metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[(μ3-adamantane-1,3-di­carboxyl­ato)aqua­[μ-N-(pyridin-3-yl)isonicotinamide]­nickel(II)] monohydrate], a layered coordination polymer with (4,4) topology

crossmark logo

aDepartment of Chemistry, Hope College, Holland, MI 49423, USA, and bE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 23 August 2023; accepted 30 August 2023; online 8 September 2023)

The title com­pound, {[Ni(C12H14O4)(C11H9N3O)(H2O)]·H2O}n, contains octa­hedrally coordinated NiII ions ligated by adamantane-1,3-di­carboxyl­ate (adc) and N-(pyridin-3-yl)isonicotinamide (3-pina) ligands forming coordination polymer layers with a (4,4) grid topology. These diperiodic layer motifs aggregate in an AAA pattern mediated by supra­molecular C—H⋯O inter­actions to form the full triperiodic crystal structure of the title com­pound.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title com­plex was obtained during attempts to prepare divalent nickel coordination polymers featuring adamantane-1,3-di­carboxyl­ate (adc) ligands and hydro­gen-bonding-capable di­pyridyl­amide ligands. We have reported nickel adc coordination polymers featuring 4,4′-di­pyridyl­amine (dpa) (Travis et al., 2018[Travis, J. Z., Pumford, S. R., Martinez, B. L. & LaDuca, R. L. (2018). Polyhedron, 142, 25-37.]). {[Ni(adc)(dpa)]·6.5H2O}n manifests a stacked arrangement of (4,4) rectangular-grid diperiodic coordination polymer motifs, while the crystal structure of the partially protonated compound {[Ni2(adc)(adcH)2(dpa)2]·H2O}n displays an uncommon 103 topology triperiodic srs network.

The asymmetric unit of the title com­pound, {[Ni(adc)(3-pina)(H2O)]·H2O}n, contains two NiII atoms on crystallographic inversion centers (Ni1 and Ni2), a com­plete adc ligand, an N-(pyridin-3-yl)isonicotinamide (3-pina) ligand, one water mol­ecule bound to Ni1, and one water mol­ecule of crystallization (Fig. 1[link]). Operation of the crystallographic inversion centers generates two distinct coordination environments. The Ni1 atoms possess an octa­hedral {N2O4} coordination environment with trans aqua ligands, trans O-atom donors from two adc ligands, and trans 3-pyridyl N-donor atoms from two 3-pina ligands. The Ni2 atoms also display an octa­hedral {N2O4} coordination environment, but there are no bound water mol­ecules. Instead, 4-pyridyl N-donor atoms belonging to the isonicotinamide termini of two 3-pina ligands adopt the nominal trans-axial positions. The nominal equatorial plane at the Ni2 atoms are taken up by chelating carboxyl­ate groups belonging to two adc ligands. The bond lengths and angles within the coordination environment are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Ni1—O1i 2.0216 (19) Ni2—O3 2.0766 (18)
Ni1—O1 2.0216 (19) Ni2—O3ii 2.0766 (18)
Ni1—O6i 2.079 (2) Ni2—O4 2.1113 (18)
Ni1—O6 2.079 (2) Ni2—O4ii 2.1113 (18)
Ni1—N1 2.138 (2) Ni2—N2iii 2.058 (2)
Ni1—N1i 2.138 (2) Ni2—N2iv 2.058 (2)
       
O1i—Ni1—O1 180.0 O3ii—Ni2—O3 180.0
O1—Ni1—O6i 90.58 (8) O3—Ni2—O4ii 116.95 (7)
O1—Ni1—O6 89.42 (8) O3—Ni2—O4 63.05 (7)
O1i—Ni1—O6i 89.42 (8) O3ii—Ni2—O4 116.95 (7)
O1i—Ni1—O6 90.58 (8) O3ii—Ni2—O4ii 63.05 (7)
O1—Ni1—N1 90.06 (8) O4—Ni2—O4ii 180.0
O1—Ni1—N1i 89.94 (8) N2iii—Ni2—O3ii 92.34 (8)
O1i—Ni1—N1i 90.06 (8) N2iii—Ni2—O3 87.67 (8)
O1i—Ni1—N1 89.94 (8) N2iv—Ni2—O3 92.33 (8)
O6i—Ni1—O6 180.0 N2iv—Ni2—O3ii 87.66 (8)
O6—Ni1—N1 93.49 (9) N2iv—Ni2—O4 94.86 (8)
O6i—Ni1—N1 86.51 (9) N2iii—Ni2—O4 85.14 (8)
O6i—Ni1—N1i 93.49 (9) N2iii—Ni2—O4ii 94.86 (8)
O6—Ni1—N1i 86.51 (9) N2iv—Ni2—O4ii 85.14 (8)
N1—Ni1—N1i 180.0 N2iii—Ni2—N2iv 180.0
Symmetry codes: (i) [-x+2, -y, -z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+2, -y+1, -z]; (iv) [x-1, y, z+1].
[Figure 1]
Figure 1
The nickel coordination environments in the title com­pound with a full ligand set. Displacement ellipsoids are drawn at the 50% probability level. Color code: Ni green, O red, N light blue, and C black. H-atom positions are shown as gray sticks. Symmetry codes are as listed in Table 1[link].

The adc ligands adopt a chelating/monodentate binding mode, producing [Ni2(H2O)2(adc)2]n monoperiodic chain motifs with an Ni1⋯Ni2 through-ligand distance of 9.694 (1) Å (Fig. 2[link]). These are arranged parallel to the [1[\overline{1}][\overline{1}]] direction. In turn, the chain motifs are linked into diperiodic [Ni2(H2O)2(adc)2(3-pina)2]n coordination polymer layer motifs with (4,4) grid topology (Fig. 3[link]); these are oriented parallel to the (101) crystal planes. The bound water mol­ecules (O6) engage in hydro­gen bonding to adc carboxyl­ate O atoms (O2 and O3) (Table 2[link]). Water mol­ecules of crystallization are held to the layer motifs by N—H⋯O hydro­gen-bonding inter­actions involving the 3-pina amide groups (Table 2[link]). Nonclassical C—H⋯O hydro­gen-bonding inter­actions [C22⋯O5 distance = 3.110 (1) Å] promote aggregation of the [Ni2(H2O)2(adc)2(3-pina)2]n layers into the triperiodic full crystal structure of the title com­pound. The layers stack in an AAA pattern along both the a and the c crystal directions (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O3v 0.87 (1) 2.04 (2) 2.886 (3) 163 (3)
O6—H6B⋯O2i 0.85 (2) 1.86 (2) 2.684 (3) 163 (3)
N3—H3⋯O1W 0.88 1.94 2.769 (3) 157
O1W—H1WA⋯O4vi 0.84 (2) 2.00 (2) 2.831 (3) 169 (4)
O1W—H1WB⋯O2iii 0.84 (2) 2.10 (2) 2.921 (3) 165 (4)
Symmetry codes: (i) [-x+2, -y, -z]; (iii) [-x+2, -y+1, -z]; (v) [-x+1, -y, -z]; (vi) [x, y, z-1].
[Figure 2]
Figure 2
The [Ni2(H2O)2(adc)2]n coordination polymer chain motif in the title com­pound.
[Figure 3]
Figure 3
The [Ni2(H2O)2(adc)2(3-pina)2]n coordination polymer layer motif in the title com­pound.
[Figure 4]
Figure 4
The AAA stacking of coordination polymer layers in the title com­pound.

Synthesis and crystallization

Ni(NO3)2·6H2O (108 mg, 0.37 mmol), adamantane-1,3-di­car­b­oxy­lic acid (adcH2) (93 mg, 0.37 mmol), N-(pyridin-3-yl)iso­nicotinamide (3-pina) (74 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed in 10 ml of distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title com­plex were obtained in 71% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to O atoms were located in a difference Fourier map and refined freely with Uiso(H) values fixed at 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C12H14O4)(C11H9N3O)(H2O)]·H2O
Mr 516.18
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.718 (4), 10.933 (3), 11.586 (3)
α, β, γ (°) 113.462 (4), 109.626 (4), 96.053 (4)
V3) 1127.2 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.35 × 0.31 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 12251, 4169, 3363
Rint 0.037
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.07
No. of reflections 4169
No. of parameters 339
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.82, −0.39
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXTL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalMakerX (Palmer, 2020[Palmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXTL (Sheldrick, 2015); molecular graphics: CrystalMakerX (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[(µ3-adamantane-1,3-dicarboxylato)aqua[µ-N-(pyridin-3-yl)isonicotinamide]nickel(II)] monohydrate] top
Crystal data top
[Ni(C12H14O4)(C11H9N3O)(H2O)]·H2OZ = 2
Mr = 516.18F(000) = 540
Triclinic, P1Dx = 1.521 Mg m3
a = 10.718 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.933 (3) ÅCell parameters from 6384 reflections
c = 11.586 (3) Åθ = 2.2–25.4°
α = 113.462 (4)°µ = 0.91 mm1
β = 109.626 (4)°T = 173 K
γ = 96.053 (4)°Block, green
V = 1127.2 (6) Å30.35 × 0.31 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3363 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.5°, θmin = 2.1°
Detector resolution: 836.6 pixels mm-1h = 1212
φ and ω scansk = 1313
12251 measured reflectionsl = 1413
4169 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.062P)2 + 0.5423P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4169 reflectionsΔρmax = 0.82 e Å3
339 parametersΔρmin = 0.38 e Å3
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.0000000.0000000.0000000.01704 (15)
Ni20.5000000.5000000.5000000.01567 (15)
O10.8747 (2)0.02292 (19)0.0998 (2)0.0207 (4)
O20.9879 (2)0.2140 (2)0.3019 (2)0.0278 (5)
O30.44548 (19)0.28855 (18)0.3693 (2)0.0194 (4)
O40.64885 (19)0.39367 (18)0.54244 (19)0.0185 (4)
O51.2822 (2)0.3913 (2)0.0396 (2)0.0257 (5)
O60.8399 (2)0.1579 (2)0.1770 (2)0.0323 (5)
H6A0.7521 (16)0.180 (3)0.228 (3)0.049*
H6B0.880 (3)0.185 (4)0.231 (3)0.049*
N10.9443 (2)0.1585 (2)0.0536 (2)0.0196 (5)
N21.4116 (2)0.4695 (2)0.3776 (2)0.0188 (5)
N31.0701 (2)0.3768 (2)0.1866 (2)0.0205 (5)
H31.0272540.3966930.2534630.043 (11)*
C10.8886 (3)0.1069 (3)0.2187 (3)0.0186 (6)
C20.7255 (3)0.1976 (3)0.3250 (3)0.0173 (6)
H2A0.6845920.2280080.2543510.021*
H2B0.8041130.2750680.4040750.013 (7)*
C30.7765 (3)0.0702 (3)0.2634 (3)0.0180 (6)
C40.6536 (3)0.0489 (3)0.1424 (3)0.0214 (6)
H4A0.6111460.0210600.0698870.026*
H4B0.6853960.1309820.1017000.012 (7)*
C50.8406 (3)0.0254 (3)0.3757 (3)0.0231 (7)
H5A0.8747090.0557870.3379290.028*
H5B0.9197630.1020210.4551230.017 (7)*
C60.5469 (3)0.0859 (3)0.1919 (3)0.0253 (7)
H60.4677340.1641420.1116280.021 (8)*
C70.4942 (3)0.0395 (3)0.2508 (3)0.0218 (6)
H7A0.4235510.0150570.2811450.026*
H7B0.4515100.0677980.1787710.011 (7)*
C80.6825 (3)0.1151 (3)0.4850 (3)0.0238 (7)
H8A0.7614530.1922520.5641120.029*
H8B0.6145380.0927120.5191840.033 (9)*
C90.7322 (3)0.0122 (3)0.4243 (3)0.0274 (7)
H90.7741070.0416010.4966240.030 (9)*
C100.6096 (4)0.1307 (3)0.3019 (4)0.0316 (8)
H10A0.6405770.2139590.2630090.038*
H10B0.5395790.1545940.3332300.027 (8)*
C110.6161 (3)0.1596 (3)0.3742 (3)0.0175 (6)
C120.5672 (3)0.2864 (3)0.4325 (3)0.0170 (6)
C140.8279 (3)0.1933 (3)0.0554 (3)0.0240 (7)
H140.7707310.1492600.0277800.030 (9)*
C151.0241 (3)0.2222 (3)0.0922 (3)0.0204 (6)
H151.1080390.1996660.0891060.039 (10)*
C160.7881 (3)0.2911 (3)0.0962 (3)0.0239 (7)
H160.7051490.3139490.0956640.028 (8)*
C170.9894 (3)0.3197 (3)0.1365 (3)0.0188 (6)
C180.8696 (3)0.3553 (3)0.1376 (3)0.0220 (6)
H180.8436620.4225470.1662490.022 (8)*
C191.2793 (3)0.3958 (3)0.4378 (3)0.0204 (6)
H191.2336940.3527110.5357750.002 (6)*
C201.2063 (3)0.3793 (3)0.3659 (3)0.0204 (6)
H201.1120880.3271240.4131260.016 (7)*
C211.2716 (3)0.4397 (3)0.2230 (3)0.0173 (6)
C221.4077 (3)0.5186 (3)0.1589 (3)0.0193 (6)
H221.4550780.5626380.0610510.015 (7)*
C231.4739 (3)0.5327 (3)0.2388 (3)0.0211 (6)
H231.5664650.5888350.1940190.034 (9)*
C241.2087 (3)0.4033 (3)0.1390 (3)0.0193 (6)
O1W0.9387 (2)0.5047 (2)0.3366 (3)0.0396 (6)
H1WA0.8521 (19)0.483 (4)0.370 (4)0.059*
H1WB0.969 (4)0.590 (2)0.312 (4)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0171 (3)0.0182 (3)0.0183 (3)0.0030 (2)0.0112 (2)0.0079 (2)
Ni20.0158 (3)0.0161 (3)0.0184 (3)0.0053 (2)0.0106 (2)0.0079 (2)
O10.0223 (11)0.0220 (10)0.0215 (11)0.0055 (8)0.0152 (9)0.0086 (9)
O20.0206 (11)0.0250 (11)0.0283 (12)0.0013 (9)0.0137 (10)0.0024 (9)
O30.0157 (11)0.0188 (9)0.0242 (11)0.0059 (8)0.0093 (9)0.0094 (9)
O40.0179 (11)0.0182 (9)0.0207 (11)0.0059 (8)0.0093 (9)0.0088 (9)
O50.0213 (11)0.0356 (12)0.0254 (11)0.0057 (9)0.0089 (10)0.0201 (10)
O60.0156 (11)0.0406 (13)0.0269 (13)0.0016 (10)0.0110 (10)0.0024 (10)
N10.0183 (13)0.0221 (12)0.0204 (13)0.0038 (10)0.0103 (11)0.0103 (10)
N20.0178 (13)0.0207 (12)0.0214 (13)0.0054 (10)0.0103 (11)0.0111 (10)
N30.0198 (13)0.0272 (12)0.0234 (13)0.0070 (10)0.0108 (11)0.0183 (11)
C10.0200 (16)0.0212 (14)0.0218 (15)0.0103 (12)0.0125 (13)0.0125 (13)
C20.0170 (15)0.0172 (13)0.0210 (15)0.0037 (11)0.0122 (13)0.0086 (12)
C30.0189 (15)0.0208 (13)0.0200 (15)0.0066 (12)0.0139 (13)0.0095 (12)
C40.0186 (15)0.0212 (14)0.0249 (16)0.0066 (12)0.0135 (13)0.0072 (13)
C50.0232 (17)0.0285 (15)0.0283 (17)0.0144 (13)0.0153 (14)0.0176 (14)
C60.0229 (17)0.0165 (14)0.0337 (18)0.0006 (12)0.0186 (15)0.0047 (13)
C70.0180 (15)0.0176 (13)0.0326 (17)0.0039 (12)0.0171 (14)0.0092 (13)
C80.0305 (18)0.0300 (15)0.0277 (17)0.0146 (14)0.0215 (15)0.0197 (14)
C90.0336 (19)0.0363 (17)0.0376 (19)0.0212 (15)0.0267 (16)0.0280 (16)
C100.042 (2)0.0187 (14)0.052 (2)0.0130 (14)0.0340 (18)0.0201 (15)
C110.0170 (15)0.0180 (13)0.0211 (15)0.0065 (11)0.0124 (13)0.0084 (12)
C120.0187 (16)0.0182 (13)0.0186 (15)0.0047 (12)0.0121 (13)0.0092 (12)
C140.0224 (16)0.0247 (15)0.0284 (17)0.0039 (13)0.0149 (14)0.0124 (13)
C150.0186 (15)0.0215 (14)0.0227 (15)0.0047 (12)0.0107 (13)0.0102 (12)
C160.0178 (16)0.0277 (15)0.0296 (17)0.0075 (12)0.0140 (14)0.0127 (14)
C170.0182 (15)0.0199 (13)0.0198 (15)0.0029 (11)0.0106 (13)0.0090 (12)
C180.0223 (16)0.0222 (14)0.0240 (16)0.0052 (12)0.0120 (13)0.0114 (13)
C190.0223 (16)0.0219 (14)0.0161 (15)0.0045 (12)0.0078 (13)0.0085 (12)
C200.0141 (15)0.0241 (14)0.0233 (16)0.0028 (12)0.0080 (13)0.0114 (13)
C210.0195 (15)0.0170 (13)0.0223 (15)0.0084 (11)0.0130 (13)0.0112 (12)
C220.0180 (15)0.0226 (14)0.0181 (15)0.0039 (12)0.0069 (13)0.0109 (12)
C230.0179 (16)0.0234 (14)0.0234 (16)0.0032 (12)0.0096 (13)0.0118 (13)
C240.0199 (16)0.0190 (13)0.0206 (15)0.0055 (12)0.0098 (13)0.0092 (12)
O1W0.0216 (12)0.0367 (13)0.0624 (18)0.0055 (11)0.0071 (13)0.0337 (14)
Geometric parameters (Å, º) top
Ni1—O1i2.0216 (19)C5—H5B0.9900
Ni1—O12.0216 (19)C5—C91.536 (4)
Ni1—O6i2.079 (2)C6—H61.0000
Ni1—O62.079 (2)C6—C71.531 (4)
Ni1—N12.138 (2)C6—C101.519 (4)
Ni1—N1i2.138 (2)C7—H7A0.9900
Ni2—O32.0766 (18)C7—H7B0.9900
Ni2—O3ii2.0766 (18)C7—C111.537 (4)
Ni2—O42.1113 (18)C8—H8A0.9900
Ni2—O4ii2.1113 (18)C8—H8B0.9900
Ni2—N2iii2.058 (2)C8—C91.531 (4)
Ni2—N2iv2.058 (2)C8—C111.533 (4)
O1—C11.260 (3)C9—H91.0000
O2—C11.258 (3)C9—C101.530 (5)
O3—C121.272 (3)C10—H10A0.9900
O4—C121.269 (3)C10—H10B0.9900
O5—C241.224 (3)C11—C121.515 (3)
O6—H6A0.871 (14)C14—H140.9500
O6—H6B0.849 (18)C14—C161.382 (4)
N1—C141.337 (4)C15—H150.9500
N1—C151.340 (4)C15—C171.389 (4)
N2—C191.339 (4)C16—H160.9500
N2—C231.344 (4)C16—C181.382 (4)
N3—H30.8800C17—C181.378 (4)
N3—C171.410 (3)C18—H180.9500
N3—C241.351 (4)C19—H190.9500
C1—C31.534 (4)C19—C201.366 (4)
C2—H2A0.9900C20—H200.9500
C2—H2B0.9900C20—C211.386 (4)
C2—C31.542 (4)C21—C221.385 (4)
C2—C111.551 (4)C21—C241.500 (4)
C3—C41.530 (4)C22—H220.9500
C3—C51.544 (4)C22—C231.384 (4)
C4—H4A0.9900C23—H230.9500
C4—H4B0.9900O1W—H1WA0.840 (18)
C4—C61.526 (4)O1W—H1WB0.842 (18)
C5—H5A0.9900
O1i—Ni1—O1180.0C7—C6—H6109.0
O1—Ni1—O6i90.58 (8)C10—C6—C4110.4 (2)
O1—Ni1—O689.42 (8)C10—C6—H6109.0
O1i—Ni1—O6i89.42 (8)C10—C6—C7109.6 (3)
O1i—Ni1—O690.58 (8)C6—C7—H7A109.9
O1—Ni1—N190.06 (8)C6—C7—H7B109.9
O1—Ni1—N1i89.94 (8)C6—C7—C11108.9 (2)
O1i—Ni1—N1i90.06 (8)H7A—C7—H7B108.3
O1i—Ni1—N189.94 (8)C11—C7—H7A109.9
O6i—Ni1—O6180.0C11—C7—H7B109.9
O6—Ni1—N193.49 (9)H8A—C8—H8B108.2
O6i—Ni1—N186.51 (9)C9—C8—H8A109.7
O6i—Ni1—N1i93.49 (9)C9—C8—H8B109.7
O6—Ni1—N1i86.51 (9)C9—C8—C11109.9 (2)
N1—Ni1—N1i180.0C11—C8—H8A109.7
O3ii—Ni2—O3180.0C11—C8—H8B109.7
O3—Ni2—O4ii116.95 (7)C5—C9—H9109.5
O3—Ni2—O463.05 (7)C8—C9—C5109.1 (2)
O3ii—Ni2—O4116.95 (7)C8—C9—H9109.5
O3ii—Ni2—O4ii63.05 (7)C10—C9—C5109.9 (3)
O4—Ni2—O4ii180.0C10—C9—C8109.3 (3)
N2iii—Ni2—O3ii92.34 (8)C10—C9—H9109.5
N2iii—Ni2—O387.67 (8)C6—C10—C9109.3 (2)
N2iv—Ni2—O392.33 (8)C6—C10—H10A109.8
N2iv—Ni2—O3ii87.66 (8)C6—C10—H10B109.8
N2iv—Ni2—O494.86 (8)C9—C10—H10A109.8
N2iii—Ni2—O485.14 (8)C9—C10—H10B109.8
N2iii—Ni2—O4ii94.86 (8)H10A—C10—H10B108.3
N2iv—Ni2—O4ii85.14 (8)C7—C11—C2109.4 (2)
N2iii—Ni2—N2iv180.0C8—C11—C2108.7 (2)
C1—O1—Ni1133.44 (18)C8—C11—C7109.7 (2)
C12—O3—Ni289.28 (15)C12—C11—C2108.2 (2)
C12—O4—Ni287.83 (15)C12—C11—C7110.0 (2)
Ni1—O6—H6A143 (2)C12—C11—C8110.8 (2)
Ni1—O6—H6B101 (2)O3—C12—Ni259.03 (13)
H6A—O6—H6B107 (3)O3—C12—C11120.5 (2)
C14—N1—Ni1121.94 (19)O4—C12—Ni260.60 (13)
C14—N1—C15118.1 (2)O4—C12—O3119.1 (2)
C15—N1—Ni1119.93 (18)O4—C12—C11120.4 (2)
C19—N2—Ni2v118.35 (19)C11—C12—Ni2170.38 (19)
C19—N2—C23117.7 (2)N1—C14—H14118.9
C23—N2—Ni2v123.49 (19)N1—C14—C16122.2 (3)
C17—N3—H3117.7C16—C14—H14118.9
C24—N3—H3117.7N1—C15—H15118.6
C24—N3—C17124.6 (2)N1—C15—C17122.8 (3)
O1—C1—C3116.0 (2)C17—C15—H15118.6
O2—C1—O1124.8 (3)C14—C16—H16120.2
O2—C1—C3119.1 (2)C18—C16—C14119.6 (3)
H2A—C2—H2B108.2C18—C16—H16120.2
C3—C2—H2A109.7C15—C17—N3121.4 (2)
C3—C2—H2B109.7C18—C17—N3119.7 (2)
C3—C2—C11109.7 (2)C18—C17—C15118.8 (3)
C11—C2—H2A109.7C16—C18—H18120.8
C11—C2—H2B109.7C17—C18—C16118.5 (3)
C1—C3—C2110.6 (2)C17—C18—H18120.8
C1—C3—C5107.9 (2)N2—C19—H19118.2
C2—C3—C5108.7 (2)N2—C19—C20123.5 (3)
C4—C3—C1111.7 (2)C20—C19—H19118.2
C4—C3—C2109.0 (2)C19—C20—H20120.5
C4—C3—C5108.9 (2)C19—C20—C21119.0 (3)
C3—C4—H4A109.6C21—C20—H20120.5
C3—C4—H4B109.6C20—C21—C24122.1 (2)
H4A—C4—H4B108.1C22—C21—C20118.1 (3)
C6—C4—C3110.1 (2)C22—C21—C24119.0 (2)
C6—C4—H4A109.6C21—C22—H22120.3
C6—C4—H4B109.6C23—C22—C21119.4 (3)
C3—C5—H5A109.7C23—C22—H22120.3
C3—C5—H5B109.7N2—C23—C22122.1 (3)
H5A—C5—H5B108.2N2—C23—H23118.9
C9—C5—C3109.9 (2)C22—C23—H23118.9
C9—C5—H5A109.7O5—C24—N3124.6 (3)
C9—C5—H5B109.7O5—C24—C21119.4 (3)
C4—C6—H6109.0N3—C24—C21115.8 (2)
C4—C6—C7109.8 (2)H1WA—O1W—H1WB109 (3)
Ni1—O1—C1—O29.4 (4)C5—C9—C10—C659.2 (3)
Ni1—O1—C1—C3168.59 (17)C6—C7—C11—C259.9 (3)
Ni1—N1—C14—C16176.9 (2)C6—C7—C11—C859.2 (3)
Ni1—N1—C15—C17175.9 (2)C6—C7—C11—C12178.7 (2)
Ni2—O3—C12—O48.7 (2)C7—C6—C10—C961.6 (3)
Ni2—O3—C12—C11168.8 (2)C7—C11—C12—O38.7 (3)
Ni2—O4—C12—O38.5 (2)C7—C11—C12—O4173.8 (2)
Ni2—O4—C12—C11169.0 (2)C8—C9—C10—C660.4 (3)
Ni2v—N2—C19—C20173.9 (2)C8—C11—C12—O3130.2 (3)
Ni2v—N2—C23—C22174.8 (2)C8—C11—C12—O452.3 (3)
O1—C1—C3—C2132.5 (2)C9—C8—C11—C260.7 (3)
O1—C1—C3—C410.9 (3)C9—C8—C11—C758.8 (3)
O1—C1—C3—C5108.7 (3)C9—C8—C11—C12179.5 (2)
O2—C1—C3—C249.3 (3)C10—C6—C7—C1160.8 (3)
O2—C1—C3—C4170.9 (2)C11—C2—C3—C1178.0 (2)
O2—C1—C3—C569.5 (3)C11—C2—C3—C458.8 (3)
N1—C14—C16—C180.4 (4)C11—C2—C3—C559.7 (3)
N1—C15—C17—N3175.0 (2)C11—C8—C9—C561.0 (3)
N1—C15—C17—C181.7 (4)C11—C8—C9—C1059.2 (3)
N2—C19—C20—C210.9 (4)C14—N1—C15—C171.5 (4)
N3—C17—C18—C16175.9 (3)C14—C16—C18—C170.2 (4)
C1—C3—C4—C6177.9 (2)C15—N1—C14—C160.4 (4)
C1—C3—C5—C9179.9 (2)C15—C17—C18—C160.8 (4)
C2—C3—C4—C659.6 (3)C17—N3—C24—O56.1 (4)
C2—C3—C5—C959.9 (3)C17—N3—C24—C21169.4 (2)
C2—C11—C12—O3110.7 (3)C19—N2—C23—C222.8 (4)
C2—C11—C12—O466.8 (3)C19—C20—C21—C222.2 (4)
C3—C2—C11—C759.5 (3)C19—C20—C21—C24167.4 (2)
C3—C2—C11—C860.3 (3)C20—C21—C22—C231.0 (4)
C3—C2—C11—C12179.3 (2)C20—C21—C24—O5140.1 (3)
C3—C4—C6—C761.0 (3)C20—C21—C24—N335.7 (4)
C3—C4—C6—C1060.0 (3)C21—C22—C23—N21.6 (4)
C3—C5—C9—C860.5 (3)C22—C21—C24—O529.4 (4)
C3—C5—C9—C1059.4 (3)C22—C21—C24—N3154.9 (2)
C4—C3—C5—C958.8 (3)C23—N2—C19—C201.6 (4)
C4—C6—C7—C1160.8 (3)C24—N3—C17—C1534.5 (4)
C4—C6—C10—C959.5 (3)C24—N3—C17—C18148.9 (3)
C5—C3—C4—C658.9 (3)C24—C21—C22—C23168.9 (2)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z; (iv) x1, y, z+1; (v) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O3vi0.87 (1)2.04 (2)2.886 (3)163 (3)
O6—H6B···O2i0.85 (2)1.86 (2)2.684 (3)163 (3)
N3—H3···O1W0.881.942.769 (3)157
O1W—H1WA···O4vii0.84 (2)2.00 (2)2.831 (3)169 (4)
O1W—H1WB···O2iii0.84 (2)2.10 (2)2.921 (3)165 (4)
Symmetry codes: (i) x+2, y, z; (iii) x+2, y+1, z; (vi) x+1, y, z; (vii) x, y, z1.
 

Funding information

Funding for this research was provided by: Lyman Briggs College, Michigan State University.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTravis, J. Z., Pumford, S. R., Martinez, B. L. & LaDuca, R. L. (2018). Polyhedron, 142, 25–37.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146