organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(3-Methyl­phen­yl)-1,2-benzoselenazol-3(2H)-one

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bScientific Instrument Center, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: gzq@sxu.edu.cn

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 March 2017; accepted 10 April 2017; online 18 April 2017)

In the title ebselen derivative, C14H11NOSe, the nine-membered benzisoselen­azolyl ring system is approximately planar (r.m.s. deviation = 0.021 Å). The dihedral angle between its mean plane and that of the 3-methyl­phenyl ring is 5.37 (11)°. The five-membered isoselenazolyl ring is severely strained at the Se atom: Se—N = 1.889 (2) Å, Se—Car = 1.882 (3) Å and N—Se—Car = 83.30 (10)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and short inter­molecular Se⋯O contacts of 2.6917 (19) Å, forming chains along the c-axis direction. Neighbouring mol­ecules are linked by offset ππ inter­actions [inter­centroid distance = 3.535 (2) Å]. The chains are also linked by C—H⋯π inter­actions, forming a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ebselen (systematic name: 2-phenyl-1,2-benzoselenazol-3-one) is a synthetic organoselenium drug which has been reported to exhibit anti-inflammatory, anti-oxidant and cytoprotective activity (Mugesh & Singh, 2000[Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347-357.]; Mugesh et al., 2001a[Mugesh, G., du Mont, W. W. & Sies, H. (2001a). Chem. Rev. 101, 2125-2179.],b[Mugesh, G., Panda, A., Singh, H. B., Punekar, N. S. & Butcher, R. J. (2001b). J. Am. Chem. Soc. 123, 839-850.]). We report herein on the synthesis and crystal structure of the 3-methyl­phenyl derivative of ebselen.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The nine-membered benzisoselenazolyl group is roughly planar (r.m.s. deviation = 0.021 Å). The dihedral angle between its mean plane and the 3-methyl­phenyl ring is 5.37 (11)°. This value is much smaller than that reported for N-(2-methyl­phen­yl)-1,2-benzoselenazol-3(2H)-one (Zhu et al., 2013[Zhu, X., Xu, Y., Han, H., Guo, Z. & Wei, X. (2013). Acta Cryst. E69, o1538.]) in which the 2-methyl­phenyl ring is inclined to the benzisoselenazolyl ring system by 78.15 (11)°. In two polymorphs of ebselen, the corresponding dihedral angle is 24.24 (8)° for the monoclinic P21/c polymorph and 33.36 (12)° for the ortho­rhom­bic Pbca polymorph (Thomas et al., 2015[Thomas, S. P., Satheeshkumar, K., Mugesh, G. & Guru Row, T. N. (2015). Chem. Eur. J. 21, 6793-6800.]). In the ortho­rhom­bic Pna21 polymorph of m-ebselenol (Thomas et al., 2015[Thomas, S. P., Satheeshkumar, K., Mugesh, G. & Guru Row, T. N. (2015). Chem. Eur. J. 21, 6793-6800.]), the corresponding dihedral angle is 35.17 (12)°. The five-membered isoselenazolyl ring is severely strained at the Se atom: Se1—N1 = 1.889 (2) Å, Se1—C14 = 1.882 (3) Å, N1—Se1—C14 = 83.30 (10)°. These values are similar to those reported for the above mentioned compounds.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 25% probability level.

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, and short Se1⋯Oi contacts of 2.6917 (19) Å [symmetry code: (i) x, −y + [{1\over 2}], z − [{1\over 2}]], forming chains along the c-axis direction (Table 1[link] and Fig. 2[link]). Neighbouring mol­ecules are linked by offset ππ inter­actions [Cg2⋯Cg4i = 3.535 (2) Å, Cg2 and Cg4 are the centroids of rings C1–C6 and Se1/N1/C8–C14, respectively, α = 5.37 (11)°, inter­planar distances = 3.499 (1) and 3.466 (1) Å, slippage = 0.693 Å; symmetry code: (i) x, y − 1, z]. The chains are also linked by C—H⋯π inter­actions, forming a three-dimensional structure (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of rings C1–C6 and C9–C14, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.38 3.057 (3) 129
C7—H7CCg2ii 0.96 2.97 3.926 (4) 176
C12—H12⋯Cg3iii 0.93 2.74 3.535 (3) 144
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds, Se⋯O contacts and C—H⋯π inter­actions are shown as dashed lines (see Table 1[link]).

The Se⋯O distance in N-(2-methyl­phen­yl)-1,2-benzoselenazol-3(2H)-one (Zhu et al., 2013[Zhu, X., Xu, Y., Han, H., Guo, Z. & Wei, X. (2013). Acta Cryst. E69, o1538.]) is 2.733 (3) Å. In the two polymorphs of ebselen mentioned above the Se⋯O contacts are slightly shorter at 2.533 (2) and 2.522 (2) Å.

Synthesis and crystallization

The title compound was prepared following a modified literature procedure (Zhu et al., 2013[Zhu, X., Xu, Y., Han, H., Guo, Z. & Wei, X. (2013). Acta Cryst. E69, o1538.]). A solution of 2-(chloro­seleno)­benzoyl chloride (0.76 g, 3 mmol) in dry aceto­nitrile (20 ml) was added dropwise to a solution of 3-methyl­aniline (0.322 g, 3 mmol) and tri­ethyl­amine in dry aceto­nitrile (20 ml) at room temperature. The reaction mixture was stirred at room temperature for about 5 h and the solvent was evaporated in vacuo. The precipitate was recrystallized to obtain colourless block-like crystals (yield 55%, m.p. 426–427 K).

1H NMR (CDCl3): δ 2.38 (s, 3 H, CH3), 7.08–7.10 (d, 3J = 7.3 Hz, 1 H, H—C11), 7.27–7.32 (t, 3J = 8.3 Hz, 1 H, H—C10), 7.38–7.45 (m, 3 H, H—C2, C9, C13), 7.59–7.70 (m, 2 H, H—C3, C4)), 8.10–8.12 (d, 3J = 7.8 Hz, 1 H, H—C5); 13C NMR: δ 24.1 (CH3), 125.3 (C9), 126.6 (C13), 128.8 (C11), 129.2 (C10), 130.4 (C2), 131.6 (C4), 131.8 (C5), 132.0 (C3), 135.1 (C1), 140.6 (C12), 141.6 (C6), 142.0 (C8), 168.5 (C=O); 77Se NMR: δ 961. Analysis calculated for C14H11NOSe: C, 58.34; H, 3.85; N, 4.86%. Found: C, 58.20; H, 3.90; N, 4.77%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H11NOSe
Mr 288.20
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 15.561 (4), 5.9415 (16), 12.471 (3)
β (°) 92.799 (3)
V3) 1151.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.24
Crystal size (mm) 0.20 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.563, 0.737
No. of measured, independent and observed [I > 2σ(I)] reflections 4482, 2015, 1728
Rint 0.021
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.05
No. of reflections 2015
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.21
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2-(3-Methylphenyl)-1,2-benzoselenazol-3(2H)-one top
Crystal data top
C14H11NOSeF(000) = 576
Mr = 288.20Dx = 1.662 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.561 (4) ÅCell parameters from 2393 reflections
b = 5.9415 (16) Åθ = 2.6–27.1°
c = 12.471 (3) ŵ = 3.24 mm1
β = 92.799 (3)°T = 293 K
V = 1151.6 (5) Å3Block, colorless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1728 reflections with I > 2σ(I)
phi and ω scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
θmax = 25.0°, θmin = 2.6°
Tmin = 0.563, Tmax = 0.737h = 1816
4482 measured reflectionsk = 67
2015 independent reflectionsl = 914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.1339P]
where P = (Fo2 + 2Fc2)/3
2015 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.77312 (2)0.16715 (4)0.66672 (2)0.03852 (12)
N10.75687 (14)0.0480 (3)0.80472 (15)0.0362 (5)
O10.79688 (14)0.1110 (3)0.98233 (14)0.0527 (5)
C10.70239 (17)0.1434 (4)0.8143 (2)0.0350 (6)
C20.69338 (19)0.2532 (5)0.9106 (2)0.0488 (7)
H20.72170.20120.97310.059*
C30.6413 (2)0.4427 (5)0.9123 (3)0.0610 (9)
H30.63530.51840.97680.073*
C40.5983 (2)0.5212 (5)0.8206 (3)0.0554 (8)
H40.56370.64840.82400.066*
C50.60614 (19)0.4142 (5)0.7252 (2)0.0473 (7)
C60.65794 (18)0.2238 (5)0.7229 (2)0.0437 (7)
H60.66300.14800.65830.052*
C70.5604 (2)0.4993 (6)0.6237 (2)0.0652 (9)
H7A0.59750.60050.58760.098*
H7B0.54570.37450.57750.098*
H7C0.50900.57720.64140.098*
C80.79923 (18)0.1616 (4)0.8870 (2)0.0378 (6)
C90.84756 (17)0.3536 (4)0.8470 (2)0.0393 (6)
C100.89553 (18)0.5007 (5)0.9122 (2)0.0458 (7)
H100.90030.47800.98610.055*
C110.93588 (19)0.6799 (4)0.8671 (2)0.0491 (7)
H110.96840.77850.91050.059*
C120.92841 (18)0.7147 (5)0.7574 (2)0.0480 (7)
H120.95560.83800.72800.058*
C130.88175 (18)0.5709 (5)0.6909 (2)0.0432 (6)
H130.87720.59480.61710.052*
C140.84146 (16)0.3887 (4)0.7370 (2)0.0359 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0507 (2)0.03956 (18)0.02478 (17)0.00204 (11)0.00299 (12)0.00034 (10)
N10.0476 (12)0.0378 (12)0.0228 (11)0.0000 (10)0.0027 (9)0.0011 (9)
O10.0817 (15)0.0527 (11)0.0234 (10)0.0107 (11)0.0015 (9)0.0023 (8)
C10.0394 (14)0.0344 (14)0.0312 (13)0.0040 (11)0.0013 (11)0.0033 (10)
C20.0575 (19)0.0522 (16)0.0360 (16)0.0063 (15)0.0042 (13)0.0012 (14)
C30.075 (2)0.0583 (19)0.0489 (19)0.0152 (17)0.0015 (16)0.0136 (15)
C40.0557 (19)0.0503 (17)0.060 (2)0.0135 (15)0.0011 (15)0.0002 (15)
C50.0476 (17)0.0471 (15)0.0464 (18)0.0019 (13)0.0051 (13)0.0098 (13)
C60.0498 (17)0.0475 (15)0.0334 (15)0.0029 (13)0.0025 (12)0.0023 (12)
C70.064 (2)0.069 (2)0.061 (2)0.0125 (17)0.0090 (16)0.0188 (17)
C80.0503 (16)0.0372 (14)0.0255 (13)0.0043 (11)0.0038 (11)0.0027 (11)
C90.0407 (15)0.0417 (15)0.0355 (15)0.0045 (12)0.0009 (11)0.0040 (11)
C100.0508 (16)0.0510 (16)0.0352 (15)0.0011 (14)0.0023 (12)0.0053 (13)
C110.0471 (17)0.0473 (16)0.0524 (19)0.0062 (13)0.0032 (14)0.0103 (13)
C120.0440 (16)0.0411 (15)0.059 (2)0.0015 (13)0.0015 (14)0.0054 (13)
C130.0459 (16)0.0468 (15)0.0367 (15)0.0030 (13)0.0007 (12)0.0068 (12)
C140.0383 (14)0.0378 (13)0.0313 (14)0.0072 (11)0.0028 (11)0.0027 (11)
Geometric parameters (Å, º) top
Se1—C141.882 (3)C6—H60.9300
Se1—N11.889 (2)C7—H7A0.9600
N1—C81.370 (3)C7—H7B0.9600
N1—C11.427 (3)C7—H7C0.9600
O1—C81.229 (3)C8—C91.467 (4)
C1—C21.379 (4)C9—C141.386 (4)
C1—C61.389 (4)C9—C101.387 (4)
C2—C31.388 (4)C10—C111.370 (4)
C2—H20.9300C10—H100.9300
C3—C41.377 (4)C11—C121.383 (4)
C3—H30.9300C11—H110.9300
C4—C51.360 (4)C12—C131.373 (4)
C4—H40.9300C12—H120.9300
C5—C61.390 (4)C13—C141.390 (4)
C5—C71.508 (4)C13—H130.9300
C14—Se1—N186.30 (10)C5—C7—H7C109.5
C8—N1—C1126.6 (2)H7A—C7—H7C109.5
C8—N1—Se1114.61 (17)H7B—C7—H7C109.5
C1—N1—Se1118.78 (15)O1—C8—N1124.6 (2)
C2—C1—C6118.9 (3)O1—C8—C9123.9 (2)
C2—C1—N1122.4 (2)N1—C8—C9111.4 (2)
C6—C1—N1118.7 (2)C14—C9—C10119.6 (2)
C1—C2—C3118.8 (3)C14—C9—C8116.2 (2)
C1—C2—H2120.6C10—C9—C8124.2 (2)
C3—C2—H2120.6C11—C10—C9119.5 (3)
C4—C3—C2121.5 (3)C11—C10—H10120.2
C4—C3—H3119.3C9—C10—H10120.2
C2—C3—H3119.3C10—C11—C12120.3 (3)
C5—C4—C3120.5 (3)C10—C11—H11119.9
C5—C4—H4119.7C12—C11—H11119.9
C3—C4—H4119.7C13—C12—C11121.4 (3)
C4—C5—C6118.3 (3)C13—C12—H12119.3
C4—C5—C7121.3 (3)C11—C12—H12119.3
C6—C5—C7120.4 (3)C12—C13—C14118.1 (3)
C1—C6—C5122.0 (3)C12—C13—H13121.0
C1—C6—H6119.0C14—C13—H13121.0
C5—C6—H6119.0C9—C14—C13121.1 (2)
C5—C7—H7A109.5C9—C14—Se1111.45 (19)
C5—C7—H7B109.5C13—C14—Se1127.5 (2)
H7A—C7—H7B109.5
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of rings C1–C6 and C9–C14, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.383.057 (3)129
C7—H7C···Cg2ii0.962.973.926 (4)176
C12—H12···Cg3iii0.932.743.535 (3)144
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+2, y+1/2, z+3/2.
 

Funding information

Funding for this research was provided by: Special Fund for Agro-scientific Research in the Public Interest (award No. 201303106).

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMugesh, G., du Mont, W. W. & Sies, H. (2001a). Chem. Rev. 101, 2125–2179.  CrossRef PubMed CAS Google Scholar
First citationMugesh, G., Panda, A., Singh, H. B., Punekar, N. S. & Butcher, R. J. (2001b). J. Am. Chem. Soc. 123, 839–850.  CSD CrossRef PubMed CAS Google Scholar
First citationMugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, S. P., Satheeshkumar, K., Mugesh, G. & Guru Row, T. N. (2015). Chem. Eur. J. 21, 6793–6800.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, X., Xu, Y., Han, H., Guo, Z. & Wei, X. (2013). Acta Cryst. E69, o1538.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds