organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Methyl-1H-pyrazolo­[3,4-d]pyrimidin-4(5H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: m.elhafi1@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 March 2018; accepted 25 March 2018; online 29 March 2018)

The title mol­ecule, C6H6N4O, is essentially planar [dihedral angle between the rings = 0.46 (9)°]. The crystal structure consists of sheets of mol­ecules lying parallel to ([\overline{1}]11) formed by a combination of N—H⋯O, C—H⋯O and C—H⋯H hydrogen bonds. The sheets are connected through ππ stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies of pyrazolo­[3,4-d]pyrimidine derivatives (El Fal et al., 2013[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.]; El Hafi et al., 2017[El Hafi, M., Naas, M., Jouha, J., Loubidi, M., Ramli, Y., Mague, J. T., Essassi, E. M. & Guillaumet, G. (2017). C. R. Chim. 20, 927-933.]), we now report the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.

The title mol­ecule is essentially planar [dihedral angle between the pyrimidine and pyrazole rings = 0.46 (9)°]. In the crystal, centrosymmetric dimers are formed by pairwise N1—H1⋯O1i hydrogen bonds, which are connected into chains along the c-axis direction through pairwise C4—H4B⋯N4iii hydrogen bonds. The chains are formed into sheets parallel to ([\overline{1}]11) by C2—H2⋯O1ii hydrogen bonds (Table 1[link] and Fig. 2[link]). The sheets are associated through π-stacking inter­actions between the bicyclic units with inter­planar spacings of 3.3203 (5) Å (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.95 (3) 1.84 (3) 2.7866 (18) 178 (2)
C2—H2⋯O1ii 0.99 (2) 2.46 (2) 3.399 (2) 157.8 (17)
C4—H4B⋯N4iii 0.98 (3) 2.65 (3) 3.599 (2) 164 (2)
C5—H5⋯N2iv 0.99 (2) 2.37 (2) 3.323 (2) 161.7 (18)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y+1, z; (iii) -x, -y+1, -z+1; (iv) x-1, y-1, z.
[Figure 2]
Figure 2
Detail of the hydrogen-bonding network viewed along the a-axis direction. N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds are shown, respectively, as blue, black and purple dashed lines.
[Figure 3]
Figure 3
Detail of the π-stacking inter­actions (dashed lines) leading to columns viewed along the b-axis direction

Synthesis and crystallization

A solution of 4-chloro-1-methyl-1H-pyrazolo­[3,4-d]pyrimidine (0.3 g, 1.8 mmol) in (EtOH/H2O, 8:2) was heated to reflux for 10 min. After cooling the solution at room temperature, the title compound in the form of colourless plates was obtained (yield: 80%; m.p. = 440–442 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H6N4O
Mr 150.15
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 3.8342 (2), 5.5701 (3), 15.0346 (9)
α, β, γ (°) 93.396 (4), 92.812 (4), 92.361 (4)
V3) 319.83 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.96
Crystal size (mm) 0.21 × 0.07 × 0.01
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.85, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 2352, 1191, 1037
Rint 0.027
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.09
No. of reflections 1191
No. of parameters 124
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.18, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-Methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one top
Crystal data top
C6H6N4OZ = 2
Mr = 150.15F(000) = 156
Triclinic, P1Dx = 1.559 Mg m3
a = 3.8342 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 5.5701 (3) ÅCell parameters from 1864 reflections
c = 15.0346 (9) Åθ = 3.0–72.2°
α = 93.396 (4)°µ = 0.96 mm1
β = 92.812 (4)°T = 150 K
γ = 92.361 (4)°Plate, colourless
V = 319.83 (3) Å30.21 × 0.07 × 0.01 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1191 independent reflections
Radiation source: INCOATEC IµS micro–focus source1037 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 3.0°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 66
Tmin = 0.85, Tmax = 0.99l = 1818
2352 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.108All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.1016P]
where P = (Fo2 + 2Fc2)/3
1191 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2521 (3)0.3096 (2)0.91704 (8)0.0260 (3)
N10.5472 (4)0.6698 (3)0.90191 (10)0.0233 (4)
H10.614 (6)0.673 (5)0.9637 (19)0.049 (7)*
N20.6103 (4)0.8617 (2)0.76659 (9)0.0233 (4)
N30.3161 (4)0.6313 (2)0.64282 (9)0.0215 (4)
N40.1240 (4)0.4172 (3)0.62663 (10)0.0240 (4)
C10.3482 (4)0.4668 (3)0.86716 (10)0.0208 (4)
C20.6662 (5)0.8505 (3)0.85226 (11)0.0231 (4)
H20.810 (6)0.977 (4)0.8873 (15)0.031 (5)*
C30.4137 (4)0.6673 (3)0.72991 (11)0.0204 (4)
C40.4093 (5)0.7771 (3)0.57014 (12)0.0270 (4)
H4A0.443 (7)0.942 (5)0.5921 (18)0.057 (8)*
H4B0.232 (8)0.747 (5)0.5211 (19)0.056 (8)*
H4C0.623 (7)0.724 (5)0.5455 (19)0.056 (7)*
C50.1014 (4)0.3226 (3)0.70515 (11)0.0228 (4)
H50.039 (6)0.170 (4)0.7095 (15)0.034 (6)*
C60.2789 (4)0.4723 (3)0.77331 (11)0.0208 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0359 (7)0.0232 (6)0.0192 (6)0.0038 (5)0.0010 (5)0.0067 (5)
N10.0301 (8)0.0213 (7)0.0185 (7)0.0009 (6)0.0005 (6)0.0040 (6)
N20.0286 (8)0.0194 (7)0.0222 (7)0.0011 (6)0.0011 (6)0.0042 (6)
N30.0269 (8)0.0208 (7)0.0170 (7)0.0004 (5)0.0022 (5)0.0046 (5)
N40.0278 (8)0.0215 (7)0.0225 (7)0.0022 (6)0.0009 (6)0.0030 (6)
C10.0235 (9)0.0197 (8)0.0197 (8)0.0021 (6)0.0014 (6)0.0037 (6)
C20.0272 (9)0.0193 (8)0.0229 (8)0.0002 (7)0.0009 (7)0.0036 (7)
C30.0226 (8)0.0201 (8)0.0190 (8)0.0022 (6)0.0013 (6)0.0045 (6)
C40.0329 (10)0.0296 (10)0.0194 (8)0.0015 (8)0.0034 (7)0.0083 (7)
C50.0259 (9)0.0215 (8)0.0210 (8)0.0007 (6)0.0003 (6)0.0046 (7)
C60.0232 (8)0.0201 (8)0.0199 (8)0.0011 (6)0.0020 (6)0.0052 (6)
Geometric parameters (Å, º) top
O1—C11.242 (2)N4—C51.326 (2)
N1—C21.365 (2)C1—C61.425 (2)
N1—C11.398 (2)C2—H20.99 (2)
N1—H10.95 (3)C3—C61.394 (2)
N2—C21.301 (2)C4—H4A0.96 (3)
N2—C31.366 (2)C4—H4B0.98 (3)
N3—C31.345 (2)C4—H4C0.97 (3)
N3—N41.378 (2)C5—C61.412 (2)
N3—C41.450 (2)C5—H50.99 (2)
C2—N1—C1124.42 (15)N3—C3—C6107.44 (15)
C2—N1—H1119.3 (16)N2—C3—C6127.73 (16)
C1—N1—H1116.2 (16)N3—C4—H4A109.3 (17)
C2—N2—C3111.89 (15)N3—C4—H4B108.7 (17)
C3—N3—N4110.92 (13)H4A—C4—H4B115 (2)
C3—N3—C4128.07 (15)N3—C4—H4C110.3 (18)
N4—N3—C4120.86 (14)H4A—C4—H4C109 (2)
C5—N4—N3105.95 (14)H4B—C4—H4C104 (2)
O1—C1—N1120.32 (15)N4—C5—C6110.88 (15)
O1—C1—C6127.84 (15)N4—C5—H5119.6 (13)
N1—C1—C6111.84 (14)C6—C5—H5129.5 (13)
N2—C2—N1125.64 (16)C3—C6—C5104.80 (14)
N2—C2—H2120.7 (13)C3—C6—C1118.47 (15)
N1—C2—H2113.6 (13)C5—C6—C1136.72 (15)
N3—C3—N2124.83 (15)
C3—N3—N4—C50.59 (19)N3—N4—C5—C60.25 (19)
C4—N3—N4—C5176.43 (16)N3—C3—C6—C50.51 (19)
C2—N1—C1—O1179.52 (16)N2—C3—C6—C5179.31 (16)
C2—N1—C1—C60.9 (2)N3—C3—C6—C1179.64 (14)
C3—N2—C2—N10.1 (3)N2—C3—C6—C10.2 (3)
C1—N1—C2—N20.7 (3)N4—C5—C6—C30.2 (2)
N4—N3—C3—N2179.13 (15)N4—C5—C6—C1179.04 (19)
C4—N3—C3—N23.7 (3)O1—C1—C6—C3179.84 (16)
N4—N3—C3—C60.70 (19)N1—C1—C6—C30.7 (2)
C4—N3—C3—C6176.15 (16)O1—C1—C6—C51.1 (3)
C2—N2—C3—N3179.94 (16)N1—C1—C6—C5179.45 (19)
C2—N2—C3—C60.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.95 (3)1.84 (3)2.7866 (18)178 (2)
C2—H2···O1ii0.99 (2)2.46 (2)3.399 (2)157.8 (17)
C4—H4B···N4iii0.98 (3)2.65 (3)3.599 (2)164 (2)
C5—H5···N2iv0.99 (2)2.37 (2)3.323 (2)161.7 (18)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x1, y1, z.
 

Acknowledgements

The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.  CSD CrossRef IUCr Journals Google Scholar
First citationEl Hafi, M., Naas, M., Jouha, J., Loubidi, M., Ramli, Y., Mague, J. T., Essassi, E. M. & Guillaumet, G. (2017). C. R. Chim. 20, 927–933.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds