organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[2-(Benzyl­­idene­amino)­phen­yl]-N′-phenyl­urea

CROSSMARK_Color_square_no_text.svg

aİlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Chemistry, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Physics, Faculty of Arts and Sciences, Dokuz Eylül University, Buca 35160 İzmir, Turkey, and eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: zeliha.atioglu@kapadokya.edu.tr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 6 October 2017; accepted 18 October 2017; online 24 October 2017)

In the title compound, C20H17N3O [systematic name: 1-phenyl-3-{2-[(E)- (phenyl­methyl­idene)amino]­phen­yl}urea], the middle benzene ring forms dihedral angles of 17.65 (17) and 29.48 (14)°, respectively, with the N- and C-bound phenyl rings, while the dihedral angle between the terminal rings is 46.53 (18)°. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, forming helical supra­molecular chains running parallel to the c axis via an R12(6) ring motif. The structure was refined as a two-component twin with a 0.966 (3):0.034 (3) domain ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff bases, also known as imines or azomethines, are nitro­gen analogues of aldehydes or ketones in which the carbonyl group has been replaced by an imine or azomethine group (Ghose, 1983[Ghose, B. N. (1983). Rev. Port. Quim. 25, 147-150.]). The classical synthesis reported by Schiff involves the condensation of a carbonyl compound with an amine. Various Schiff base-containing compounds are widely used owing to their anti­fungal, anti­bacterial, anti­malarial, anti­proliferative, anti-inflammatory, anti­viral and anti­pyretic properties. In addition to the aforementioned activities, Schiff bases are used as pigments and dyes, catalysts, inter­mediates in organic synthesis and as polymer stabilizers (da Silva et al., 2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). J. Adv. Res. 2, 1-8.]). In this study, starting from o-phenyl­enedi­amine, we synthesized a new hybrid mol­ecule containing imine and urea functionalities in the same mol­ecule.

Referring to Fig. 1[link], the middle benzene ring (C8–C13) make dihedral angles of 17.65 (17) and 29.48 (14)°, respectively, with the terminal phenyl rings (C1–C6 and C15–C20). The dihedral angle between the latter is 46.53 (18)°. All bond lengths and angles are within normal ranges and are in agreement with those reported for 1-(2-amino­phen­yl)-3- phenyl­urea (Mague et al., 2015[Mague, J. T., Mohamed, S. K., Akkurt, M., Omran, O. A. & Albayati, M. R. (2015). Acta Cryst. E71, o88-o89.]).

[Figure 1]
Figure 1
View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

In the crystal, N—H⋯O hydrogen bonds link mol­ecules into chains running parallel to the c axis with an [R_{1}^{2}](6) ring motif, Fig. 2[link] and Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.08 2.921 (3) 166
N2—H2⋯O1i 0.86 2.36 3.144 (3) 152
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the N—H⋯O hydrogen bonding (dashed lines) along the a axis in the crystal of the title compound.

Synthesis and crystallization

To a solution of [N-(2-aminophenyl)-N′-phenylurea] (0.01 mol, 2.27 g) in absolute ethanol (50 mL) stirred at room temperature was added benzaldehyde (0.01 mol, 1.1 g). The mixture was stirred at reflux conditions, until complete, and then cooled to room temperature. The precipitate was filtered off and washed with cold ethanol. The resulting residue was purified by crystallization from EtOH to afford the title compound (2.1 g, 67% yield) as a light-orange solid (m.p. 473–475 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal investigated was refined as a two-component twin by non-merohedry. The twin ratio refined to a value of 0.966 (3):0.034 (3). The N-bound ring displayed high displacement parameters and was refined with several constraints.

Table 2
Experimental details

Crystal data
Chemical formula C20H17N3O
Mr 315.36
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 297
a, b, c (Å) 10.3381 (6), 17.6843 (13), 9.0562 (5)
V3) 1655.67 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.42 × 0.23 × 0.20
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Analytical (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.980, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 5335, 2499, 1574
Rint 0.029
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.066, 0.85
No. of reflections 2499
No. of parameters 217
No. of restraints 29
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.12
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

N-[2-(Benzylideneamino)phenyl]-N'-phenylurea top
Crystal data top
C20H17N3ODx = 1.265 Mg m3
Mr = 315.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 1544 reflections
a = 10.3381 (6) Åθ = 4.5–25.2°
b = 17.6843 (13) ŵ = 0.08 mm1
c = 9.0562 (5) ÅT = 297 K
V = 1655.67 (18) Å3Prism, light-orange
Z = 40.42 × 0.23 × 0.20 mm
F(000) = 664
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
2499 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1574 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.0667 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1212
Absorption correction: analytical
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 2216
Tmin = 0.980, Tmax = 0.988l = 811
5335 measured reflections
Refinement top
Refinement on F229 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0306P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max < 0.001
2499 reflectionsΔρmax = 0.12 e Å3
217 parametersΔρmin = 0.12 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms attached to C and N atoms were placed in calculated positions (C—H = 0.93 Å and N—H = 0.86 Å) and treated as riding with Uiso(H) = 1.2 or 1.5Ueq(N,C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17464 (16)0.71846 (10)0.29408 (19)0.0609 (5)
N10.21897 (19)0.66269 (12)0.5158 (2)0.0554 (6)
H10.25410.67110.60040.066*
N20.28671 (18)0.78190 (12)0.4728 (2)0.0524 (6)
H20.31770.77750.56050.063*
N30.51212 (19)0.84938 (10)0.5281 (2)0.0500 (5)
C10.1652 (3)0.59015 (18)0.4960 (3)0.0578 (7)
C20.2172 (3)0.5321 (2)0.5740 (4)0.0964 (12)
H2A0.28770.54120.63520.116*
C30.1681 (4)0.4604 (2)0.5645 (6)0.1319 (17)
H30.20410.42160.62040.158*
C40.0664 (5)0.4460 (3)0.4733 (5)0.136 (2)
H40.03370.39730.46460.163*
C50.0134 (5)0.5036 (3)0.3950 (5)0.151 (2)
H50.05630.49430.33270.181*
C60.0625 (4)0.5765 (2)0.4074 (4)0.1091 (13)
H60.02480.61590.35460.131*
C70.2223 (2)0.72075 (16)0.4189 (3)0.0472 (6)
C80.3085 (2)0.85135 (15)0.4020 (3)0.0473 (6)
C90.2214 (3)0.88489 (17)0.3065 (3)0.0578 (7)
H90.14420.86050.28370.069*
C100.2486 (4)0.95423 (17)0.2450 (3)0.0657 (8)
H100.19060.97590.17890.079*
C110.3603 (3)0.99154 (17)0.2803 (3)0.0683 (8)
H110.37701.03890.24010.082*
C120.4482 (3)0.95884 (16)0.3756 (3)0.0575 (7)
H120.52340.98470.40070.069*
C130.4250 (2)0.88802 (15)0.4337 (3)0.0479 (7)
C140.6317 (3)0.85566 (15)0.5046 (3)0.0545 (7)
H140.65850.88780.42930.065*
C150.7306 (3)0.81545 (15)0.5886 (3)0.0539 (7)
C160.8592 (3)0.83093 (18)0.5624 (3)0.0684 (8)
H160.88110.86960.49740.082*
C170.9554 (3)0.7904 (2)0.6301 (4)0.0802 (10)
H171.04180.80130.61140.096*
C180.9223 (4)0.7340 (2)0.7255 (4)0.0858 (11)
H180.98700.70560.77050.103*
C190.7937 (4)0.71814 (17)0.7563 (4)0.0839 (10)
H190.77260.68020.82320.101*
C200.6977 (3)0.75878 (17)0.6877 (3)0.0621 (8)
H200.61120.74840.70750.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0729 (12)0.0698 (13)0.0400 (10)0.0055 (10)0.0054 (9)0.0038 (10)
N10.0683 (15)0.0557 (13)0.0421 (11)0.0115 (13)0.0086 (11)0.0021 (13)
N20.0584 (13)0.0574 (14)0.0413 (12)0.0126 (12)0.0069 (11)0.0018 (12)
N30.0507 (12)0.0504 (14)0.0488 (12)0.0037 (12)0.0036 (11)0.0010 (13)
C10.0637 (17)0.062 (2)0.0476 (16)0.0081 (17)0.0150 (16)0.0039 (17)
C20.093 (3)0.064 (2)0.132 (3)0.007 (2)0.003 (2)0.013 (2)
C30.146 (4)0.058 (3)0.191 (5)0.008 (3)0.027 (3)0.012 (3)
C40.193 (5)0.089 (3)0.124 (4)0.064 (4)0.073 (4)0.043 (3)
C50.187 (5)0.163 (5)0.103 (3)0.126 (5)0.007 (3)0.001 (4)
C60.119 (3)0.118 (3)0.090 (2)0.059 (3)0.026 (2)0.024 (2)
C70.0437 (14)0.0593 (19)0.0386 (15)0.0012 (14)0.0055 (13)0.0026 (15)
C80.0549 (17)0.0470 (16)0.0401 (14)0.0026 (14)0.0039 (13)0.0019 (14)
C90.0563 (17)0.0654 (19)0.0516 (18)0.0116 (16)0.0051 (14)0.0084 (16)
C100.081 (2)0.064 (2)0.0522 (18)0.021 (2)0.0107 (15)0.0018 (18)
C110.091 (2)0.0533 (18)0.0605 (17)0.0100 (19)0.001 (2)0.0124 (17)
C120.0656 (19)0.0483 (17)0.0587 (18)0.0056 (15)0.0060 (15)0.0033 (16)
C130.0531 (15)0.0501 (17)0.0405 (15)0.0014 (14)0.0028 (13)0.0000 (14)
C140.0575 (17)0.0549 (17)0.0512 (15)0.0035 (14)0.0005 (15)0.0004 (15)
C150.0533 (17)0.0558 (18)0.0526 (16)0.0012 (15)0.0053 (15)0.0110 (15)
C160.0549 (17)0.084 (2)0.0657 (18)0.0032 (18)0.0014 (16)0.0070 (18)
C170.061 (2)0.104 (3)0.075 (2)0.012 (2)0.0023 (19)0.023 (2)
C180.079 (3)0.094 (3)0.085 (3)0.026 (2)0.030 (2)0.017 (2)
C190.102 (3)0.065 (2)0.084 (2)0.006 (2)0.025 (2)0.004 (2)
C200.0677 (19)0.0566 (19)0.0622 (17)0.0030 (17)0.0063 (16)0.0011 (16)
Geometric parameters (Å, º) top
O1—C71.234 (3)C9—C101.376 (3)
N1—C71.351 (3)C9—H90.9300
N1—C11.409 (3)C10—C111.368 (4)
N1—H10.8600C10—H100.9300
N2—C71.361 (3)C11—C121.381 (3)
N2—C81.404 (3)C11—H110.9300
N2—H20.8600C12—C131.380 (3)
N3—C141.259 (3)C12—H120.9300
N3—C131.417 (3)C14—C151.460 (4)
C1—C61.353 (4)C14—H140.9300
C1—C21.357 (4)C15—C161.377 (4)
C2—C31.368 (5)C15—C201.388 (4)
C2—H2A0.9300C16—C171.371 (4)
C3—C41.361 (4)C16—H160.9300
C3—H30.9300C17—C181.364 (4)
C4—C51.356 (6)C17—H170.9300
C4—H40.9300C18—C191.386 (4)
C5—C61.389 (5)C18—H180.9300
C5—H50.9300C19—C201.375 (4)
C6—H60.9300C19—H190.9300
C8—C91.382 (3)C20—H200.9300
C8—C131.398 (3)
C7—N1—C1128.2 (2)C11—C10—C9120.5 (3)
C7—N1—H1115.9C11—C10—H10119.7
C1—N1—H1115.9C9—C10—H10119.7
C7—N2—C8127.6 (2)C10—C11—C12120.0 (3)
C7—N2—H2116.2C10—C11—H11120.0
C8—N2—H2116.2C12—C11—H11120.0
C14—N3—C13118.6 (2)C13—C12—C11120.3 (3)
C6—C1—C2119.0 (3)C13—C12—H12119.9
C6—C1—N1123.2 (3)C11—C12—H12119.9
C2—C1—N1117.8 (3)C12—C13—C8119.5 (2)
C1—C2—C3121.4 (4)C12—C13—N3123.9 (2)
C1—C2—H2A119.3C8—C13—N3116.6 (2)
C3—C2—H2A119.3N3—C14—C15123.8 (3)
C4—C3—C2119.9 (4)N3—C14—H14118.1
C4—C3—H3120.1C15—C14—H14118.1
C2—C3—H3120.1C16—C15—C20119.5 (3)
C5—C4—C3119.3 (5)C16—C15—C14119.3 (3)
C5—C4—H4120.4C20—C15—C14121.1 (2)
C3—C4—H4120.4C17—C16—C15121.3 (3)
C4—C5—C6120.4 (5)C17—C16—H16119.4
C4—C5—H5119.8C15—C16—H16119.4
C6—C5—H5119.8C18—C17—C16118.9 (3)
C1—C6—C5120.0 (4)C18—C17—H17120.5
C1—C6—H6120.0C16—C17—H17120.5
C5—C6—H6120.0C17—C18—C19121.0 (3)
O1—C7—N1124.1 (3)C17—C18—H18119.5
O1—C7—N2123.4 (3)C19—C18—H18119.5
N1—C7—N2112.5 (2)C20—C19—C18119.7 (3)
C9—C8—C13119.4 (2)C20—C19—H19120.1
C9—C8—N2123.8 (2)C18—C19—H19120.1
C13—C8—N2116.7 (2)C19—C20—C15119.5 (3)
C10—C9—C8120.2 (3)C19—C20—H20120.2
C10—C9—H9119.9C15—C20—H20120.2
C8—C9—H9119.9
C7—N1—C1—C630.1 (5)C10—C11—C12—C131.0 (4)
C7—N1—C1—C2152.2 (3)C11—C12—C13—C83.5 (3)
C6—C1—C2—C30.1 (5)C11—C12—C13—N3177.8 (2)
N1—C1—C2—C3177.9 (3)C9—C8—C13—C123.5 (3)
C1—C2—C3—C41.2 (7)N2—C8—C13—C12175.6 (2)
C2—C3—C4—C51.4 (7)C9—C8—C13—N3177.7 (2)
C3—C4—C5—C60.3 (8)N2—C8—C13—N33.2 (3)
C2—C1—C6—C51.2 (6)C14—N3—C13—C1237.0 (3)
N1—C1—C6—C5178.9 (3)C14—N3—C13—C8144.3 (2)
C4—C5—C6—C11.0 (7)C13—N3—C14—C15176.5 (2)
C1—N1—C7—O11.1 (4)N3—C14—C15—C16174.6 (3)
C1—N1—C7—N2177.5 (2)N3—C14—C15—C209.3 (4)
C8—N2—C7—O11.3 (4)C20—C15—C16—C171.3 (4)
C8—N2—C7—N1179.9 (2)C14—C15—C16—C17174.8 (3)
C7—N2—C8—C934.6 (3)C15—C16—C17—C180.2 (4)
C7—N2—C8—C13146.4 (2)C16—C17—C18—C191.2 (5)
C13—C8—C9—C100.9 (3)C17—C18—C19—C201.4 (5)
N2—C8—C9—C10178.1 (2)C18—C19—C20—C150.3 (4)
C8—C9—C10—C111.6 (4)C16—C15—C20—C191.1 (4)
C9—C10—C11—C121.6 (4)C14—C15—C20—C19175.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.082.921 (3)166
N2—H2···O1i0.862.363.144 (3)152
Symmetry code: (i) x+1/2, y, z+1/2.
 

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhose, B. N. (1983). Rev. Port. Quim. 25, 147–150.  CAS Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Omran, O. A. & Albayati, M. R. (2015). Acta Cryst. E71, o88–o89.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]