organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,2-Bis(3,5-di­methyl­phen­yl)ethane

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Dortmund, Anorganische Chemie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 April 2018; accepted 25 April 2018; online 27 April 2018)

The title compound, C18H22, is a coupling product of two metallated mesitylene mol­ecules. The dihedral angle between the aromatic rings is 11.10 (5)° and the Car—Cm—Cm—Car (ar = aromatic and m = methyl­ene) torsion angle is 179.60 (14)°. No directional inter­actions beyond normal van der Waals contacts could be identified in the crystal. To our best knowledge, it is the first known coupling product of metallated mesitylene.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the presence of Lochmann–Schlosser's base, a metallation of the methyl group of mesitylene (1,3,5-trimethyl benzene) takes place (Schlosser, 1988[Schlosser, M. (1988). Pure Appl. Chem. 60, 1627-1634.]). Trapping the reaction mixture with di­bromo­ethane leads to the title compound (Fig. 1[link]) after distillation. The dihedral angle between the aromatic rings is 11.10 (5)° and the Car—Cmeth­yl distances lie between 1.505 (2)-1.5100 (2) Å. For the benzene rings, normal bond length between 1.387 (2)–1.395 (2) Å are observed and the C—C—C angles range from 118.33 (14)–121.74 (14)°. No directional inter­actions beyond normal van der Waals' contacts could be observed in the crystal (Fig. 2[link]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Unit-cell packing viewed along the b-axis direction.

The basic building unit, mesitylene, has been known for a long time and has been well characterized (Ladenburg 1874[Ladenburg, A. (1874). Chem. Ber. 7, 1133-1137.]; Hewlett 1922[Hewlett, C. W. (1922). Phys. Rev. 20, 688-708.]). Derivatives of it have been crystallized and their structures determined (e.g. Trotter, 1959[Trotter, J. (1959). Acta Cryst. 12, 605-607.]). The related compound nitro­mesitylene (Powell & Johnson, 1934[Powell, G. & Johnson, F. R. (1934). Org. Synth. 14, 68.]) shows typical Car—Car and Car—Cmeth­yl distances of 1.383 and 1.509 Å, respectively.

Synthesis and crystallization

The title compound was obtained by treating 11.60 ml (87.05 mmol, 1.0 eq.) mesitylene (1,3,5-trimethyl benzene) with 38.30 ml (95.76 mmol, 1.1 eq.) n-butyl­lithium and 10.75 g (95.76 mmol, 1.1 eq.) potassium-tert-butoxide at −78°C in 200 ml THF. Then, 8.25 ml (95.76 mmol, 1.1 eq.) di­bromo­ethane were added after stirring the solution for 1 h. The solution was quenched with water, extracted with diethyl ether and the organic phase was dried with sodium sulfate and distilled. The title compound crystallized as colourless plates. The yield was not determined.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C18H22
Mr 238.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.9315 (5), 8.2047 (5), 12.3474 (8)
α, β, γ (°) 108.513 (6), 98.090 (5), 103.805 (5)
V3) 719.18 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.3 × 0.3 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.984, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22466, 3471, 2598
Rint 0.037
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.161, 1.05
No. of reflections 3471
No. of parameters 167
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.23
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,2-Bis(3,5-dimethylphenyl)ethane top
Crystal data top
C18H22Z = 2
Mr = 238.35F(000) = 260
Triclinic, P1Dx = 1.101 Mg m3
a = 7.9315 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2047 (5) ÅCell parameters from 4159 reflections
c = 12.3474 (8) Åθ = 2.7–29.5°
α = 108.513 (6)°µ = 0.06 mm1
β = 98.090 (5)°T = 150 K
γ = 103.805 (5)°Plate, colourless
V = 719.18 (8) Å30.3 × 0.3 × 0.1 mm
Data collection top
Agilent Xcalibur, Sapphire3
diffractometer
3471 independent reflections
Radiation source: Enhance (Mo) X-ray Source2598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0560 pixels mm-1θmax = 28.0°, θmin = 2.7°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1010
Tmin = 0.984, Tmax = 1.000l = 1616
22466 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057All H-atom parameters refined
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.069P)2 + 0.3054P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3471 reflectionsΔρmax = 0.28 e Å3
167 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.98 A° , Uiso(H) = 1.5Ueq(C) for methyl hydrogen atoms and C—H = 0.99 A° , Uiso(H) = 1.2Ueq(C) for methylene hydrogen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8890 (2)0.0999 (2)0.66953 (14)0.0257 (3)
C20.9788 (2)0.2551 (2)0.76669 (14)0.0251 (3)
H21.05410.24700.83050.030*
C30.9614 (2)0.4226 (2)0.77288 (13)0.0248 (3)
C40.8487 (2)0.4313 (2)0.67960 (14)0.0249 (3)
H40.83440.54450.68320.030*
C50.7558 (2)0.2784 (2)0.58078 (13)0.0238 (3)
C60.7782 (2)0.1138 (2)0.57672 (13)0.0254 (3)
H60.71680.00860.50940.030*
C70.6240 (2)0.55118 (19)0.29547 (13)0.0225 (3)
H70.70170.65790.35600.027*
C80.5160 (2)0.5651 (2)0.20159 (13)0.0238 (3)
C90.4034 (2)0.4081 (2)0.11365 (13)0.0252 (3)
H90.33070.41590.04860.030*
C100.3946 (2)0.2390 (2)0.11882 (13)0.0255 (3)
C110.5039 (2)0.2301 (2)0.21364 (13)0.0245 (3)
H110.49890.11560.21800.029*
C120.62052 (19)0.3845 (2)0.30250 (13)0.0225 (3)
C130.7396 (2)0.3707 (2)0.40370 (14)0.0273 (4)
H13A0.82140.49220.45310.033*
H13B0.81340.29340.37230.033*
C140.6356 (2)0.2929 (2)0.48025 (14)0.0288 (4)
H14A0.56250.37070.51230.035*
H14B0.55330.17170.43090.035*
C150.5176 (2)0.7475 (2)0.19759 (15)0.0321 (4)
H15A0.43130.79070.23950.048*
H15B0.48510.73730.11560.048*
H15C0.63730.83300.23510.048*
C160.2699 (2)0.0688 (2)0.02401 (15)0.0371 (4)
H16A0.33880.00670.02550.056*
H16B0.18260.09940.02430.056*
H16C0.20730.01030.06020.056*
C170.9095 (3)0.0809 (2)0.66367 (17)0.0386 (4)
H17A0.99590.06510.73410.058*
H17B0.95210.13290.59370.058*
H17C0.79370.16190.65950.058*
C181.0642 (2)0.5910 (2)0.87696 (15)0.0340 (4)
H18A1.02350.58410.94720.051*
H18B1.04430.69630.86230.051*
H18C1.19190.60220.88920.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0263 (8)0.0231 (8)0.0334 (8)0.0104 (6)0.0123 (7)0.0135 (7)
C20.0226 (7)0.0296 (8)0.0269 (8)0.0088 (6)0.0067 (6)0.0144 (7)
C30.0238 (7)0.0231 (8)0.0276 (8)0.0048 (6)0.0107 (6)0.0090 (6)
C40.0283 (8)0.0197 (7)0.0320 (8)0.0085 (6)0.0124 (7)0.0134 (6)
C50.0223 (7)0.0275 (8)0.0271 (8)0.0075 (6)0.0099 (6)0.0154 (6)
C60.0271 (8)0.0217 (7)0.0263 (8)0.0049 (6)0.0088 (6)0.0083 (6)
C70.0243 (7)0.0197 (7)0.0228 (7)0.0044 (6)0.0092 (6)0.0067 (6)
C80.0267 (8)0.0232 (8)0.0281 (8)0.0103 (6)0.0136 (6)0.0130 (6)
C90.0256 (8)0.0287 (8)0.0259 (8)0.0115 (6)0.0074 (6)0.0131 (6)
C100.0250 (8)0.0234 (8)0.0260 (8)0.0050 (6)0.0080 (6)0.0072 (6)
C110.0278 (8)0.0196 (7)0.0295 (8)0.0081 (6)0.0092 (6)0.0119 (6)
C120.0216 (7)0.0253 (8)0.0244 (7)0.0080 (6)0.0088 (6)0.0118 (6)
C130.0242 (8)0.0317 (8)0.0298 (8)0.0075 (6)0.0067 (6)0.0166 (7)
C140.0260 (8)0.0357 (9)0.0298 (8)0.0096 (7)0.0077 (7)0.0180 (7)
C150.0411 (10)0.0251 (8)0.0388 (9)0.0141 (7)0.0157 (8)0.0173 (7)
C160.0384 (10)0.0289 (9)0.0332 (9)0.0009 (8)0.0015 (8)0.0068 (7)
C170.0438 (10)0.0268 (9)0.0504 (11)0.0167 (8)0.0107 (9)0.0166 (8)
C180.0350 (9)0.0278 (9)0.0316 (9)0.0037 (7)0.0087 (7)0.0048 (7)
Geometric parameters (Å, º) top
C1—C21.388 (2)C11—H110.9500
C1—C61.395 (2)C11—C121.392 (2)
C1—C171.510 (2)C12—C131.508 (2)
C2—H20.9500C13—H13A0.9900
C2—C31.393 (2)C13—H13B0.9900
C3—C41.387 (2)C13—C141.527 (2)
C3—C181.505 (2)C14—H14A0.9900
C4—H40.9500C14—H14B0.9900
C4—C51.393 (2)C15—H15A0.9800
C5—C61.390 (2)C15—H15B0.9800
C5—C141.510 (2)C15—H15C0.9800
C6—H60.9500C16—H16A0.9800
C7—H70.9500C16—H16B0.9800
C7—C81.393 (2)C16—H16C0.9800
C7—C121.391 (2)C17—H17A0.9800
C8—C91.388 (2)C17—H17B0.9800
C8—C151.510 (2)C17—H17C0.9800
C9—H90.9500C18—H18A0.9800
C9—C101.395 (2)C18—H18B0.9800
C10—C111.388 (2)C18—H18C0.9800
C10—C161.508 (2)
C2—C1—C6118.55 (13)C12—C13—H13A109.0
C2—C1—C17121.12 (15)C12—C13—H13B109.0
C6—C1—C17120.33 (15)C12—C13—C14113.08 (13)
C1—C2—H2119.2H13A—C13—H13B107.8
C1—C2—C3121.61 (14)C14—C13—H13A109.0
C3—C2—H2119.2C14—C13—H13B109.0
C2—C3—C18121.13 (15)C5—C14—C13112.70 (13)
C4—C3—C2118.33 (14)C5—C14—H14A109.1
C4—C3—C18120.53 (14)C5—C14—H14B109.1
C3—C4—H4119.1C13—C14—H14A109.1
C3—C4—C5121.72 (14)C13—C14—H14B109.1
C5—C4—H4119.1H14A—C14—H14B107.8
C4—C5—C14120.34 (14)C8—C15—H15A109.5
C6—C5—C4118.48 (14)C8—C15—H15B109.5
C6—C5—C14121.18 (14)C8—C15—H15C109.5
C1—C6—H6119.3H15A—C15—H15B109.5
C5—C6—C1121.30 (14)H15A—C15—H15C109.5
C5—C6—H6119.3H15B—C15—H15C109.5
C8—C7—H7119.3C10—C16—H16A109.5
C12—C7—H7119.3C10—C16—H16B109.5
C12—C7—C8121.48 (14)C10—C16—H16C109.5
C7—C8—C15120.62 (14)H16A—C16—H16B109.5
C9—C8—C7118.62 (13)H16A—C16—H16C109.5
C9—C8—C15120.74 (14)H16B—C16—H16C109.5
C8—C9—H9119.3C1—C17—H17A109.5
C8—C9—C10121.40 (14)C1—C17—H17B109.5
C10—C9—H9119.3C1—C17—H17C109.5
C9—C10—C16121.23 (15)H17A—C17—H17B109.5
C11—C10—C9118.45 (14)H17A—C17—H17C109.5
C11—C10—C16120.32 (14)H17B—C17—H17C109.5
C10—C11—H11119.1C3—C18—H18A109.5
C10—C11—C12121.74 (14)C3—C18—H18B109.5
C12—C11—H11119.1C3—C18—H18C109.5
C7—C12—C11118.31 (13)H18A—C18—H18B109.5
C7—C12—C13121.10 (14)H18A—C18—H18C109.5
C11—C12—C13120.59 (13)H18B—C18—H18C109.5
 

Funding information

We acknowledge financial support by Deutsche Forschungsgemeinschaft and Technische Universität Dortmund/TU Dortmund Technical University within the funding programme Open Access Publishing.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHewlett, C. W. (1922). Phys. Rev. 20, 688–708.  CrossRef CAS Google Scholar
First citationLadenburg, A. (1874). Chem. Ber. 7, 1133–1137.  CrossRef Google Scholar
First citationPowell, G. & Johnson, F. R. (1934). Org. Synth. 14, 68.  Google Scholar
First citationSchlosser, M. (1988). Pure Appl. Chem. 60, 1627–1634.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrotter, J. (1959). Acta Cryst. 12, 605–607.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds