organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(Octa­decyl­sulfan­yl)-1,3-thia­zole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Blvd. South, Fort Myers, FL, 33965, USA, bAve Maria University, Department of Chemistry and Physics, 5050 Ave Maria Blvd, Ave Maria FL, 34142, USA, and cPurdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana USA, 47907, USA
*Correspondence e-mail: amirjafari@fgcu.edu

Edited by R. J. Butcher, Howard University, USA (Received 13 December 2019; accepted 5 February 2020; online 11 February 2020)

The title compound, C21H39NS2, crystallizes with two mol­ecules in the asymmetric unit, both having a linear 18-carbon alkyl chain bound through a thio­ether group. No ππ stacking or hydrogen bonding is observed. The orientation of the alkyl chains facilitates inter­molecular inter­actions between te chains. The structure is metrically ortho­rhom­bic but crystallizes in the monoclinic space group P21 and was found to be twinned by pseudomerohedry (emulating ortho­rhom­bic symmetry) and by inversion. The twin factions refined to 0.37 (4), 0.13 (4), 0.31 (5), and 0.19 (4).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) exhibits no notable hydrogen bonding or ππ inter­actions. It appears that inter­actions involving atoms of the alkyl chains form the majority of the inter­molecular inter­actions [DA = 3.730 (10) to 3.974 (11) Å]. There are two independent mol­ecular units found in the structure, indicated by the atom label suffixes A and B. While the majority of the two mol­ecules exhibit similar geometrical features, such as a linear alkyl chain, the two mol­ecules differ in the C3—S2—C4—C5 torsion angles [177.9 (7)° in mol­ecule A and 70.6 (8)° in mol­ecule B. From the packing diagram (Fig. 2[link]), it appears that mol­ecule B adopts this torsion angle to facilitate the alkyl-chain inter­actions while avoiding any repulsive inter­actions with the thia­zole ring of the adjacent mol­ecule A.

[Figure 1]
Figure 1
The title compound shown with 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing diagram for the title compound depicting the alkyl chain inter­actions between mol­ecules.

For the synthesis and applications of alkyl­ated thia­zoles, see: Iwasaki et al., (2016[Iwasaki, M., Topolovčan, N., Hu, H., Nishimura, Y., Gagnot, G., Na nakorn, R., Yuvacharaskul, R., Nakajima, K. & Nishihara, Y. (2016). Org. Lett. 18, 1642-1645.]). For an example of alkyl­ated thia­zoles as metal ligands, see: Artem'ev et al. (2018[Artem'ev, A. V., Samsonenko, D. G. & Antonova, O. V. (2018). Polyhedron, 151, 171-176.]). For similarly alkyl­ated complexes as ionic liquids, see: Nestor et al. (2017[Nestor, S. T., Heinrich, B., Sykora, R. A., Zhang, X., McManus, G. J., Douce, L. & Mirjafari, A. (2017). Tetrahedron, 73, 5456-5460.]) and O'Brien et al.(2016[O'Brien, R. A., Zayas, M. S., Nestor, S. T., Gaitor, J. C., Paul, L. M., Edhegard, F. A., Minkowicz, S., Sykora, R. E., Sheng, Y., Michael, S. F., Isern, S. & Mirjafari, A. (2016). New J. Chem. 40, 7795-7803.]).

Synthesis and crystallization

A 250 ml round-bottom flask, oven dried, was paired with a Teflon-coated magnetic stir bar. 2-Mercapto­thia­zole (1.004 g, 1 equiv.) and 1-bromo­octa­decane (2.861 g, 1 equiv.) were dissolved into 150 ml of aceto­nitrile in the 250 ml round bottom flask, which was attached to a water-jacketed reflux condenser and placed into an oil bath. The hot plate was set to 82°C with stirring on and ran for 48 h, after which it was left to cool to room temperature. The solvent was then removed under reduced pressure and a white crystalline solid formed in high yield (92%).

The solid product was dissolved in boiling aceto­nitrile and laboratory parafilm was used to cover the vial, with one hole prodded at the top. Colorless crystals of the product formed over 12 d.

1H NMR (400 MHz, chloro­form-d) δ 7.65–7.64 (m, 1H), 7.19 (q, J = 1.6 Hz, 1H), 3.19 (t, J = 7.3 Hz, 2H), 1.77–1.70 (m, 2H), 1.45–1.38 (m, 2H), 1.24 (s, 28H), 0.88–0.85 (m, 3H)

13C NMR (101 MHz, chloro­form-d) δ 142.8, 118.7, 77.4, 77.1, 76.8, 34.7, 32.0, 29.8, 29.7, 29.6, 29.5, 29.3, 29.2, 28.8, 22.8, 14.2

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The structure is metrically ortho­rhom­bic but crystallizes in the monoclinic space group P21. Initial attempts to solve the structure in various ortho­rhom­bic space groups failed. A closer inspection of diffraction images showed the peaks to be a bit asymmetric, but they were not obviously split. Unit-cell angles were indecisive. Reflection statistics (XPREP; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) indicated a high Rsym value for ortho­rhom­bic and for two of the three possible monoclinic settings (> 1/5). The third monoclinic option had a low Rsym (0.05). After relaxation of the default thresholds for maximum intensity for systematically absent reflections, XPREP indicated a 21 screw axis, but was indecisive regarding the presence of glide planes because of twin overlaps. Solution attempts in P21 in this monoclinic setting were able to localize some of the alkyl chains. The addition of a twin transformation matrix (1 0 0 0 −1 0 0 0 −1) (Rotax within WinGX; Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and iterative refinements allowed for the assignment of the remaining atoms from difference density maps. The initial Flack parameter indicated the presence of inversion twinning, and in the final model the structure was refined as four component twinned by pseudo-merohedry (emulating ortho­rhom­bic symmetry) and by inversion. Twin fractions refined to 0.37 (4), 0.13 (4), 0.31 (5) and 0.19 (4). The outer ends of the C18 alkyl chains are ill defined because of large thermal libration and/or ill-defined disorder. The outermost C—C bond distances in the two mol­ecules were restrained to be similar (e.s.d. = 0.02 Å), and a rigid bond restraint (RIGU, e.s.d. = 0.004 Å2) was applied for the four outermost two carbon atoms of each mol­ecule.

Table 1
Experimental details

Crystal data
Chemical formula C21H39NS2
Mr 369.65
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 5.5457 (6), 9.1108 (10), 43.511 (6)
β (°) 90.376 (5)
V3) 2198.4 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.19
Crystal size (mm) 0.16 × 0.14 × 0.02
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.082, 0.226
No. of measured, independent and observed [I > 2σ(I)] reflections 20191, 8140, 7233
Rint 0.113
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.097, 0.263, 1.05
No. of reflections 8140
No. of parameters 438
No. of restraints 44
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.98, −0.75
Absolute structure Twinning involves inversion, so Flack parameter cannot be determined
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.], 2018[Sheldrick, G. M. (2018). University of Göttingen, Germany.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015, 2018) and SHELXLE (Hübschle et al., 2011); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

2-(Octadecylsulfanyl)-1,3-thiazole top
Crystal data top
C21H39NS2F(000) = 816
Mr = 369.65Dx = 1.117 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 5.5457 (6) ÅCell parameters from 9695 reflections
b = 9.1108 (10) Åθ = 3.0–73.0°
c = 43.511 (6) ŵ = 2.19 mm1
β = 90.376 (5)°T = 150 K
V = 2198.4 (4) Å3Plate, colourless
Z = 40.16 × 0.14 × 0.02 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
8140 independent reflections
Radiation source: I-mu-S microsource X-ray tube7233 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.113
Detector resolution: 7.4074 pixels mm-1θmax = 73.0°, θmin = 2.0°
ω and phi scansh = 56
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1011
Tmin = 0.082, Tmax = 0.226l = 5353
20191 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.097H-atom parameters constrained
wR(F2) = 0.263 w = 1/[σ2(Fo2) + (0.1736P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
8140 reflectionsΔρmax = 0.98 e Å3
438 parametersΔρmin = 0.75 e Å3
44 restraintsAbsolute structure: Twinning involves inversion, so Flack parameter cannot be determined
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure is metrically orthorhombic but crystallizes in P21. It was found to be twinned by pseudo-merohedry (emulating orthorhombic symmetry) and by inversion and was refined as a 4-component inversion twin. Twin factions refined to 0.37 (4), 0.13 (4), 0.31 (5) and 0.19 (4).

The outer ends of the C18 alkyl chain is ill defined due to large thermal libration and/or ill defined disorder. The outermost C-C bond distance in the two molecules was restrained to be similar, and a rigid bond restraint (RIGU) was applied for the four outermost carbon atoms of each molecule.

C—H bond distances were constrained to 0.95 Å for thiazole C—H moieties, 0.99 Å for methylene CH2 and 0.98 Å for methyl CH3 moieties. Uiso(H) values were set to 1.5 times Ueq(C) for methyl groups, and 1.2 times Ueq(C) CH and CH2 groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.9102 (18)0.9632 (9)0.08345 (19)0.0389 (19)
C1A1.2274 (17)0.8909 (13)0.05318 (19)0.035 (2)
H1A1.3597480.9025760.0394140.042*
S1A1.1325 (5)0.7269 (3)0.06812 (6)0.0400 (6)
C2A1.086 (2)1.0024 (11)0.0639 (3)0.044 (2)
H2A1.1106931.1014890.0577950.052*
S2A0.7221 (5)0.7202 (3)0.11213 (7)0.0445 (6)
C3A0.9098 (18)0.8239 (11)0.0887 (2)0.035 (2)
C4A0.5488 (18)0.8633 (11)0.1303 (2)0.036 (2)
H4AA0.4545220.9187920.1149260.043*
H4AB0.6550940.9323020.1413950.043*
C5A0.380 (2)0.7814 (11)0.1529 (3)0.040 (2)
H5AA0.4793740.7239970.1673940.049*
H5AB0.2795450.7114840.1411750.049*
C6A0.221 (2)0.8817 (11)0.1705 (2)0.037 (2)
H6AA0.3200400.9518370.1823570.045*
H6AB0.1191610.9385280.1561830.045*
C7A0.058 (2)0.7939 (12)0.1927 (3)0.042 (2)
H7AA0.1619000.7340070.2062810.050*
H7AB0.0423930.7258160.1805950.050*
C8A0.104 (2)0.8881 (11)0.2124 (2)0.040 (2)
H8AA0.0036570.9582540.2240720.048*
H8AB0.2111720.9457390.1988670.048*
C9A0.258 (2)0.8008 (13)0.2348 (3)0.046 (2)
H9AA0.3571130.7302380.2231300.055*
H9AB0.1502970.7436100.2484040.055*
C10A0.423 (2)0.8955 (12)0.2546 (3)0.048 (3)
H10A0.3231700.9647110.2665980.057*
H10B0.5280110.9541730.2409920.057*
C11A0.581 (2)0.8063 (13)0.2767 (3)0.050 (3)
H11A0.4757980.7460100.2900080.060*
H11B0.6830710.7385800.2646730.060*
C12A0.739 (3)0.8992 (13)0.2965 (3)0.060 (3)
H12A0.6360060.9648990.3089310.072*
H12B0.8400130.9616040.2831620.072*
C13A0.906 (3)0.8103 (15)0.3185 (3)0.062 (4)
H13A0.8048740.7461090.3314940.075*
H13B1.0112960.7462160.3060330.075*
C14A1.056 (3)0.9007 (14)0.3383 (3)0.064 (4)
H14A0.9509360.9639800.3509290.077*
H14B1.1562950.9655100.3253120.077*
C15A1.226 (3)0.8098 (16)0.3601 (3)0.069 (4)
H15A1.1262170.7431740.3727730.083*
H15B1.3342430.7484730.3475100.083*
C16A1.371 (4)0.9013 (17)0.3804 (4)0.083 (6)
H16A1.2624490.9617540.3931780.099*
H16B1.4688780.9688760.3677370.099*
C17A1.546 (4)0.810 (2)0.4023 (4)0.101 (6)
H17A1.4478280.7419710.4147440.121*
H17B1.6551280.7506040.3894670.121*
C18A1.695 (4)0.903 (2)0.4235 (4)0.109 (7)
H18A1.5840910.9604290.4365840.131*
H18B1.7871910.9734810.4109350.131*
C19A1.880 (5)0.817 (2)0.4455 (5)0.115 (7)
H19A1.7884000.7454510.4578190.138*
H19B1.9930420.7611720.4324170.138*
C20A2.020 (5)0.907 (3)0.4661 (6)0.138 (9)
H20A1.9054860.9650170.4786410.166*
H20B2.1123870.9776880.4535760.166*
C21A2.203 (5)0.829 (3)0.4890 (5)0.152 (10)
H21A2.3656330.8319550.4802880.228*
H21B2.1541390.7271590.4921390.228*
H21C2.2034010.8809980.5087840.228*
N1B0.3610 (15)0.3613 (9)0.03120 (17)0.0332 (16)
C1B0.3453 (17)0.5615 (11)0.0031 (2)0.034 (2)
H1B0.2899990.6199190.0197070.041*
S1B0.6079 (5)0.5923 (3)0.01858 (6)0.0389 (5)
C2B0.2370 (18)0.4401 (11)0.0081 (2)0.034 (2)
H2B0.0842460.4087980.0008160.041*
S2B0.7610 (4)0.3686 (3)0.06669 (6)0.0345 (5)
C3B0.5590 (17)0.4307 (11)0.0392 (2)0.038 (2)
C4B0.5670 (18)0.2595 (13)0.0909 (3)0.042 (3)
H4BA0.6659250.2009800.1052170.050*
H4BB0.4730320.1907710.0780250.050*
C5B0.3916 (16)0.3598 (10)0.10946 (19)0.0269 (17)
H5BA0.2889990.4159150.0951090.032*
H5BB0.4855970.4307460.1217690.032*
C6B0.2336 (18)0.2684 (10)0.1306 (2)0.034 (2)
H6BA0.1352990.2000760.1182030.040*
H6BB0.3367750.2090910.1443460.040*
C7B0.0677 (15)0.3648 (11)0.1499 (2)0.0301 (17)
H7BA0.0343830.4237210.1360280.036*
H7BB0.1674910.4338120.1619900.036*
C8B0.094 (2)0.2804 (11)0.1718 (3)0.039 (2)
H8BA0.0080600.2211570.1856690.047*
H8BB0.1944450.2117690.1597520.047*
C9B0.2563 (18)0.3774 (11)0.1909 (2)0.0348 (18)
H9BA0.1554600.4465830.2027240.042*
H9BB0.3588880.4359600.1769560.042*
C10B0.4180 (19)0.2929 (11)0.2131 (2)0.040 (2)
H10C0.3151550.2344800.2270480.048*
H10D0.5181780.2234250.2012550.048*
C11B0.5807 (19)0.3881 (12)0.2322 (2)0.040 (2)
H11C0.4808990.4575430.2440830.048*
H11D0.6840510.4464390.2182830.048*
C12B0.743 (2)0.3013 (11)0.2545 (3)0.046 (3)
H12C0.6394190.2406640.2679500.055*
H12D0.8456790.2338230.2425130.055*
C13B0.902 (3)0.3955 (12)0.2744 (3)0.054 (3)
H13C0.7997840.4615810.2868000.064*
H13D1.0041620.4574440.2610430.064*
C14B1.065 (2)0.3061 (13)0.2960 (3)0.056 (3)
H14C0.9620780.2464540.3096910.067*
H14D1.1627540.2376940.2835420.067*
C15B1.232 (3)0.3997 (14)0.3155 (3)0.064 (4)
H15C1.1346130.4695940.3276040.077*
H15D1.3375950.4576880.3017990.077*
C16B1.392 (3)0.3100 (15)0.3377 (4)0.068 (4)
H16C1.2869690.2520740.3514590.082*
H16D1.4899710.2401010.3256390.082*
C17B1.558 (3)0.4038 (14)0.3570 (3)0.069 (4)
H17C1.4587900.4754830.3684480.082*
H17D1.6640760.4599350.3430770.082*
C18B1.721 (3)0.3159 (16)0.3807 (4)0.077 (4)
H18C1.6140090.2585350.3943800.093*
H18D1.8210440.2452770.3691890.093*
C19B1.874 (3)0.4044 (16)0.3992 (4)0.075 (4)
H19C1.7744310.4728670.4113800.090*
H19D1.9785610.4639420.3856670.090*
C20B2.037 (3)0.314 (2)0.4216 (5)0.098 (6)
H20C1.9323150.2598830.4359520.118*
H20D2.1278490.2409420.4094750.118*
C21B2.219 (4)0.405 (2)0.4406 (4)0.107 (6)
H21D2.1333840.4831770.4514760.129*
H21E2.3385360.4485410.4268180.129*
H21F2.3003940.3411230.4554780.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.040 (5)0.028 (4)0.049 (4)0.003 (4)0.001 (4)0.000 (3)
C1A0.018 (4)0.055 (6)0.031 (4)0.005 (5)0.000 (3)0.003 (4)
S1A0.0325 (13)0.0268 (11)0.0605 (14)0.0012 (11)0.0109 (10)0.0003 (11)
C2A0.032 (5)0.024 (5)0.074 (7)0.003 (4)0.007 (5)0.006 (5)
S2A0.0344 (14)0.0278 (11)0.0710 (15)0.0035 (12)0.0150 (11)0.0016 (12)
C3A0.015 (4)0.034 (5)0.055 (5)0.003 (4)0.004 (4)0.001 (4)
C4A0.028 (5)0.024 (4)0.055 (5)0.003 (4)0.005 (4)0.003 (4)
C5A0.031 (5)0.029 (5)0.062 (6)0.002 (5)0.011 (5)0.008 (4)
C6A0.036 (6)0.020 (4)0.056 (5)0.008 (4)0.000 (4)0.005 (4)
C7A0.031 (6)0.035 (5)0.060 (6)0.006 (5)0.004 (4)0.002 (5)
C8A0.040 (6)0.028 (5)0.053 (5)0.009 (5)0.002 (4)0.003 (4)
C9A0.034 (6)0.040 (6)0.063 (6)0.020 (5)0.003 (5)0.008 (5)
C10A0.052 (7)0.032 (6)0.059 (6)0.016 (5)0.007 (5)0.007 (4)
C11A0.043 (7)0.041 (6)0.066 (7)0.026 (6)0.011 (5)0.015 (5)
C12A0.067 (8)0.042 (7)0.070 (7)0.032 (7)0.009 (7)0.016 (5)
C13A0.070 (9)0.052 (7)0.064 (7)0.039 (7)0.019 (6)0.022 (6)
C14A0.089 (11)0.042 (7)0.061 (7)0.027 (7)0.015 (7)0.014 (5)
C15A0.082 (11)0.054 (7)0.072 (8)0.037 (8)0.034 (8)0.023 (7)
C16A0.117 (14)0.057 (9)0.075 (9)0.042 (10)0.038 (10)0.028 (7)
C17A0.131 (16)0.080 (11)0.093 (10)0.073 (11)0.058 (9)0.051 (8)
C18A0.140 (18)0.090 (12)0.098 (11)0.070 (12)0.055 (9)0.049 (8)
C19A0.141 (16)0.108 (14)0.097 (11)0.087 (13)0.072 (9)0.062 (9)
C20A0.17 (2)0.116 (18)0.130 (17)0.083 (16)0.043 (12)0.041 (12)
C21A0.18 (2)0.14 (2)0.137 (15)0.114 (17)0.086 (12)0.092 (13)
N1B0.022 (4)0.031 (4)0.047 (4)0.013 (3)0.000 (3)0.004 (3)
C1B0.025 (4)0.032 (5)0.046 (5)0.012 (4)0.010 (4)0.009 (4)
S1B0.0309 (12)0.0278 (11)0.0580 (13)0.0003 (10)0.0033 (10)0.0027 (10)
C2B0.021 (5)0.029 (4)0.052 (5)0.009 (4)0.000 (4)0.004 (4)
S2B0.0181 (10)0.0287 (10)0.0568 (12)0.0021 (9)0.0032 (9)0.0009 (10)
C3B0.016 (5)0.033 (5)0.066 (6)0.001 (4)0.014 (4)0.006 (4)
C4B0.021 (5)0.039 (6)0.064 (7)0.001 (4)0.002 (4)0.003 (4)
C5B0.021 (4)0.023 (4)0.037 (4)0.002 (4)0.007 (3)0.001 (3)
C6B0.017 (4)0.027 (4)0.056 (5)0.001 (4)0.000 (4)0.003 (4)
C7B0.012 (4)0.022 (4)0.056 (5)0.008 (4)0.001 (3)0.006 (4)
C8B0.025 (5)0.022 (4)0.071 (7)0.007 (4)0.009 (4)0.003 (4)
C9B0.020 (4)0.024 (4)0.060 (5)0.001 (4)0.001 (4)0.002 (4)
C10B0.028 (5)0.028 (5)0.064 (6)0.009 (4)0.003 (4)0.000 (4)
C11B0.030 (5)0.033 (5)0.056 (6)0.003 (5)0.007 (4)0.005 (4)
C12B0.036 (6)0.026 (5)0.075 (7)0.013 (5)0.013 (5)0.014 (5)
C13B0.060 (8)0.030 (6)0.072 (7)0.010 (6)0.019 (6)0.015 (5)
C14B0.044 (7)0.035 (6)0.090 (9)0.022 (6)0.013 (6)0.025 (6)
C15B0.067 (9)0.048 (7)0.077 (8)0.032 (7)0.020 (7)0.028 (6)
C16B0.067 (9)0.045 (7)0.093 (9)0.040 (7)0.024 (8)0.039 (7)
C17B0.091 (11)0.041 (7)0.074 (8)0.025 (7)0.026 (7)0.021 (6)
C18B0.076 (10)0.048 (7)0.108 (10)0.033 (7)0.039 (7)0.039 (6)
C19B0.080 (10)0.052 (8)0.094 (9)0.037 (7)0.035 (7)0.030 (6)
C20B0.076 (11)0.092 (12)0.126 (13)0.057 (9)0.046 (7)0.072 (10)
C21B0.115 (15)0.105 (15)0.102 (12)0.055 (11)0.046 (9)0.033 (10)
Geometric parameters (Å, º) top
N1A—C3A1.289 (14)N1B—C3B1.316 (14)
N1A—C2A1.340 (14)N1B—C2B1.417 (11)
C1A—C2A1.363 (15)C1B—C2B1.348 (14)
C1A—S1A1.711 (11)C1B—S1B1.763 (11)
C1A—H1A0.9500C1B—H1B0.9500
S1A—C3A1.758 (10)S1B—C3B1.744 (11)
C2A—H2A0.9500C2B—H2B0.9500
S2A—C3A1.733 (10)S2B—C3B1.740 (11)
S2A—C4A1.799 (10)S2B—C4B1.799 (11)
C4A—C5A1.543 (14)C4B—C5B1.557 (13)
C4A—H4AA0.9900C4B—H4BA0.9900
C4A—H4AB0.9900C4B—H4BB0.9900
C5A—C6A1.484 (15)C5B—C6B1.516 (12)
C5A—H5AA0.9900C5B—H5BA0.9900
C5A—H5AB0.9900C5B—H5BB0.9900
C6A—C7A1.539 (14)C6B—C7B1.521 (12)
C6A—H6AA0.9900C6B—H6BA0.9900
C6A—H6AB0.9900C6B—H6BB0.9900
C7A—C8A1.507 (15)C7B—C8B1.511 (13)
C7A—H7AA0.9900C7B—H7BA0.9900
C7A—H7AB0.9900C7B—H7BB0.9900
C8A—C9A1.516 (13)C8B—C9B1.508 (14)
C8A—H8AA0.9900C8B—H8BA0.9900
C8A—H8AB0.9900C8B—H8BB0.9900
C9A—C10A1.520 (17)C9B—C10B1.524 (14)
C9A—H9AA0.9900C9B—H9BA0.9900
C9A—H9AB0.9900C9B—H9BB0.9900
C10A—C11A1.533 (15)C10B—C11B1.497 (15)
C10A—H10A0.9900C10B—H10C0.9900
C10A—H10B0.9900C10B—H10D0.9900
C11A—C12A1.49 (2)C11B—C12B1.540 (14)
C11A—H11A0.9900C11B—H11C0.9900
C11A—H11B0.9900C11B—H11D0.9900
C12A—C13A1.556 (16)C12B—C13B1.500 (19)
C12A—H12A0.9900C12B—H12C0.9900
C12A—H12B0.9900C12B—H12D0.9900
C13A—C14A1.45 (2)C13B—C14B1.533 (16)
C13A—H13A0.9900C13B—H13C0.9900
C13A—H13B0.9900C13B—H13D0.9900
C14A—C15A1.570 (19)C14B—C15B1.52 (2)
C14A—H14A0.9900C14B—H14C0.9900
C14A—H14B0.9900C14B—H14D0.9900
C15A—C16A1.45 (3)C15B—C16B1.539 (17)
C15A—H15A0.9900C15B—H15C0.9900
C15A—H15B0.9900C15B—H15D0.9900
C16A—C17A1.59 (2)C16B—C17B1.51 (2)
C16A—H16A0.9900C16B—H16C0.9900
C16A—H16B0.9900C16B—H16D0.9900
C17A—C18A1.49 (3)C17B—C18B1.59 (2)
C17A—H17A0.9900C17B—H17C0.9900
C17A—H17B0.9900C17B—H17D0.9900
C18A—C19A1.60 (3)C18B—C19B1.42 (3)
C18A—H18A0.9900C18B—H18C0.9900
C18A—H18B0.9900C18B—H18D0.9900
C19A—C20A1.44 (4)C19B—C20B1.56 (2)
C19A—H19A0.9900C19B—H19C0.9900
C19A—H19B0.9900C19B—H19D0.9900
C20A—C21A1.59 (3)C20B—C21B1.54 (3)
C20A—H20A0.9900C20B—H20C0.9900
C20A—H20B0.9900C20B—H20D0.9900
C21A—H21A0.9800C21B—H21D0.9800
C21A—H21B0.9800C21B—H21E0.9800
C21A—H21C0.9800C21B—H21F0.9800
C3A—N1A—C2A112.0 (9)C3B—N1B—C2B110.7 (9)
C2A—C1A—S1A110.3 (7)C2B—C1B—S1B107.8 (7)
C2A—C1A—H1A124.9C2B—C1B—H1B126.1
S1A—C1A—H1A124.9S1B—C1B—H1B126.1
C1A—S1A—C3A88.2 (5)C3B—S1B—C1B90.8 (5)
N1A—C2A—C1A115.6 (10)C1B—C2B—N1B117.1 (9)
N1A—C2A—H2A122.2C1B—C2B—H2B121.5
C1A—C2A—H2A122.2N1B—C2B—H2B121.5
C3A—S2A—C4A100.4 (5)C3B—S2B—C4B101.3 (5)
N1A—C3A—S2A129.8 (8)N1B—C3B—S2B124.6 (8)
N1A—C3A—S1A113.9 (8)N1B—C3B—S1B113.4 (8)
S2A—C3A—S1A116.3 (6)S2B—C3B—S1B122.0 (6)
C5A—C4A—S2A104.4 (7)C5B—C4B—S2B110.4 (8)
C5A—C4A—H4AA110.9C5B—C4B—H4BA109.6
S2A—C4A—H4AA110.9S2B—C4B—H4BA109.6
C5A—C4A—H4AB110.9C5B—C4B—H4BB109.6
S2A—C4A—H4AB110.9S2B—C4B—H4BB109.6
H4AA—C4A—H4AB108.9H4BA—C4B—H4BB108.1
C6A—C5A—C4A112.9 (8)C6B—C5B—C4B110.5 (8)
C6A—C5A—H5AA109.0C6B—C5B—H5BA109.6
C4A—C5A—H5AA109.0C4B—C5B—H5BA109.6
C6A—C5A—H5AB109.0C6B—C5B—H5BB109.6
C4A—C5A—H5AB109.0C4B—C5B—H5BB109.6
H5AA—C5A—H5AB107.8H5BA—C5B—H5BB108.1
C5A—C6A—C7A110.5 (9)C5B—C6B—C7B111.3 (8)
C5A—C6A—H6AA109.6C5B—C6B—H6BA109.4
C7A—C6A—H6AA109.6C7B—C6B—H6BA109.4
C5A—C6A—H6AB109.6C5B—C6B—H6BB109.4
C7A—C6A—H6AB109.6C7B—C6B—H6BB109.4
H6AA—C6A—H6AB108.1H6BA—C6B—H6BB108.0
C8A—C7A—C6A113.9 (8)C8B—C7B—C6B114.0 (8)
C8A—C7A—H7AA108.8C8B—C7B—H7BA108.7
C6A—C7A—H7AA108.8C6B—C7B—H7BA108.7
C8A—C7A—H7AB108.8C8B—C7B—H7BB108.7
C6A—C7A—H7AB108.8C6B—C7B—H7BB108.7
H7AA—C7A—H7AB107.7H7BA—C7B—H7BB107.6
C7A—C8A—C9A113.5 (9)C9B—C8B—C7B113.4 (8)
C7A—C8A—H8AA108.9C9B—C8B—H8BA108.9
C9A—C8A—H8AA108.9C7B—C8B—H8BA108.9
C7A—C8A—H8AB108.9C9B—C8B—H8BB108.9
C9A—C8A—H8AB108.9C7B—C8B—H8BB108.9
H8AA—C8A—H8AB107.7H8BA—C8B—H8BB107.7
C8A—C9A—C10A113.6 (9)C8B—C9B—C10B113.7 (8)
C8A—C9A—H9AA108.8C8B—C9B—H9BA108.8
C10A—C9A—H9AA108.8C10B—C9B—H9BA108.8
C8A—C9A—H9AB108.8C8B—C9B—H9BB108.8
C10A—C9A—H9AB108.8C10B—C9B—H9BB108.8
H9AA—C9A—H9AB107.7H9BA—C9B—H9BB107.7
C9A—C10A—C11A113.3 (9)C11B—C10B—C9B114.1 (8)
C9A—C10A—H10A108.9C11B—C10B—H10C108.7
C11A—C10A—H10A108.9C9B—C10B—H10C108.7
C9A—C10A—H10B108.9C11B—C10B—H10D108.7
C11A—C10A—H10B108.9C9B—C10B—H10D108.7
H10A—C10A—H10B107.7H10C—C10B—H10D107.6
C12A—C11A—C10A113.2 (10)C10B—C11B—C12B113.6 (9)
C12A—C11A—H11A108.9C10B—C11B—H11C108.9
C10A—C11A—H11A108.9C12B—C11B—H11C108.9
C12A—C11A—H11B108.9C10B—C11B—H11D108.9
C10A—C11A—H11B108.9C12B—C11B—H11D108.9
H11A—C11A—H11B107.7H11C—C11B—H11D107.7
C11A—C12A—C13A113.9 (10)C13B—C12B—C11B114.2 (8)
C11A—C12A—H12A108.8C13B—C12B—H12C108.7
C13A—C12A—H12A108.8C11B—C12B—H12C108.7
C11A—C12A—H12B108.8C13B—C12B—H12D108.7
C13A—C12A—H12B108.8C11B—C12B—H12D108.7
H12A—C12A—H12B107.7H12C—C12B—H12D107.6
C14A—C13A—C12A114.0 (11)C12B—C13B—C14B113.0 (9)
C14A—C13A—H13A108.7C12B—C13B—H13C109.0
C12A—C13A—H13A108.7C14B—C13B—H13C109.0
C14A—C13A—H13B108.7C12B—C13B—H13D109.0
C12A—C13A—H13B108.7C14B—C13B—H13D109.0
H13A—C13A—H13B107.6H13C—C13B—H13D107.8
C13A—C14A—C15A113.6 (11)C15B—C14B—C13B113.6 (10)
C13A—C14A—H14A108.8C15B—C14B—H14C108.8
C15A—C14A—H14A108.8C13B—C14B—H14C108.8
C13A—C14A—H14B108.8C15B—C14B—H14D108.8
C15A—C14A—H14B108.8C13B—C14B—H14D108.8
H14A—C14A—H14B107.7H14C—C14B—H14D107.7
C16A—C15A—C14A113.1 (12)C14B—C15B—C16B113.6 (11)
C16A—C15A—H15A109.0C14B—C15B—H15C108.8
C14A—C15A—H15A109.0C16B—C15B—H15C108.8
C16A—C15A—H15B109.0C14B—C15B—H15D108.8
C14A—C15A—H15B109.0C16B—C15B—H15D108.8
H15A—C15A—H15B107.8H15C—C15B—H15D107.7
C15A—C16A—C17A113.5 (13)C17B—C16B—C15B113.2 (11)
C15A—C16A—H16A108.9C17B—C16B—H16C108.9
C17A—C16A—H16A108.9C15B—C16B—H16C108.9
C15A—C16A—H16B108.9C17B—C16B—H16D108.9
C17A—C16A—H16B108.9C15B—C16B—H16D108.9
H16A—C16A—H16B107.7H16C—C16B—H16D107.8
C18A—C17A—C16A114.1 (15)C16B—C17B—C18B114.8 (11)
C18A—C17A—H17A108.7C16B—C17B—H17C108.6
C16A—C17A—H17A108.7C18B—C17B—H17C108.6
C18A—C17A—H17B108.7C16B—C17B—H17D108.6
C16A—C17A—H17B108.7C18B—C17B—H17D108.6
H17A—C17A—H17B107.6H17C—C17B—H17D107.5
C17A—C18A—C19A116.4 (16)C19B—C18B—C17B114.9 (12)
C17A—C18A—H18A108.2C19B—C18B—H18C108.5
C19A—C18A—H18A108.2C17B—C18B—H18C108.5
C17A—C18A—H18B108.2C19B—C18B—H18D108.5
C19A—C18A—H18B108.2C17B—C18B—H18D108.5
H18A—C18A—H18B107.3H18C—C18B—H18D107.5
C20A—C19A—C18A115.9 (18)C18B—C19B—C20B113.5 (13)
C20A—C19A—H19A108.3C18B—C19B—H19C108.9
C18A—C19A—H19A108.3C20B—C19B—H19C108.9
C20A—C19A—H19B108.3C18B—C19B—H19D108.9
C18A—C19A—H19B108.3C20B—C19B—H19D108.9
H19A—C19A—H19B107.4H19C—C19B—H19D107.7
C19A—C20A—C21A119 (2)C21B—C20B—C19B115.3 (15)
C19A—C20A—H20A107.7C21B—C20B—H20C108.5
C21A—C20A—H20A107.7C19B—C20B—H20C108.5
C19A—C20A—H20B107.7C21B—C20B—H20D108.5
C21A—C20A—H20B107.7C19B—C20B—H20D108.5
H20A—C20A—H20B107.1H20C—C20B—H20D107.5
C20A—C21A—H21A109.5C20B—C21B—H21D109.5
C20A—C21A—H21B109.5C20B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
C20A—C21A—H21C109.5C20B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
C2A—C1A—S1A—C3A1.3 (8)C2B—C1B—S1B—C3B3.9 (7)
C3A—N1A—C2A—C1A0.4 (14)S1B—C1B—C2B—N1B5.6 (10)
S1A—C1A—C2A—N1A0.8 (12)C3B—N1B—C2B—C1B4.7 (12)
C2A—N1A—C3A—S2A179.7 (8)C2B—N1B—C3B—S2B179.6 (7)
C2A—N1A—C3A—S1A1.5 (12)C2B—N1B—C3B—S1B1.3 (10)
C4A—S2A—C3A—N1A5.9 (12)C4B—S2B—C3B—N1B26.9 (10)
C4A—S2A—C3A—S1A175.3 (6)C4B—S2B—C3B—S1B154.9 (6)
C1A—S1A—C3A—N1A1.6 (9)C1B—S1B—C3B—N1B1.5 (8)
C1A—S1A—C3A—S2A179.3 (6)C1B—S1B—C3B—S2B176.9 (6)
C3A—S2A—C4A—C5A177.9 (7)C3B—S2B—C4B—C5B70.6 (8)
S2A—C4A—C5A—C6A179.7 (7)S2B—C4B—C5B—C6B178.1 (7)
C4A—C5A—C6A—C7A179.7 (9)C4B—C5B—C6B—C7B177.7 (8)
C5A—C6A—C7A—C8A178.1 (9)C5B—C6B—C7B—C8B179.6 (8)
C6A—C7A—C8A—C9A178.3 (9)C6B—C7B—C8B—C9B179.7 (8)
C7A—C8A—C9A—C10A179.7 (10)C7B—C8B—C9B—C10B179.5 (8)
C8A—C9A—C10A—C11A178.9 (9)C8B—C9B—C10B—C11B179.8 (9)
C9A—C10A—C11A—C12A178.8 (11)C9B—C10B—C11B—C12B180.0 (8)
C10A—C11A—C12A—C13A178.4 (10)C10B—C11B—C12B—C13B178.4 (9)
C11A—C12A—C13A—C14A178.7 (12)C11B—C12B—C13B—C14B178.9 (9)
C12A—C13A—C14A—C15A179.4 (11)C12B—C13B—C14B—C15B178.2 (10)
C13A—C14A—C15A—C16A178.6 (13)C13B—C14B—C15B—C16B178.8 (10)
C14A—C15A—C16A—C17A179.3 (12)C14B—C15B—C16B—C17B180.0 (11)
C15A—C16A—C17A—C18A179.4 (14)C15B—C16B—C17B—C18B178.6 (11)
C16A—C17A—C18A—C19A178.2 (13)C16B—C17B—C18B—C19B179.1 (13)
C17A—C18A—C19A—C20A179.0 (19)C17B—C18B—C19B—C20B178.3 (12)
C18A—C19A—C20A—C21A178.8 (16)C18B—C19B—C20B—C21B176.1 (14)
 

Acknowledgements

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (Funding for the single-crystal X-ray diffractometer).

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE 1625543); American Chemical Society Petroleum Research Fund (grant No. PRF 58975-UR4); Ave Maria University Department of Chemistry and Physics. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research. The authors gratefully acknowledge the Communities in Transition Initiative for the generous support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArtem'ev, A. V., Samsonenko, D. G. & Antonova, O. V. (2018). Polyhedron, 151, 171–176.  CAS Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIwasaki, M., Topolovčan, N., Hu, H., Nishimura, Y., Gagnot, G., Na nakorn, R., Yuvacharaskul, R., Nakajima, K. & Nishihara, Y. (2016). Org. Lett. 18, 1642–1645.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNestor, S. T., Heinrich, B., Sykora, R. A., Zhang, X., McManus, G. J., Douce, L. & Mirjafari, A. (2017). Tetrahedron, 73, 5456–5460.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Brien, R. A., Zayas, M. S., Nestor, S. T., Gaitor, J. C., Paul, L. M., Edhegard, F. A., Minkowicz, S., Sykora, R. E., Sheng, Y., Michael, S. F., Isern, S. & Mirjafari, A. (2016). New J. Chem. 40, 7795–7803.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2018). University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds