organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(Pyrrolidin-1-yl)ethan-1-iminium chloride

crossmark logo

aDepartment of Biochemistry, Chemistry and Physics, Georgia Southern University, Armstrong Campus, 11935 Abercorn Street, Savannah GA 31419, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 18 August 2023; accepted 8 September 2023; online 12 September 2023)

The title compound, C6H13N2+·Cl, is as an amidinium salt that was isolated as unexpected product from the reaction between aceto­nitrile, chloro­form and pyrrolidine under refluxing conditions. The packing features two N—H⋯Cl hydrogen bonds to generate centrosymmetric tetra­mers (two cations and two anions) and van der Waals inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Amidinium salts are protonated amidine compounds characterized by a central carbon atom bound to a protonated imine (iminium) group and a neutral amine. They were first prepared by reacting a Pinner salt with an amine (Pinner & Klein, 1877[Pinner, A. & Klein, F. (1877). Ber. Dtsch. Chem. Ges. 10, 1889-1897.]). Although acetamidinium salts are generally unstable, an acetamidinium chloride salt was reported in 1976 (Cannon et al., 1976[Cannon, J. R., White, A. H. & Willis, A. C. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 271-272.]). This salt has been exploited for its strong hydrogen-bonding properties in subsequent research (Ferretti et al., 2004[Ferretti, V., Bertolasi, V. & Pretto, L. (2004). New J. Chem. 28, 646-651.]; Norrestam, 1984[Norrestam, R. (1984). Acta Cryst. C40, 297-299.]; Yang et al., 2022[Yang, W., Li, W., Yu, B. Q., Liu, C. & Wang, H. L. (2022). Inorg. Chem. Commun. 139, 109396.]). It has been observed as a counter-ion for anionic transition/main-group metal complexes and perovskites (Liu et al., 2018[Liu, S., Wang, B.-W., Wang, Z.-M. & Gao, S. (2018). Dalton Trans. 47, 11925-11933.]; Singh et al., 2021[Singh, H., Dey, P., Chatterjee, S., Sen, P. & Maiti, T. (2021). Solar Energy, 220, 258-268.]; Biller et al., 2002[Biller, A., Burschka, C., Penka, M. & Tacke, R. (2002). Inorg. Chem. 41, 3901-3908.]). Amidinium salts derived from alkyl­ated and cyclic amines exhibit greater stability and have also been observed as counter-ions for transition-metal complexes (Podjed & Modec, 2023[Podjed, N. & Modec, B. (2023). J. Mol. Struct. 1284, 135457.]).

In regards to the cation in the title compound, C6H13N2+·Cl, (1), it has mainly been observed in transition and rare-earth metal complexes (Podjed et al., 2020[Podjed, N., Modec, B., Alcaide, M. M. & López-Serrano, J. (2020). RSC Adv. 10, 18200-18221.]; Masci & Thuéry, 2003[Masci, B. & Thuéry, P. (2003). Supramol. Chem. 15, 101-108.]; Podjed & Modec, 2022[Podjed, N. & Modec, B. (2022). New J. Chem. 46, 23225-23238.]). A piperidine amidinium chloride salt has been reported (Podjed & Modec, 2023[Podjed, N. & Modec, B. (2023). J. Mol. Struct. 1284, 135457.]). Herein, we report the structure (Fig. 1[link]) of the title compound, which crystallizes in the monoclinic crystal system in space group P21/c. The carbon atoms of the pyrrolo­dine ring are disordered over two sets of sites in a 0.590 (11):0.410 (11) ratio with both disorder components leading to a twisted conformation of the ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound (1) in the asymmetric unit with displacement ellipsoids drawn at 50%. Hydrogen atoms are removed from carbon atoms for clarity and only the major disorder component is shown.

In the extended structure of (1), a pair of amidinium cations are hydrogen bonded to two chloride ions (Table 1[link]) forming a hydrogen-bonded tetra­mer (two cations and two anions) with graph set R42(8) as shown in Fig. 2[link]. The tetra­mer forms a square with a N⋯Cl ⋯N⋯Cl dihedral angle of 0.00 (8)°. The packing is shown in Fig. 3[link]. This structural motif closely resembles that of 1-(piperidin-1-yl)ethan-1-iminium chloride (pipim Cl) as reported by Podjed & Modec (2023[Podjed, N. & Modec, B. (2023). J. Mol. Struct. 1284, 135457.]). However, the N⋯Cl hydrogen-bond distances in (1) (mean = 3.211 Å) are slightly longer than those in pipim Cl, which measure 3.183 Å. Additionally, the C—N bond distances in (1) are slightly shorter than those of pipim Cl: in (1), C1—N1 is 1.311 (2) Å and C1—N2 is 1.310 (2) Å, while in pipim Cl, they are 1.321 (2) and 1.317 (2) Å, respectively. The geometries at C1 and N1 are nearly perfectly trigonal planar, with a sum of the bond angles around each atom equaling 360.1 and 359.9°, respectively, which are within the expected margin of error.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.87 (2) 2.33 (2) 3.1988 (16) 175 (2)
N2—H2B⋯Cl1ii 0.88 (2) 2.38 (2) 3.2230 (16) 162 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of the dimer of the title compound, showing the hydrogen-bonding network between the NH2 group and chloride anion. Displacement ellipsoids are drawn at 50% and hydrogen atoms have been removed from carbon atoms for clarity.
[Figure 3]
Figure 3
Packing of compound (1) viewed along the c axis.

Synthesis and crystallization

Pyrrolidine (325 µl, 0.251 g, 3.96 mmol), aceto­nitrile (5 ml, 3.93 g, 96.5 mmol) and chloro­form (1.5 ml, 2.24 g, 18.8 mmol) were combined in a pressure tube. A stir bar was added, and the tube was capped. The mixture was then heated with stirring at 70°C for 8 days. After cooling to room temperature, colorless needle-like crystals formed, yielding 305.6 mg (52%) of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]

Table 2
Experimental details

Crystal data
Chemical formula C6H13N2+·Cl
Mr 148.63
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 5.7234 (1), 11.2961 (1), 12.6591 (2)
β (°) 98.820 (1)
V3) 808.76 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.53
Crystal size (mm) 0.3 × 0.1 × 0.1
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.326, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8326, 1514, 1343
Rint 0.034
(sin θ/λ)max−1) 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.100, 1.09
No. of reflections 1514
No. of parameters 111
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.18
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.42.84a (Rigaku OD, 2023); cell refinement: CrysAlis PRO 1.171.42.84a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.84a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

1-(Pyrrolidin-1-yl)ethan-1-iminium chloride top
Crystal data top
C6H13N2+·ClF(000) = 320
Mr = 148.63Dx = 1.221 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 5.7234 (1) ÅCell parameters from 5627 reflections
b = 11.2961 (1) Åθ = 3.5–69.3°
c = 12.6591 (2) ŵ = 3.53 mm1
β = 98.820 (1)°T = 300 K
V = 808.76 (2) Å3Needle, clear light yellow
Z = 40.3 × 0.1 × 0.1 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
1514 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1343 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.0000 pixels mm-1θmax = 69.8°, θmin = 5.3°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1313
Tmin = 0.326, Tmax = 1.000l = 1515
8326 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.1032P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.20 e Å3
1514 reflectionsΔρmin = 0.17 e Å3
111 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraintsExtinction coefficient: 0.0060 (11)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.5387 (2)0.28640 (11)0.42307 (9)0.0501 (3)
N20.2421 (3)0.41737 (13)0.44168 (12)0.0639 (4)
C10.3772 (3)0.36286 (13)0.38250 (12)0.0493 (4)
C20.3413 (3)0.38872 (15)0.26616 (13)0.0610 (4)
H2C0.4858480.4182220.2463730.091*
H2D0.2192660.4471400.2499110.091*
H2E0.2955980.3175350.2269550.091*
C30.6948 (3)0.22165 (16)0.36067 (14)0.0637 (4)
H3AA0.8237370.2713210.3453470.076*0.590 (11)
H3AB0.6077140.1924200.2939870.076*0.590 (11)
H3BC0.7745870.2753240.3181690.076*0.410 (11)
H3BD0.6071010.1635730.3139570.076*0.410 (11)
C60.5776 (3)0.25090 (17)0.53598 (13)0.0645 (5)
H6AA0.4424850.2077960.5539650.077*0.590 (11)
H6AB0.6063250.3193770.5823890.077*0.590 (11)
H6BC0.4291540.2353740.5614800.077*0.410 (11)
H6BD0.6643130.3110350.5806050.077*0.410 (11)
C40.7858 (13)0.1195 (5)0.4355 (4)0.0712 (14)0.590 (11)
H4A0.6790850.0523510.4253900.085*0.590 (11)
H4B0.9418340.0943550.4238290.085*0.590 (11)
C50.7933 (11)0.1725 (6)0.5457 (4)0.0648 (14)0.590 (11)
H5A0.7863430.1110810.5986450.078*0.590 (11)
H5B0.9365610.2183580.5657100.078*0.590 (11)
C4A0.8700 (14)0.1621 (8)0.4477 (6)0.0741 (19)0.410 (11)
H4AA0.9300510.0888670.4220680.089*0.410 (11)
H4AB1.0017160.2139950.4728800.089*0.410 (11)
C5A0.7221 (17)0.1389 (8)0.5339 (8)0.079 (3)0.410 (11)
H5AA0.8208510.1256410.6022360.094*0.410 (11)
H5AB0.6205980.0706400.5165670.094*0.410 (11)
Cl10.15495 (7)0.08401 (4)0.18724 (3)0.0659 (2)
H2A0.134 (3)0.4650 (16)0.4103 (15)0.074 (6)*
H2B0.250 (4)0.4087 (18)0.5110 (13)0.082 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0544 (7)0.0526 (7)0.0435 (6)0.0031 (6)0.0077 (5)0.0016 (5)
N20.0708 (10)0.0699 (9)0.0509 (8)0.0214 (7)0.0092 (7)0.0035 (7)
C10.0526 (8)0.0470 (8)0.0477 (8)0.0048 (6)0.0064 (6)0.0024 (6)
C20.0707 (10)0.0635 (10)0.0476 (9)0.0005 (8)0.0059 (7)0.0030 (7)
C30.0639 (10)0.0725 (10)0.0556 (9)0.0103 (8)0.0120 (7)0.0083 (8)
C60.0732 (11)0.0722 (11)0.0474 (8)0.0148 (8)0.0077 (8)0.0055 (7)
C40.081 (3)0.068 (3)0.063 (2)0.022 (2)0.004 (2)0.009 (2)
C50.066 (3)0.067 (3)0.057 (2)0.011 (2)0.0018 (19)0.0028 (18)
C4A0.069 (4)0.068 (4)0.084 (4)0.017 (3)0.008 (3)0.008 (3)
C5A0.070 (5)0.068 (5)0.094 (6)0.010 (3)0.003 (4)0.024 (4)
Cl10.0682 (3)0.0695 (3)0.0592 (3)0.01566 (18)0.0073 (2)0.00212 (17)
Geometric parameters (Å, º) top
N1—C11.3107 (18)C6—H6AA0.9700
N1—C31.4746 (19)C6—H6AB0.9700
N1—C61.4682 (19)C6—H6BC0.9700
N2—C11.310 (2)C6—H6BD0.9700
N2—H2A0.870 (15)C6—C51.509 (6)
N2—H2B0.877 (16)C6—C5A1.514 (9)
C1—C21.485 (2)C4—H4A0.9700
C2—H2C0.9600C4—H4B0.9700
C2—H2D0.9600C4—C51.512 (6)
C2—H2E0.9600C5—H5A0.9700
C3—H3AA0.9700C5—H5B0.9700
C3—H3AB0.9700C4A—H4AA0.9700
C3—H3BC0.9700C4A—H4AB0.9700
C3—H3BD0.9700C4A—C5A1.503 (10)
C3—C41.533 (5)C5A—H5AA0.9700
C3—C4A1.527 (7)C5A—H5AB0.9700
C1—N1—C3124.45 (13)N1—C6—C5A102.3 (4)
C1—N1—C6123.65 (13)H6AA—C6—H6AB109.0
C6—N1—C3111.85 (12)H6BC—C6—H6BD109.2
C1—N2—H2A118.2 (13)C5—C6—H6AA111.0
C1—N2—H2B125.1 (14)C5—C6—H6AB111.0
H2A—N2—H2B116.7 (19)C5A—C6—H6BC111.3
N1—C1—C2120.03 (14)C5A—C6—H6BD111.3
N2—C1—N1121.89 (14)C3—C4—H4A111.1
N2—C1—C2118.08 (14)C3—C4—H4B111.1
C1—C2—H2C109.5H4A—C4—H4B109.1
C1—C2—H2D109.5C5—C4—C3103.4 (4)
C1—C2—H2E109.5C5—C4—H4A111.1
H2C—C2—H2D109.5C5—C4—H4B111.1
H2C—C2—H2E109.5C6—C5—C4104.5 (4)
H2D—C2—H2E109.5C6—C5—H5A110.9
N1—C3—H3AA111.2C6—C5—H5B110.9
N1—C3—H3AB111.2C4—C5—H5A110.9
N1—C3—H3BC111.3C4—C5—H5B110.9
N1—C3—H3BD111.3H5A—C5—H5B108.9
N1—C3—C4102.6 (2)C3—C4A—H4AA111.2
N1—C3—C4A102.5 (3)C3—C4A—H4AB111.2
H3AA—C3—H3AB109.2H4AA—C4A—H4AB109.1
H3BC—C3—H3BD109.2C5A—C4A—C3102.7 (6)
C4—C3—H3AA111.2C5A—C4A—H4AA111.2
C4—C3—H3AB111.2C5A—C4A—H4AB111.2
C4A—C3—H3BC111.3C6—C5A—H5AA111.0
C4A—C3—H3BD111.3C6—C5A—H5AB111.0
N1—C6—H6AA111.0C4A—C5A—C6103.7 (6)
N1—C6—H6AB111.0C4A—C5A—H5AA111.0
N1—C6—H6BC111.3C4A—C5A—H5AB111.0
N1—C6—H6BD111.3H5AA—C5A—H5AB109.0
N1—C6—C5103.9 (2)
N1—C3—C4—C531.8 (6)C3—N1—C1—C20.3 (2)
N1—C3—C4A—C5A32.2 (9)C3—N1—C6—C58.1 (3)
N1—C6—C5—C428.2 (6)C3—N1—C6—C5A13.8 (4)
N1—C6—C5A—C4A34.0 (9)C3—C4—C5—C637.6 (8)
C1—N1—C3—C4162.4 (3)C3—C4A—C5A—C641.7 (11)
C1—N1—C3—C4A171.2 (4)C6—N1—C1—N22.5 (2)
C1—N1—C6—C5174.6 (3)C6—N1—C1—C2176.66 (15)
C1—N1—C6—C5A163.5 (4)C6—N1—C3—C414.9 (3)
C3—N1—C1—N2179.53 (16)C6—N1—C3—C4A11.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.87 (2)2.33 (2)3.1988 (16)175 (2)
N2—H2B···Cl1ii0.88 (2)2.38 (2)3.2230 (16)162 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

BQ acknowledges the Georgia Southern University Honors Program, the Department of Biochemistry, Chemistry, and Physics, and RA acknowledges the H. Gordon Mayfield Summer Research Scholarship for partial support of this work.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 2215812).

References

First citationBiller, A., Burschka, C., Penka, M. & Tacke, R. (2002). Inorg. Chem. 41, 3901–3908.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCannon, J. R., White, A. H. & Willis, A. C. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 271–272.  CSD CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerretti, V., Bertolasi, V. & Pretto, L. (2004). New J. Chem. 28, 646–651.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, S., Wang, B.-W., Wang, Z.-M. & Gao, S. (2018). Dalton Trans. 47, 11925–11933.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMasci, B. & Thuéry, P. (2003). Supramol. Chem. 15, 101–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorrestam, R. (1984). Acta Cryst. C40, 297–299.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPinner, A. & Klein, F. (1877). Ber. Dtsch. Chem. Ges. 10, 1889–1897.  CrossRef Google Scholar
First citationPodjed, N. & Modec, B. (2022). New J. Chem. 46, 23225–23238.  Web of Science CSD CrossRef CAS Google Scholar
First citationPodjed, N. & Modec, B. (2023). J. Mol. Struct. 1284, 135457.  Web of Science CSD CrossRef Google Scholar
First citationPodjed, N., Modec, B., Alcaide, M. M. & López-Serrano, J. (2020). RSC Adv. 10, 18200–18221.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, H., Dey, P., Chatterjee, S., Sen, P. & Maiti, T. (2021). Solar Energy, 220, 258–268.  Web of Science CrossRef Google Scholar
First citationYang, W., Li, W., Yu, B. Q., Liu, C. & Wang, H. L. (2022). Inorg. Chem. Commun. 139, 109396.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146