 (13)
H16A—C16—H16C109.5O2—Nd1—O471.02 (11)
H16B—C16—H16C109.5O5—Nd1—O450.14 (11)
O3—C17—H17A109.5O3—Nd1—O478.54 (11)
O3—C17—H17B109.5N5—Nd1—O4113.59 (13)
H17A—C17—H17B109.5N3iii—Nd1—N7174.01 (12)
O3—C17—H17C109.5O1—Nd1—N798.00 (11)
H17A—C17—H17C109.5N6—Nd1—N779.19 (13)
H17B—C17—H17C109.5O2—Nd1—N783.78 (11)
O7—C18—H18A109.5O5—Nd1—N724.79 (11)
O7—C18—H18B109.5O3—Nd1—N7103.64 (11)
H18A—C18—H18B109.5N5—Nd1—N798.51 (13)
O7—C18—H18C109.5O4—Nd1—N725.38 (11)
H18A—C18—H18C109.5C15—O1—Nd1130.0 (3)
H18B—C18—H18C109.5C15—O1—H1A104.7
C11—Fe1—C1288.59 (19)Nd1—O1—H1A104.8
C11—Fe1—C1390.1 (2)C16—O2—Nd1125.9 (3)
C12—Fe1—C1388.90 (18)C16—O2—H2A117.1
C11—Fe1—C14ii90.4 (2)Nd1—O2—H2A117.1
C12—Fe1—C14ii89.03 (19)C17—O3—Nd1127.9 (3)
C13—Fe1—C14ii177.86 (19)C17—O3—H3A116.1
C11—Fe1—N295.24 (18)Nd1—O3—H3A116.1
C12—Fe1—N2175.72 (18)N7—O4—Nd195.2 (2)
C13—Fe1—N292.98 (17)N7—O5—Nd198.1 (3)
C14ii—Fe1—N289.05 (17)C18—O7—H7C109.4
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O7iii0.972.112.713 (4)119
O2—H2A···N4iv0.932.232.773 (5)117
O3—H3A···N4iv0.931.902.786 (5)159
Symmetry codes: (iii) x+1, y, z+1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[FeNd(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4O
Mr650.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)12.9908 (17), 18.311 (3), 10.9171 (14)
β (°) 103.099 (2)
V3)2529.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.65
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.545, 0.619
No. of measured, independent and
observed [I > 2σ(I)] reflections
19739, 4955, 3841
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.087, 1.09
No. of reflections4955
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 1.11

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C11—Fe11.881 (5)N6—Nd12.465 (4)
C12—Fe11.896 (4)Nd1—N3ii2.459 (4)
C13—Fe11.922 (5)Nd1—O12.462 (3)
C14—Fe1i1.930 (5)Nd1—O22.483 (3)
Fe1—N21.995 (4)Nd1—O52.494 (3)
Fe1—N12.003 (4)Nd1—O32.499 (3)
N5—Nd12.509 (4)Nd1—O42.542 (3)
C11—Fe1—C1288.59 (19)C11—N3—Nd1ii169.3 (4)
C11—Fe1—C1390.1 (2)C13—N5—Nd1163.2 (4)
C12—Fe1—C1388.90 (18)C14—N6—Nd1171.1 (4)
C11—Fe1—C14iii90.4 (2)N3ii—Nd1—O178.82 (12)
C12—Fe1—C14iii89.03 (19)N3ii—Nd1—N695.03 (14)
C13—Fe1—C14iii177.86 (19)O1—Nd1—N675.01 (12)
C11—Fe1—N295.24 (18)N3ii—Nd1—O2101.60 (12)
C12—Fe1—N2175.72 (18)O1—Nd1—O2148.55 (11)
C13—Fe1—N292.98 (17)N6—Nd1—O2135.47 (12)
C14iii—Fe1—N289.05 (17)N3ii—Nd1—O4154.64 (12)
C11—Fe1—N1175.29 (18)N6—Nd1—O476.36 (13)
C12—Fe1—N195.93 (18)O5—Nd1—O450.14 (11)
C13—Fe1—N191.30 (17)C15—O1—Nd1130.0 (3)
C14iii—Fe1—N188.40 (18)C16—O2—Nd1125.9 (3)
N2—Fe1—N180.19 (16)C17—O3—Nd1127.9 (3)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O7ii0.972.112.713 (4)119.0
O2—H2A···N4iv0.932.232.773 (5)116.9
O3—H3A···N4iv0.931.902.786 (5)158.8
Symmetry codes: (ii) x+1, y, z+1; (iv) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds