Download citation
Download citation
link to html
In the title complex, mer-diaqua[2,6-dioxo-1,2,3,6-tetra­hydropyrimidine-4-carboxyl­ato(2-)]­bis(1H-imidazole-[kappa]N3)cobalt(II), [Co(C5H2N2O4)(C3H4N2)2(H2O)2], the CoII ion is coordinated by a deprotonated N atom and the carboxyl­ate O atom of the orotate ligand, two imidazole N atoms and two aqua ligands in a distorted octa­hedral geometry. The title complex exists as discrete doubly hydrogen-bonded dimers, and a three-dimensional network of O-H...O and N-H...O hydrogen bonds and weak [pi]-[pi] inter­actions is responsible for crystal stabilization.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107018021/sf3031sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107018021/sf3031Isup2.hkl
Contains datablock I

CCDC reference: 652488

Comment top

Orotic acid (H3Or?) is an interesting ligand due to its potential multidentate nature, especially above the deprotonation pH values. It coordinates to metal ions as a bidentate ligand through both the N atom of its pyrimidine ring and the O atom of its carboxyl group. Examples are found in the crystal structures of CoII–orotate complexes with water, ethylenediamine (Içbudak et al., 2003), nicotine amide (Yeşilel et al., 2005) or 2,2'-bipyridylamine (Plater et al., 2002). The orotate ligand act as a bridging bidentate ligand in the polymeric [Co(HOr)(H2O)3]n complex (Şahin et al., 2006; Plater et al., 2002; Sun et al., 2002) and in [Co(H2Or)2(H2O)4]·H2O, orotate acts as a monodentate ligand through the carboxylate O atom (Kose et al., 2006). In the [Co(H2O)2(phen)2](H2Or)2 complex, orotic acid acts as a counter-ion (Bulut et al., 2003). In this study, we report the structural characterization of the title mer-[Co(HOr)(H2O)2(im)2] complex, (I) (im is imidazole). The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1.

The CoII ion of (I) has a distorted octahedral coordination geometry comprised of a pyrimidine N atom and a carboxylate O atom from a bisdeprotonated bidentate orotate ligand [Co1—N1 = 2.117 (2) Å and Co1—O1 = 2.085 (2) Å], two water O atoms [Co1—O5 = 2.094 (2) Å and Co1—O6 = 2.185 (2) Å] and two N atoms from the two imidazole ligands [Co1—N3 = 2.120 (2) Å and Co1—N5 = 2.123 (2) Å]. The orotate ligand is essentially planar [r.m.s. deviation = 0.024 (2) Å], with a slight deviation from planarity arising from the non-zero torsion angle between the carboxylate group and the ring [N1—C2—C1—O1 = 1.8 (3)°]. This torsion angle indicates distortion of the orotate ligand caused by coordination to the CoII ion.

The carboxylate O atoms have different environments. Atom O1 coordinates to the CoII ion, while atom O2 acts as an acceptor for two linear hydrogen bonds. However, the C—O distances [C1—O1 = 1.251 Å and C1—O2 = 1.254 Å] are practically equal. These bond distances are comparable with those in similar complexes (Uçar et al., 2004; Içbudak et al., 2003; Lutz, 2001).

The two imidazole rings are individually planar and the maximum deviations from these planes are 0.002 (3) Å for atom N4 and 0.003 (3) Å for atom C9. These planes are approximately perpendicular, with a dihedral angle of 88.35 (17)°, in agreement with the value previously reported for the diaquabis(imidazole)orotatenickel(II) complex (Uçar et al., 2004).

The crystal packing of (I) is formed via intermolecular hydrogen bonds, and weak ππ and C—H···π interactions. Two orotate molecules are joined by two N2—H2···O3 hydrogen bonds, which leads to the formation of a centrosymmetric dimer of (I) (Fig. 1). Two aqua ligands and imidazole atoms N4 and N6 also form intermolecular hydrogen-bonding interactions with the orotate ligand, through carboxylate atom O2 [N6—H6···O2 = 2.891 (3) Å and O5—H5B···O2 = 2.687 (3) Å] and carbonyl atoms O3 [N4—H4···O3 = 2.879 (3) Å and O6—H6B···O3 = 2.783 (3) Å] and O4 [O5—H5A···O4 = 2.729 (3) Å and O6—H6A···O4 = 2.816 (3) Å] (Fig. 2).

In the extended structure of (I), there are also weak ππ and C—H···π interactions (Fig. 3). Two intermolecular ππ interactions occur between two symmetry-related imidazole rings (N5/N6/C9–C11, ring A) of neighbouring molecules. Ring A is oriented in such a way that the perpendicular distances from A to Aiii is 3.354 Å, the closest interatomic distance being C10···C9iii [3.435 (3); symmetry code: (iii) -x, 1 - y, 2 - z]. The distance between the ring centroids is 3.646 (2) Å. Also, ππ interactions occur between the other imidazole ring (N3/N4/C6–C8, ring B) and the pyrimidine ring of the orotate ligand (N1/N2/C2–C5, ring C). Rings B and C are oriented in such a way that the perpendicular distance from B to C is 3.575 Å, the closest interatomic distance is C7···C2i [3.430 (3) Å; symmetry code: (i) -1 + x, y, z] and the distance between the ring centroids is 3.950 (2) Å. The dihedral angles between the planes of rings B and C is 10.51 (14)°. Rings A and B are also involved in intermolecular C—H···π interactions with atoms C7 and C10. For the C7—H7···π and C10—H10···π contacts, the distance between atom H7 and the centroid of ring A (CgA) is 2.97 (3) Å and the C7—H7···CgA angle is 171 (2)°, while the distance between atom H10 and the centroid of ring B (CgB) is 2.81 (4) Å and the C10—H10···CgB angle is 149 (3)°.

Related literature top

For related literature, see: Bulut et al. (2003); Içbudak et al. (2003); Kose et al. (2006); Lutz (2001); Plater et al. (2002); Sun et al. (2002); Uçar et al. (2004); Yeşilel et al. (2005, 2007); Şahin et al. (2006).

Experimental top

The complex was prepared according to the method of Yeşilel et al., (2007). [Recrystallization from which solvent?]

Refinement top

All H atoms were placed in calculated positions, with C—H distances in the range 0.97–0.98 Å and Uiso(H) = 1.2Ueq(C). [This contradicts the data in the CIF tables, where all H-atom parameters have s.u.s and were therefore refined - please replace with the correct text]

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 EXPRESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The AD:DA dimer pairs are shown (dashed lines). [Symmetry code (i) and unlabelled atoms: 1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. The hydrogen-bonding interactions of (I), shown as dashed lines.
[Figure 3] Fig. 3. The π···π and C—H···π interactions of (I), shown as dashed lines. [Symmetry codes: (i) ?; (ii) ?; (iii) ? Please complete]
mer-diaquabis(1H-imidazole-κN3)[1,2,3,6-tetrahydro-2,6-dioxopyrimidine- 4-carboxylato(2-)]cobalt(II) top
Crystal data top
[Co(C5H2N2O4)(C3H4N2)2(H2O)2]F(000) = 788
Mr = 385.21Dx = 1.627 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20122 reflections
a = 8.628 (1) Åθ = 2.4–28.9°
b = 13.516 (1) ŵ = 1.13 mm1
c = 13.695 (1) ÅT = 296 K
β = 99.978 (6)°Prism, red
V = 1572.9 (2) Å30.35 × 0.30 × 0.16 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2815 independent reflections
Radiation source: fine-focus sealed tube2552 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
rotation method scansθmax = 25.2°, θmin = 2.4°
Absorption correction: integration
(CAD-4 EXPRESS; Enraf–Nonius, 1993)
h = 100
Tmin = 0.679, Tmax = 0.745k = 160
3009 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.6775P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2815 reflectionsΔρmax = 0.89 e Å3
274 parametersΔρmin = 0.80 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0123 (14)
Crystal data top
[Co(C5H2N2O4)(C3H4N2)2(H2O)2]V = 1572.9 (2) Å3
Mr = 385.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.628 (1) ŵ = 1.13 mm1
b = 13.516 (1) ÅT = 296 K
c = 13.695 (1) Å0.35 × 0.30 × 0.16 mm
β = 99.978 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2815 independent reflections
Absorption correction: integration
(CAD-4 EXPRESS; Enraf–Nonius, 1993)
2552 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.745Rint = 0.038
3009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0385 restraints
wR(F2) = 0.105All H-atom parameters refined
S = 1.11Δρmax = 0.89 e Å3
2815 reflectionsΔρmin = 0.80 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1583 (3)0.22225 (16)0.69827 (17)0.0248 (5)
C20.2204 (3)0.30418 (17)0.63903 (17)0.0223 (5)
C30.3451 (3)0.28779 (17)0.59226 (19)0.0272 (5)
C40.4053 (3)0.36854 (17)0.54515 (18)0.0243 (5)
C50.1999 (3)0.47008 (17)0.59567 (17)0.0231 (5)
C60.2850 (3)0.2689 (2)0.8178 (2)0.0373 (6)
C70.4826 (3)0.3660 (2)0.8297 (2)0.0380 (6)
C80.3825 (3)0.4125 (2)0.7794 (2)0.0320 (6)
C90.0988 (4)0.3947 (2)0.9330 (2)0.0397 (7)
C100.2161 (4)0.5355 (3)0.9600 (2)0.0486 (8)
C110.1460 (3)0.5294 (2)0.8641 (2)0.0399 (6)
N10.1455 (2)0.39223 (14)0.64066 (15)0.0229 (4)
N20.3304 (2)0.45659 (15)0.55234 (16)0.0260 (4)
N30.2583 (2)0.35118 (16)0.77169 (15)0.0290 (5)
N40.4193 (3)0.27491 (19)0.85333 (19)0.0403 (6)
N50.0720 (2)0.43954 (16)0.84765 (15)0.0307 (5)
N60.1858 (3)0.4494 (2)1.00276 (19)0.0438 (6)
O10.0493 (2)0.24386 (12)0.74397 (13)0.0302 (4)
O20.2221 (2)0.13893 (13)0.69762 (14)0.0338 (4)
O30.5205 (2)0.36571 (13)0.50016 (15)0.0334 (4)
O40.1376 (2)0.55419 (12)0.59194 (14)0.0328 (4)
O50.1354 (2)0.52249 (13)0.66222 (14)0.0297 (4)
O60.1645 (2)0.32160 (14)0.56939 (14)0.0323 (4)
Co10.05277 (3)0.38251 (2)0.71207 (2)0.02307 (16)
H20.363 (4)0.507 (3)0.527 (2)0.036 (8)*
H30.399 (4)0.228 (2)0.592 (2)0.033 (7)*
H40.451 (4)0.233 (3)0.888 (3)0.045 (9)*
H60.219 (4)0.211 (2)0.827 (3)0.062 (11)*
H6N0.204 (4)0.432 (3)1.059 (3)0.042 (9)*
H90.054 (4)0.330 (3)0.946 (3)0.055 (10)*
H100.269 (5)0.585 (3)1.000 (3)0.064 (11)*
H110.145 (4)0.574 (2)0.8096 (19)0.048 (9)*
H5A0.060 (4)0.544 (3)0.631 (3)0.049 (9)*
H5B0.151 (4)0.561 (3)0.707 (3)0.042 (9)*
H6A0.148 (4)0.356 (3)0.521 (3)0.039 (9)*
H6B0.260 (5)0.321 (3)0.566 (3)0.068 (12)*
H80.392 (3)0.475 (2)0.747 (2)0.031 (7)*
H70.581 (3)0.384 (2)0.849 (2)0.045 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0275 (12)0.0165 (11)0.0301 (12)0.0015 (9)0.0044 (9)0.0002 (9)
C20.0214 (10)0.0181 (10)0.0277 (11)0.0012 (9)0.0047 (8)0.0005 (9)
C30.0267 (12)0.0173 (11)0.0388 (13)0.0003 (9)0.0089 (10)0.0003 (10)
C40.0208 (11)0.0214 (11)0.0316 (13)0.0003 (9)0.0073 (10)0.0024 (9)
C50.0231 (11)0.0199 (11)0.0273 (11)0.0010 (9)0.0071 (9)0.0001 (9)
C60.0367 (14)0.0314 (14)0.0469 (16)0.0001 (11)0.0162 (12)0.0082 (12)
C70.0251 (13)0.0479 (16)0.0424 (16)0.0016 (12)0.0100 (11)0.0035 (12)
C80.0303 (13)0.0283 (13)0.0371 (14)0.0005 (11)0.0054 (10)0.0013 (11)
C90.0454 (16)0.0346 (15)0.0384 (15)0.0008 (12)0.0050 (12)0.0034 (12)
C100.0516 (18)0.0458 (17)0.0449 (17)0.0089 (15)0.0015 (14)0.0075 (14)
C110.0433 (15)0.0351 (15)0.0396 (15)0.0068 (12)0.0025 (12)0.0020 (12)
N10.0218 (10)0.0176 (9)0.0310 (11)0.0005 (7)0.0089 (8)0.0015 (7)
N20.0251 (10)0.0185 (10)0.0368 (11)0.0013 (8)0.0123 (8)0.0045 (8)
N30.0276 (10)0.0261 (10)0.0353 (11)0.0017 (9)0.0107 (9)0.0020 (9)
N40.0368 (13)0.0404 (14)0.0461 (14)0.0099 (10)0.0140 (10)0.0098 (11)
N50.0328 (11)0.0312 (11)0.0281 (10)0.0015 (9)0.0051 (8)0.0000 (9)
N60.0511 (15)0.0491 (15)0.0286 (13)0.0010 (12)0.0002 (10)0.0023 (11)
O10.0325 (9)0.0205 (8)0.0412 (10)0.0023 (7)0.0168 (7)0.0060 (7)
O20.0396 (10)0.0191 (8)0.0464 (11)0.0052 (8)0.0177 (8)0.0057 (8)
O30.0277 (9)0.0271 (9)0.0502 (11)0.0002 (7)0.0201 (8)0.0001 (8)
O40.0367 (10)0.0183 (8)0.0478 (10)0.0050 (7)0.0198 (8)0.0056 (7)
O50.0334 (10)0.0220 (9)0.0349 (10)0.0022 (7)0.0094 (8)0.0020 (7)
O60.0307 (10)0.0299 (10)0.0357 (10)0.0031 (8)0.0042 (8)0.0023 (8)
Co10.0231 (2)0.0186 (2)0.0290 (2)0.00055 (11)0.00872 (14)0.00080 (11)
Geometric parameters (Å, º) top
C1—O11.251 (3)C9—N61.332 (4)
C1—O21.254 (3)C9—H90.99 (4)
C1—C21.524 (3)C10—N61.349 (4)
C2—N11.356 (3)C10—C111.350 (4)
C2—C31.362 (3)C10—H100.93 (4)
C3—C41.412 (3)C11—N51.373 (4)
C3—H30.93 (3)C11—H110.957 (18)
C4—O31.257 (3)N1—Co12.117 (2)
C4—N21.366 (3)N2—H20.83 (3)
C5—O41.255 (3)N3—Co12.119 (2)
C5—N11.344 (3)N4—H40.82 (4)
C5—N21.373 (3)N5—Co12.123 (2)
C6—N31.319 (3)N6—H6N0.79 (4)
C6—N41.335 (4)O1—Co12.0846 (17)
C6—H60.968 (19)O5—Co12.0941 (17)
C7—C81.350 (4)O5—H5A0.89 (4)
C7—N41.362 (4)O5—H5B0.84 (4)
C7—H70.961 (19)O6—Co12.1845 (18)
C8—N31.373 (3)O6—H6A0.84 (4)
C8—H80.95 (3)O6—H6B0.82 (4)
C9—N51.301 (4)
O1—C1—O2125.6 (2)C4—N2—H2119 (2)
O1—C1—C2117.45 (19)C5—N2—H2115 (2)
O2—C1—C2116.9 (2)C6—N3—C8105.6 (2)
N1—C2—C3124.6 (2)C6—N3—Co1125.48 (18)
N1—C2—C1114.59 (19)C8—N3—Co1128.70 (18)
C3—C2—C1120.8 (2)C6—N4—C7107.8 (2)
C2—C3—C4118.2 (2)C6—N4—H4125 (2)
C2—C3—H3125.2 (18)C7—N4—H4127 (2)
C4—C3—H3116.5 (18)C9—N5—C11105.1 (2)
O3—C4—N2119.1 (2)C9—N5—Co1126.9 (2)
O3—C4—C3125.8 (2)C11—N5—Co1127.99 (18)
N2—C4—C3115.1 (2)C9—N6—C10107.2 (3)
O4—C5—N1123.2 (2)C9—N6—H6N121 (3)
O4—C5—N2118.7 (2)C10—N6—H6N131 (3)
N1—C5—N2118.1 (2)C1—O1—Co1115.59 (14)
N3—C6—N4111.0 (2)Co1—O5—H5A103 (2)
N3—C6—H6127 (2)Co1—O5—H5B114 (2)
N4—C6—H6122 (2)H5A—O5—H5B112 (3)
C8—C7—N4106.0 (2)Co1—O6—H6A113 (2)
C8—C7—H7134 (2)Co1—O6—H6B110 (3)
N4—C7—H7120 (2)H6A—O6—H6B105 (4)
C7—C8—N3109.6 (3)O1—Co1—O5171.19 (7)
C7—C8—H8129.6 (18)O1—Co1—N178.85 (7)
N3—C8—H8120.6 (18)O5—Co1—N192.87 (8)
N5—C9—N6112.1 (3)O1—Co1—N395.22 (7)
N5—C9—H9124 (2)O5—Co1—N392.63 (8)
N6—C9—H9124 (2)N1—Co1—N3170.95 (8)
N6—C10—C11106.4 (3)O1—Co1—N590.65 (8)
N6—C10—H10119 (2)O5—Co1—N592.83 (8)
C11—C10—H10135 (3)N1—Co1—N593.07 (8)
C10—C11—N5109.3 (3)N3—Co1—N593.83 (8)
C10—C11—H11132 (2)O1—Co1—O687.34 (7)
N5—C11—H11119 (2)O5—Co1—O688.64 (7)
C5—N1—C2118.31 (19)N1—Co1—O682.93 (8)
C5—N1—Co1129.38 (15)N3—Co1—O690.02 (8)
C2—N1—Co1112.26 (14)N5—Co1—O6175.80 (8)
C4—N2—C5125.5 (2)
O1—C1—C2—N11.8 (3)N5—C9—N6—C100.5 (4)
O2—C1—C2—N1178.8 (2)C11—C10—N6—C90.4 (4)
O1—C1—C2—C3176.0 (2)O2—C1—O1—Co1171.0 (2)
O2—C1—C2—C33.3 (3)C2—C1—O1—Co19.7 (3)
N1—C2—C3—C42.5 (4)C1—O1—Co1—N110.23 (17)
C1—C2—C3—C4175.0 (2)C1—O1—Co1—N3162.86 (17)
C2—C3—C4—O3179.1 (2)C1—O1—Co1—N5103.23 (18)
C2—C3—C4—N20.3 (3)C1—O1—Co1—O673.08 (18)
N4—C7—C8—N30.0 (3)C5—N1—Co1—O1174.0 (2)
N6—C10—C11—N50.2 (4)C2—N1—Co1—O18.78 (16)
O4—C5—N1—C2179.0 (2)C5—N1—Co1—O59.1 (2)
N2—C5—N1—C21.4 (3)C2—N1—Co1—O5168.17 (16)
O4—C5—N1—Co11.9 (4)C5—N1—Co1—N583.9 (2)
N2—C5—N1—Co1178.46 (16)C2—N1—Co1—N598.83 (17)
C3—C2—N1—C52.0 (4)C5—N1—Co1—O697.3 (2)
C1—C2—N1—C5175.7 (2)C2—N1—Co1—O679.90 (16)
C3—C2—N1—Co1175.55 (19)C6—N3—Co1—O14.3 (2)
C1—C2—N1—Co16.7 (2)C8—N3—Co1—O1177.8 (2)
O3—C4—N2—C5177.3 (2)C6—N3—Co1—O5179.7 (2)
C3—C4—N2—C53.9 (3)C8—N3—Co1—O56.2 (2)
O4—C5—N2—C4175.9 (2)C6—N3—Co1—N586.7 (2)
N1—C5—N2—C44.5 (4)C8—N3—Co1—N586.8 (2)
N4—C6—N3—C80.4 (3)C6—N3—Co1—O691.6 (2)
N4—C6—N3—Co1175.10 (19)C8—N3—Co1—O694.9 (2)
C7—C8—N3—C60.3 (3)C9—N5—Co1—O139.5 (2)
C7—C8—N3—Co1174.75 (18)C11—N5—Co1—O1138.1 (2)
N3—C6—N4—C70.4 (3)C9—N5—Co1—O5148.6 (2)
C8—C7—N4—C60.2 (3)C11—N5—Co1—O533.8 (2)
N6—C9—N5—C110.4 (3)C9—N5—Co1—N1118.4 (2)
N6—C9—N5—Co1177.64 (19)C11—N5—Co1—N159.2 (2)
C10—C11—N5—C90.1 (3)C9—N5—Co1—N355.8 (2)
C10—C11—N5—Co1177.9 (2)C11—N5—Co1—N3126.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.83 (3)2.06 (3)2.874 (3)165 (3)
N4—H4···O3ii0.82 (4)2.08 (4)2.879 (3)166 (3)
N6—H6N···O2iii0.79 (4)2.11 (4)2.891 (3)169 (3)
O5—H5A···O40.89 (4)1.88 (4)2.729 (3)160 (3)
O5—H5B···O2iv0.84 (4)1.85 (4)2.687 (3)170 (3)
O6—H6A···O4v0.84 (4)1.98 (4)2.816 (3)173 (3)
O6—H6B···O3vi0.82 (4)2.05 (4)2.783 (3)150 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+3/2; (v) x, y+1, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C5H2N2O4)(C3H4N2)2(H2O)2]
Mr385.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.628 (1), 13.516 (1), 13.695 (1)
β (°) 99.978 (6)
V3)1572.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.35 × 0.30 × 0.16
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionIntegration
(CAD-4 EXPRESS; Enraf–Nonius, 1993)
Tmin, Tmax0.679, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
3009, 2815, 2552
Rint0.038
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.11
No. of reflections2815
No. of parameters274
No. of restraints5
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.89, 0.80

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1993), CAD-4 EXPRESS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—Co12.117 (2)O1—Co12.0846 (17)
N3—Co12.119 (2)O5—Co12.0941 (17)
N5—Co12.123 (2)O6—Co12.1845 (18)
O1—Co1—N178.85 (7)N1—Co1—N593.07 (8)
O5—Co1—N192.87 (8)N3—Co1—N593.83 (8)
O1—Co1—N395.22 (7)O1—Co1—O687.34 (7)
O5—Co1—N392.63 (8)O5—Co1—O688.64 (7)
N1—Co1—N3170.95 (8)N1—Co1—O682.93 (8)
O1—Co1—N590.65 (8)N3—Co1—O690.02 (8)
O5—Co1—N592.83 (8)N5—Co1—O6175.80 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.83 (3)2.06 (3)2.874 (3)165 (3)
N4—H4···O3ii0.82 (4)2.08 (4)2.879 (3)166 (3)
N6—H6N···O2iii0.79 (4)2.11 (4)2.891 (3)169 (3)
O5—H5A···O40.89 (4)1.88 (4)2.729 (3)160 (3)
O5—H5B···O2iv0.84 (4)1.85 (4)2.687 (3)170 (3)
O6—H6A···O4v0.84 (4)1.98 (4)2.816 (3)173 (3)
O6—H6B···O3vi0.82 (4)2.05 (4)2.783 (3)150 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+3/2; (v) x, y+1, z+1; (vi) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds