organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(4-Chloro­phen­yl)-N′-{4-[(Z)-hy­dr­oxy(1-oxo-1,3-di­hydro-2H-inden-2-yl­­idene)meth­yl]phen­yl}urea

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cCumhuriyet University, Institute of Science, Department of Physics, 58140 Sivas, Turkey, dDepartment of Nutrition and Dietetics, Faculty of Health Sciences, Cumhuriyet University, 58140 Sivas, Turkey, and eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 May 2018; accepted 3 June 2018; online 8 June 2018)

In the title compound, C23H17ClN2O3, the 2,3-di­hydro-1H-indene ring system (r.m.s deviation = 0.004 Å) subtends dihedral angles of 81.12 (16) and 7.56 (14)° with the chloro­phenyl and benzene rings, respectively. The mol­ecular conformation features an intra­molecular O—H⋯O hydrogen bond, forming an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds generating [100] chains featuring R12(6) loops. Weak aromatic ππ stacking [centroid–centroid distance = 3.656 (2) Å] is also oberved.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Organic compounds containing the phenyl­urea unit are known to be valuable in terms of biological activity (Jiang et al., 2016[Jiang, N., Bu, Y., Wang, Y., Nie, M., Zhang, D. & Zhai, X. (2016). Molecules, 21, 1572-1583.]; Sikka et al., 2015[Sikka, P., Sahu, J. K., Mishra, A. K. & Hashim, S. R. (2015). Med. Chem. 5, 479-483.]). As part of our studies in this area, we new report the crystal structure (Fig. 1[link]) of the title compound (Gezegen et al., 2017[Gezegen, H., Hepokur, C., Tutar, U. & Ceylan, M. (2017). Chem. Biodivers. 14, e1700223.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

The 2,3-di­hydro-1H-indene ring system (C15–C23) is essentially planar (r.m.s deviation = 0.004 Å), and is inclined at dihedral angles of 81.12 (16) and 7.56 (14)° with the chloro­phenyl (C1–C6) and benzene (C8–C13) rings, respectively. The N—(C=O)—N plane involving the urea group is oriented at dihedral angles of 54.36 (17), 40.01 (15) and 56.15 (14)°, respectively, with the chloro­phenyl ring, the benzene ring and the 2,3-di­hydro-1H-indene ring system, respectively. The bond lengths and the bond angles of the title structure are within their normal ranges and are comparable to related structures (e.g. Yassine et al., 2015[Yassine, H., Khouili, M., El Ammari, L., Saadi, M. & Ketatni, E. M. (2015). Acta Cryst. E71, o297-o298.]; Mague et al., 2015[Mague, J. T., Mohamed, S. K., Akkurt, M., Omran, O. A. & Albayati, M. R. (2015). Acta Cryst. E71, o88-o89.]). The mol­ecular conformation of the title compound is consolidated by an intra­molecular O—H⋯O hydrogen bond, forming an S(6) ring motif (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3 0.89 (5) 1.71 (5) 2.543 (4) 154 (5)
N1—H1N⋯O1i 0.87 (6) 2.03 (5) 2.853 (4) 158 (4)
N2—H2N⋯O1i 0.81 (5) 2.18 (5) 2.904 (4) 148 (4)
Symmetry code: (i) x+1, y, z.

In the crystal, adjacent mol­ecules are linked by N—H⋯O hydrogen bonds (Fig. 2[link]), generating infinite [100] chains incorporating [R_{1}^{2}](6) loops. In addition, weak aromatic ππ stacking inter­actions are observed [Cg1⋯Cg4i = 3.656 (2) Å; Cg1 and Cg4 are the centroids of the five- and six-membered rings (C15–C17/C22/C23 and C17–C22) of the 2,3-di­hydro-1H-indene ring system, respectively; symmetry code: (i), x + 1, y, z].

[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. H bonds are shown as dashed lines and H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

For the sysnthesis of the title compound, see: Gezegen et al., 2017[Gezegen, H., Hepokur, C., Tutar, U. & Ceylan, M. (2017). Chem. Biodivers. 14, e1700223.]. The crystals were grown from a DMSO solution by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H17ClN2O3
Mr 404.84
Crystal system, space group Triclinic, P1
Temperature (K) 296
a, b, c (Å) 4.6032 (4), 6.9338 (8), 15.4421 (15)
α, β, γ (°) 89.811 (4), 87.510 (3), 70.866 (3)
V3) 465.18 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.16 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.680, 0.744
No. of measured, independent and observed [I > 2σ(I)] reflections 16956, 4386, 3678
Rint 0.039
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.11
No. of reflections 4386
No. of parameters 276
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.19
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.05 (10)
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

N-(4-Chlorophenyl)-N'-{4-[(Z)-hydroxy(1-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl]phenyl}urea top
Crystal data top
C23H17ClN2O3Z = 1
Mr = 404.84F(000) = 210
Triclinic, P1Dx = 1.445 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6032 (4) ÅCell parameters from 9876 reflections
b = 6.9338 (8) Åθ = 3.1–28.3°
c = 15.4421 (15) ŵ = 0.23 mm1
α = 89.811 (4)°T = 296 K
β = 87.510 (3)°Block, yellow
γ = 70.866 (3)°0.16 × 0.14 × 0.10 mm
V = 465.18 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3678 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 28.4°, θmin = 3.1°
Tmin = 0.680, Tmax = 0.744h = 65
16956 measured reflectionsk = 99
4386 independent reflectionsl = 2020
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0294P)2 + 0.143P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max < 0.001
wR(F2) = 0.102Δρmax = 0.22 e Å3
S = 1.11Δρmin = 0.19 e Å3
4386 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
276 parametersExtinction coefficient: 0.128 (16)
3 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (10)
Hydrogen site location: mixed
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. The H-atoms of the OH and NH groups were freely refined [O—H = 0.89 (5) Å, N—H = 0.87 (6) and 0.81 (5) Å]. The C-bound H-atoms were placed at calculated positions, with C—H = 0.93 - 0.97 Å, and refined as riding on their carrier C-atom, with Uiso(H) = 1.2Ueq(C).

Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5548 (8)0.8679 (5)0.1780 (2)0.0429 (8)
H10.56050.73380.17000.051*
C20.3778 (9)1.0201 (6)0.1255 (3)0.0515 (9)
H20.26300.98910.08280.062*
C30.3741 (9)1.2159 (5)0.1371 (2)0.0515 (10)
C40.5390 (10)1.2646 (5)0.1997 (3)0.0576 (11)
H40.53301.39900.20700.069*
C50.7158 (9)1.1128 (5)0.2523 (2)0.0491 (9)
H50.83011.14520.29480.059*
C60.7226 (6)0.9138 (4)0.2420 (2)0.0335 (6)
C70.8067 (6)0.6309 (4)0.3429 (2)0.0310 (6)
C80.9592 (6)0.3525 (4)0.4474 (2)0.0330 (7)
C90.7154 (7)0.4119 (4)0.5074 (2)0.0387 (7)
H90.58570.54680.50920.046*
C100.6618 (7)0.2726 (4)0.5648 (2)0.0389 (7)
H100.49580.31550.60480.047*
C110.8519 (7)0.0691 (4)0.5639 (2)0.0333 (6)
C121.0962 (7)0.0118 (5)0.5029 (2)0.0409 (8)
H121.22590.12310.50040.049*
C131.1506 (8)0.1517 (5)0.4456 (2)0.0425 (8)
H131.31700.11020.40570.051*
C140.8025 (7)0.0849 (4)0.6237 (2)0.0361 (7)
C150.5883 (7)0.0554 (5)0.6905 (2)0.0374 (7)
C160.3507 (7)0.1363 (5)0.7274 (2)0.0384 (7)
H16A0.44700.23240.74730.046*
H16B0.20220.20200.68480.046*
C170.2012 (8)0.0579 (5)0.8020 (2)0.0403 (7)
C180.0360 (9)0.1673 (6)0.8598 (2)0.0526 (9)
H180.12050.30850.85650.063*
C190.1423 (10)0.0608 (7)0.9221 (3)0.0630 (11)
H190.30000.13210.96120.076*
C200.0203 (10)0.1495 (7)0.9279 (3)0.0630 (11)
H200.09760.21700.97050.076*
C210.2155 (10)0.2602 (6)0.8710 (3)0.0560 (10)
H210.29890.40150.87460.067*
C220.3231 (8)0.1528 (5)0.8084 (2)0.0423 (8)
C230.5676 (8)0.2277 (5)0.7414 (2)0.0424 (8)
Cl10.1535 (3)1.40938 (18)0.07167 (9)0.0914 (5)
N10.9113 (6)0.7605 (4)0.29524 (19)0.0409 (7)
N21.0222 (6)0.4939 (4)0.38897 (19)0.0394 (7)
O10.5366 (5)0.6352 (4)0.34347 (17)0.0434 (6)
O20.9969 (6)0.2732 (3)0.60665 (19)0.0527 (7)
O30.7349 (7)0.4103 (3)0.72891 (19)0.0589 (7)
H2N1.202 (10)0.487 (6)0.383 (3)0.052 (11)*
H1N1.100 (12)0.752 (7)0.303 (3)0.064 (13)*
H2O0.955 (12)0.353 (8)0.647 (3)0.083 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1031 (10)0.0650 (7)0.0752 (8)0.0144 (6)0.0048 (7)0.0354 (6)
O10.0243 (11)0.0494 (13)0.0607 (14)0.0172 (10)0.0089 (9)0.0211 (11)
O20.0614 (16)0.0255 (11)0.0601 (16)0.0012 (10)0.0120 (12)0.0047 (11)
O30.0753 (19)0.0300 (12)0.0624 (17)0.0063 (12)0.0066 (14)0.0116 (11)
N10.0239 (13)0.0464 (15)0.0561 (18)0.0162 (11)0.0072 (12)0.0212 (13)
N20.0199 (13)0.0440 (15)0.0556 (17)0.0122 (11)0.0050 (11)0.0180 (12)
C10.0452 (19)0.0348 (16)0.049 (2)0.0133 (14)0.0077 (15)0.0064 (14)
C20.055 (2)0.050 (2)0.047 (2)0.0142 (17)0.0103 (17)0.0118 (17)
C30.053 (2)0.0430 (18)0.044 (2)0.0024 (16)0.0071 (16)0.0151 (15)
C40.084 (3)0.0302 (17)0.056 (2)0.0173 (18)0.005 (2)0.0048 (15)
C50.063 (2)0.0416 (18)0.048 (2)0.0242 (16)0.0075 (17)0.0037 (15)
C60.0261 (14)0.0352 (15)0.0399 (16)0.0111 (11)0.0006 (12)0.0100 (12)
C70.0213 (14)0.0319 (14)0.0403 (16)0.0097 (11)0.0011 (11)0.0053 (12)
C80.0268 (15)0.0333 (15)0.0403 (17)0.0109 (12)0.0079 (12)0.0090 (12)
C90.0355 (17)0.0269 (14)0.0485 (19)0.0035 (12)0.0002 (14)0.0059 (13)
C100.0357 (17)0.0318 (16)0.0437 (19)0.0044 (13)0.0048 (13)0.0039 (13)
C110.0345 (15)0.0283 (14)0.0366 (16)0.0091 (11)0.0065 (12)0.0034 (12)
C120.0406 (18)0.0268 (15)0.048 (2)0.0009 (13)0.0018 (14)0.0046 (14)
C130.0330 (17)0.0430 (17)0.0455 (19)0.0051 (13)0.0036 (14)0.0067 (14)
C140.0390 (17)0.0256 (14)0.0403 (16)0.0056 (12)0.0057 (13)0.0033 (12)
C150.0420 (17)0.0308 (14)0.0383 (16)0.0100 (12)0.0059 (13)0.0090 (12)
C160.0404 (17)0.0332 (15)0.0377 (17)0.0060 (12)0.0061 (13)0.0074 (12)
C170.0397 (18)0.0443 (18)0.0345 (17)0.0100 (14)0.0056 (13)0.0082 (14)
C180.052 (2)0.053 (2)0.045 (2)0.0068 (17)0.0007 (16)0.0094 (17)
C190.056 (2)0.075 (3)0.047 (2)0.009 (2)0.0057 (18)0.014 (2)
C200.060 (3)0.073 (3)0.052 (2)0.018 (2)0.0037 (19)0.024 (2)
C210.059 (2)0.052 (2)0.055 (2)0.0158 (18)0.0078 (18)0.0229 (18)
C220.0459 (19)0.0421 (17)0.0383 (18)0.0126 (14)0.0092 (14)0.0112 (14)
C230.0503 (19)0.0352 (16)0.0406 (18)0.0120 (14)0.0072 (14)0.0078 (13)
Geometric parameters (Å, º) top
Cl1—C31.743 (4)C15—C161.512 (5)
O1—C71.234 (4)C15—C231.455 (5)
O2—C141.338 (3)C16—C171.506 (5)
O3—C231.258 (4)C17—C181.393 (5)
N1—C61.418 (4)C17—C221.388 (5)
N1—C71.353 (4)C18—C191.379 (6)
N2—C71.353 (4)C19—C201.384 (6)
N2—C81.420 (4)C20—C211.384 (7)
O2—H2O0.89 (5)C21—C221.389 (6)
C1—C21.387 (5)C22—C231.458 (5)
C1—C61.380 (5)C1—H10.9300
N1—H1N0.87 (6)C2—H20.9300
N2—H2N0.81 (5)C4—H40.9300
C2—C31.365 (5)C5—H50.9300
C3—C41.363 (6)C9—H90.9300
C4—C51.386 (5)C10—H100.9300
C5—C61.380 (4)C12—H120.9300
C8—C91.377 (4)C13—H130.9300
C8—C131.382 (4)C16—H16A0.9700
C9—C101.382 (4)C16—H16B0.9700
C10—C111.395 (4)C18—H180.9300
C11—C141.476 (4)C19—H190.9300
C11—C121.388 (5)C20—H200.9300
C12—C131.386 (5)C21—H210.9300
C14—C151.363 (5)
C6—N1—C7123.5 (3)C17—C18—C19118.3 (4)
C7—N2—C8124.3 (3)C18—C19—C20121.7 (4)
C14—O2—H2O106 (3)C19—C20—C21120.7 (4)
C2—C1—C6120.5 (3)C20—C21—C22117.6 (4)
C7—N1—H1N115 (3)C17—C22—C21122.0 (3)
C6—N1—H1N121 (3)C17—C22—C23108.4 (3)
C1—C2—C3119.2 (4)C21—C22—C23129.6 (3)
C8—N2—H2N116 (3)O3—C23—C22126.3 (3)
C7—N2—H2N120 (3)C15—C23—C22108.7 (3)
Cl1—C3—C4118.8 (3)O3—C23—C15125.0 (3)
C2—C3—C4121.2 (3)C2—C1—H1120.00
Cl1—C3—C2120.0 (3)C6—C1—H1120.00
C3—C4—C5119.6 (3)C1—C2—H2120.00
C4—C5—C6120.2 (3)C3—C2—H2120.00
N1—C6—C1121.7 (3)C3—C4—H4120.00
C1—C6—C5119.1 (3)C5—C4—H4120.00
N1—C6—C5119.1 (3)C4—C5—H5120.00
O1—C7—N2122.5 (3)C6—C5—H5120.00
O1—C7—N1122.6 (3)C8—C9—H9120.00
N1—C7—N2114.9 (3)C10—C9—H9120.00
C9—C8—C13119.1 (3)C9—C10—H10119.00
N2—C8—C9121.5 (2)C11—C10—H10119.00
N2—C8—C13119.4 (3)C11—C12—H12119.00
C8—C9—C10120.5 (3)C13—C12—H12119.00
C9—C10—C11121.3 (3)C8—C13—H13120.00
C10—C11—C14123.1 (3)C12—C13—H13120.00
C12—C11—C14119.5 (3)C15—C16—H16A111.00
C10—C11—C12117.4 (3)C15—C16—H16B111.00
C11—C12—C13121.3 (3)C17—C16—H16A111.00
C8—C13—C12120.4 (3)C17—C16—H16B111.00
O2—C14—C11112.9 (3)H16A—C16—H16B109.00
C11—C14—C15127.9 (3)C17—C18—H18121.00
O2—C14—C15119.3 (3)C19—C18—H18121.00
C14—C15—C23120.2 (3)C18—C19—H19119.00
C14—C15—C16131.5 (3)C20—C19—H19119.00
C16—C15—C23108.2 (3)C19—C20—H20120.00
C15—C16—C17103.0 (3)C21—C20—H20120.00
C16—C17—C18128.7 (3)C20—C21—H21121.00
C18—C17—C22119.7 (3)C22—C21—H21121.00
C16—C17—C22111.6 (3)
C7—N1—C6—C155.6 (4)C12—C11—C14—C15175.9 (3)
C7—N1—C6—C5126.9 (3)C11—C12—C13—C80.7 (5)
C6—N1—C7—O10.4 (5)O2—C14—C15—C16177.1 (3)
C6—N1—C7—N2179.4 (3)O2—C14—C15—C231.3 (5)
C7—N2—C8—C946.4 (4)C11—C14—C15—C163.4 (6)
C7—N2—C8—C13135.2 (3)C11—C14—C15—C23178.2 (3)
C8—N2—C7—N1175.9 (3)C14—C15—C16—C17178.1 (4)
C8—N2—C7—O15.1 (5)C23—C15—C16—C170.5 (4)
C6—C1—C2—C30.8 (6)C14—C15—C23—O30.5 (6)
C2—C1—C6—N1178.5 (3)C14—C15—C23—C22179.5 (3)
C2—C1—C6—C51.0 (5)C16—C15—C23—O3179.2 (3)
C1—C2—C3—C40.5 (6)C16—C15—C23—C220.8 (4)
C1—C2—C3—Cl1179.9 (3)C15—C16—C17—C18179.9 (4)
Cl1—C3—C4—C5180.0 (3)C15—C16—C17—C221.6 (4)
C2—C3—C4—C50.5 (7)C16—C17—C18—C19178.2 (4)
C3—C4—C5—C60.7 (6)C22—C17—C18—C190.0 (6)
C4—C5—C6—N1178.5 (3)C16—C17—C22—C21178.3 (4)
C4—C5—C6—C10.9 (5)C16—C17—C22—C232.2 (4)
N2—C8—C9—C10178.7 (3)C18—C17—C22—C210.2 (6)
C13—C8—C9—C100.3 (5)C18—C17—C22—C23179.4 (3)
N2—C8—C13—C12179.0 (3)C17—C18—C19—C200.3 (7)
C9—C8—C13—C120.6 (5)C18—C19—C20—C210.3 (7)
C8—C9—C10—C110.1 (5)C19—C20—C21—C220.1 (7)
C9—C10—C11—C120.3 (5)C20—C21—C22—C170.1 (6)
C9—C10—C11—C14179.7 (3)C20—C21—C22—C23179.4 (4)
C10—C11—C12—C130.5 (5)C17—C22—C23—O3178.1 (4)
C14—C11—C12—C13180.0 (3)C17—C22—C23—C151.8 (4)
C10—C11—C14—O2174.9 (3)C21—C22—C23—O31.4 (7)
C10—C11—C14—C154.7 (5)C21—C22—C23—C15178.7 (4)
C12—C11—C14—O24.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.89 (5)1.71 (5)2.543 (4)154 (5)
N1—H1N···O1i0.87 (6)2.03 (5)2.853 (4)158 (4)
N2—H2N···O1i0.81 (5)2.18 (5)2.904 (4)148 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

Funding information

This work was supported by the Scientific Research Project Fund of Cumhuriyet University under the project number F-585. The authors are indebted to the Technical Research Council of Turkey (grant TUBİTAK-114Z634) for the financial support of the synthesis of the compound reported in this work.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGezegen, H., Hepokur, C., Tutar, U. & Ceylan, M. (2017). Chem. Biodivers. 14, e1700223.  Web of Science CrossRef Google Scholar
First citationJiang, N., Bu, Y., Wang, Y., Nie, M., Zhang, D. & Zhai, X. (2016). Molecules, 21, 1572–1583.  Web of Science CrossRef Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Omran, O. A. & Albayati, M. R. (2015). Acta Cryst. E71, o88–o89.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikka, P., Sahu, J. K., Mishra, A. K. & Hashim, S. R. (2015). Med. Chem. 5, 479–483.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYassine, H., Khouili, M., El Ammari, L., Saadi, M. & Ketatni, E. M. (2015). Acta Cryst. E71, o297–o298.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds