organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-2-Methyl-6-{[(5-methyl­pyridin-2-yl)imino]­methyl}phenol

CROSSMARK_Color_square_no_text.svg

aThe School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang, 11800, Malaysia
*Correspondence e-mail: farookdr@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 December 2016; accepted 17 December 2016; online 6 January 2017)

In the title compound, C14H14N2O, the dihedral angle between the aromatic rings is 5.54 (9)°. The conformation is reinforced by an intra­molecular O—H⋯N hydrogen bond, which closes an S(6) ring. The pyridine N atom and methyl group lie to opposite sides of the mol­ecule. In the crystal, the mol­ecules are linked into a zigzag chain propagating in [0-11] by weak C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing studies of phenolic Schiff-base compounds (Adam et al. (2015[Adam, F., Arafath, M. A., Rosenani, A. H. & Razali, M. R. (2015). Acta Cryst. E71, o971-o972.]), we now describe the synthesis and structure of the title compound (Fig. 1[link]), which features an intra­molecular O—H⋯N hydrogen bond (Table 1[link]), which helps to establish near-coplanarity of the aromatic rings [dihedral angle = 5.54 (9)°]. In the crystal, the mol­ecules are linked by a C2—H2A—O1 hydrogen bond into a zigzag C(9) chain propagating in [0[\overline{1}]1] (Table 1[link], Fig. 2[link]). Adjacent mol­ecules in the chain are related by c-glide symmetry.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯N2 0.87 (3) 1.82 (3) 2.590 (2) 146 (3)
C2—H2A⋯O1i 0.95 2.52 3.322 (3) 142
Symmetry code: (i) [-x+{\script{3\over 2}}, y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
The packing of the title compound viewed along [010].

Synthesis and crystallization

The synthesis scheme is shown in Fig. 3[link]. 2-Hy­droxy-3-methyl­benzaldehyde (0.681 g, 5 mmol) was dissolved in 20 ml toluene and after adding 0.2 ml acetic acid, the mixture was refluxed for 30 min. Then, 5-methyl­pyridin-2-amine 0.541 g (5 mmol) solution in 20 ml toluene was added dropwise with stirring to the aldehyde solution. The resulting light-yellow solution was refluxed for 4 h with stirring. The solvent was allowed to evaporate. The crude product was washed with benzene and n-hexane. Orange blocks were obtained by slow evaporation of a solution in toluene; m.p.: 363–364 K; yield: 95%.

[Figure 3]
Figure 3
Synthesis of the title compound

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H14N2O
Mr 226.27
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 100
a, b, c (Å) 23.440 (3), 4.6307 (6), 10.6408 (13)
V3) 1155.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.59 × 0.18 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 9247, 3106, 2792
Rint 0.031
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.09
No. of reflections 3106
No. of parameters 160
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

(E)-2-Methyl-6-{[(5-methylpyridin-2-yl)imino]methyl}phenol top
Crystal data top
C14H14N2ODx = 1.301 Mg m3
Mr = 226.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2856 reflections
a = 23.440 (3) Åθ = 2.6–29.1°
b = 4.6307 (6) ŵ = 0.08 mm1
c = 10.6408 (13) ÅT = 100 K
V = 1155.0 (3) Å3Block, orange
Z = 40.59 × 0.18 × 0.14 mm
F(000) = 480
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.031
φ and ω scansθmax = 29.1°, θmin = 1.7°
9247 measured reflectionsh = 3131
3106 independent reflectionsk = 66
2792 reflections with I > 2σ(I)l = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.0393P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3106 reflectionsΔρmax = 0.25 e Å3
160 parametersΔρmin = 0.18 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65226 (6)0.0538 (3)0.69407 (15)0.0236 (4)
N10.61387 (7)0.6480 (3)0.31428 (17)0.0194 (4)
N20.63432 (7)0.3591 (4)0.49405 (16)0.0177 (4)
C10.70576 (8)0.6813 (4)0.4124 (2)0.0204 (4)
H1A0.73070.62300.47810.025*
C20.72340 (9)0.8817 (4)0.3237 (2)0.0212 (4)
H2A0.76080.96000.32730.025*
C30.68583 (8)0.9677 (4)0.22889 (19)0.0185 (4)
C40.63168 (9)0.8438 (4)0.2302 (2)0.0197 (4)
H4A0.60550.90220.16690.024*
C50.65087 (8)0.5669 (4)0.40364 (19)0.0170 (4)
C60.70294 (9)1.1822 (4)0.1299 (2)0.0228 (4)
H6A0.66961.23270.07880.034*
H6B0.73241.09740.07600.034*
H6C0.71801.35660.17020.034*
C70.58560 (9)0.2307 (4)0.48190 (19)0.0178 (4)
H7A0.56190.27820.41250.021*
C80.56627 (8)0.0167 (4)0.57120 (18)0.0168 (4)
C90.51292 (9)0.1140 (4)0.5548 (2)0.0205 (4)
H9A0.48990.06130.48490.025*
C100.49335 (9)0.3183 (4)0.6386 (2)0.0232 (4)
H10A0.45700.40510.62720.028*
C110.52755 (9)0.3965 (4)0.7406 (2)0.0222 (4)
H11A0.51390.53770.79810.027*
C120.58079 (9)0.2740 (4)0.76055 (19)0.0205 (4)
C130.60016 (8)0.0652 (4)0.67508 (19)0.0181 (4)
C140.61778 (10)0.3582 (5)0.8700 (2)0.0290 (5)
H14A0.62690.18620.91980.043*
H14B0.65320.44530.83880.043*
H14C0.59740.49800.92260.043*
H1010.6583 (13)0.190 (7)0.639 (3)0.046 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (7)0.0269 (8)0.0221 (8)0.0048 (6)0.0036 (6)0.0055 (7)
N10.0210 (8)0.0201 (8)0.0170 (8)0.0000 (7)0.0007 (7)0.0006 (7)
N20.0182 (8)0.0172 (8)0.0178 (8)0.0001 (6)0.0024 (6)0.0005 (7)
C10.0190 (10)0.0206 (9)0.0217 (11)0.0005 (7)0.0031 (8)0.0039 (8)
C20.0204 (9)0.0210 (9)0.0222 (10)0.0015 (8)0.0014 (8)0.0014 (9)
C30.0233 (10)0.0163 (9)0.0159 (9)0.0013 (7)0.0029 (7)0.0011 (8)
C40.0234 (10)0.0186 (9)0.0170 (9)0.0021 (7)0.0009 (8)0.0006 (8)
C50.0211 (9)0.0148 (9)0.0150 (9)0.0005 (7)0.0013 (7)0.0003 (7)
C60.0288 (11)0.0200 (10)0.0196 (10)0.0007 (8)0.0037 (8)0.0039 (8)
C70.0197 (9)0.0168 (8)0.0169 (10)0.0018 (7)0.0016 (7)0.0009 (8)
C80.0184 (9)0.0165 (8)0.0156 (10)0.0020 (7)0.0023 (7)0.0006 (7)
C90.0199 (10)0.0195 (9)0.0222 (10)0.0016 (7)0.0009 (8)0.0015 (8)
C100.0190 (9)0.0224 (10)0.0281 (11)0.0001 (8)0.0034 (8)0.0007 (9)
C110.0268 (10)0.0183 (9)0.0217 (11)0.0008 (8)0.0081 (8)0.0008 (8)
C120.0248 (10)0.0209 (10)0.0158 (10)0.0022 (8)0.0030 (8)0.0014 (8)
C130.0195 (9)0.0183 (8)0.0164 (10)0.0012 (7)0.0014 (7)0.0025 (8)
C140.0349 (12)0.0318 (12)0.0202 (11)0.0005 (9)0.0005 (9)0.0069 (10)
Geometric parameters (Å, º) top
O1—C131.355 (2)C6—H6C0.9800
O1—H1010.87 (4)C7—C81.446 (3)
N1—C41.341 (3)C7—H7A0.9500
N1—C51.341 (3)C8—C91.401 (3)
N2—C71.294 (3)C8—C131.413 (3)
N2—C51.415 (2)C9—C101.379 (3)
C1—C21.387 (3)C9—H9A0.9500
C1—C51.395 (3)C10—C111.397 (3)
C1—H1A0.9500C10—H10A0.9500
C2—C31.397 (3)C11—C121.387 (3)
C2—H2A0.9500C11—H11A0.9500
C3—C41.393 (3)C12—C131.403 (3)
C3—C61.503 (3)C12—C141.503 (3)
C4—H4A0.9500C14—H14A0.9800
C6—H6A0.9800C14—H14B0.9800
C6—H6B0.9800C14—H14C0.9800
C13—O1—H101110 (2)C8—C7—H7A119.1
C4—N1—C5117.50 (17)C9—C8—C13118.92 (17)
C7—N2—C5119.12 (17)C9—C8—C7119.61 (18)
C2—C1—C5118.93 (19)C13—C8—C7121.47 (17)
C2—C1—H1A120.5C10—C9—C8120.8 (2)
C5—C1—H1A120.5C10—C9—H9A119.6
C1—C2—C3119.62 (18)C8—C9—H9A119.6
C1—C2—H2A120.2C9—C10—C11119.32 (19)
C3—C2—H2A120.2C9—C10—H10A120.3
C4—C3—C2116.74 (18)C11—C10—H10A120.3
C4—C3—C6121.49 (18)C12—C11—C10121.93 (19)
C2—C3—C6121.77 (18)C12—C11—H11A119.0
N1—C4—C3124.66 (19)C10—C11—H11A119.0
N1—C4—H4A117.7C11—C12—C13118.30 (19)
C3—C4—H4A117.7C11—C12—C14122.09 (19)
N1—C5—C1122.52 (18)C13—C12—C14119.61 (19)
N1—C5—N2119.71 (17)O1—C13—C12118.38 (18)
C1—C5—N2117.77 (18)O1—C13—C8120.94 (17)
C3—C6—H6A109.5C12—C13—C8120.67 (17)
C3—C6—H6B109.5C12—C14—H14A109.5
H6A—C6—H6B109.5C12—C14—H14B109.5
C3—C6—H6C109.5H14A—C14—H14B109.5
H6A—C6—H6C109.5C12—C14—H14C109.5
H6B—C6—H6C109.5H14A—C14—H14C109.5
N2—C7—C8121.73 (18)H14B—C14—H14C109.5
N2—C7—H7A119.1
C5—C1—C2—C30.9 (3)C13—C8—C9—C100.4 (3)
C1—C2—C3—C40.2 (3)C7—C8—C9—C10179.86 (18)
C1—C2—C3—C6179.50 (18)C8—C9—C10—C110.5 (3)
C5—N1—C4—C30.2 (3)C9—C10—C11—C120.2 (3)
C2—C3—C4—N10.8 (3)C10—C11—C12—C130.2 (3)
C6—C3—C4—N1178.89 (19)C10—C11—C12—C14179.8 (2)
C4—N1—C5—C11.0 (3)C11—C12—C13—O1179.71 (18)
C4—N1—C5—N2179.48 (17)C14—C12—C13—O10.3 (3)
C2—C1—C5—N11.6 (3)C11—C12—C13—C80.3 (3)
C2—C1—C5—N2178.90 (18)C14—C12—C13—C8179.73 (18)
C7—N2—C5—N16.5 (3)C9—C8—C13—O1179.42 (17)
C7—N2—C5—C1174.01 (18)C7—C8—C13—O10.3 (3)
C5—N2—C7—C8179.94 (17)C9—C8—C13—C120.0 (3)
N2—C7—C8—C9179.30 (18)C7—C8—C13—C12179.77 (18)
N2—C7—C8—C130.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···N20.87 (3)1.82 (3)2.590 (2)146 (3)
C2—H2A···O1i0.952.523.322 (3)142
Symmetry code: (i) x+3/2, y+1, z1/2.
 

Acknowledgements

The research was supported financially by the RU grant 1001/PKIMIA/811269 from University Sains Malaysia. The authors wish to thank Universiti Sains Malaysia and The World Academy of Science for (TWAS-USM) fellowship to Md. Azharul Arafath. Md. Azharul Arafath also wishes to acknowledge Shahjalal University of Science and Technology, Sylhet, Bangladesh for study leave.

Funding information

Funding for this research was provided by: University Sains Malaysia (award No. RU grant 1001/PKIMIA/811269); The World Academy of Science

References

First citationAdam, F., Arafath, M. A., Rosenani, A. H. & Razali, M. R. (2015). Acta Cryst. E71, o971–o972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds