organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl (2E)-3-di­methyl­amino-2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)prop-2-enoate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: lahmidi_sanae@yahoo.fr

Edited by H. Ishida, Okayama University, Japan (Received 25 November 2016; accepted 5 December 2016; online 13 December 2016)

In the title mol­ecule, C13H17N5O2, the triazolo­pyrimidine ring system and the (dimethyamino)­acrylate unit are nearly perpendicular to each other, subtending a dihedral angle of 78.55 (6)°. In the crystal, mol­ecules are linked into a C(6) chain along the b-axis direction via C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Triazolo­pyrimidine derivatives possess a wide variety of inter­esting biological activities such as anti-tumor (Hiasa et al., 1982[Hiasa, Y., Ohshima, M., Kitahori, Y., Yuasa, T., Fujita, T. & Iwata, C. (1982). Carcinogenesis, 3, 381-384.]), anti-inflammatory (Ashour et al., 2013[Ashour, H., Shaaban, O., Rizk, O. & El-Ashmawy, I. (2013). Eur. J. Med. Chem. 62, 341-351.]) and inhibition of KDR kinase (Fraley et al., 2002[Fraley, M., Hoffman, W., Rubino, R., Hungate, R. W., Tebben, A. J., Rutledge, R. Z., McFall, R. C., Huckle, W. R., Kendall, R. L., Coll, K. E. & Thomas, K. A. (2002). Bioorg. Med. Chem. Lett. 12, 2767-2770.]). They have also proved to be promising anti­cancer agents (Lauria et al., 2013[Lauria, A., Abbate, I., Patella, C., Martorana, A., Dattolo, G. & Almerico, A. M. (2013). Eur. J. Med. Chem. 62, 416-424.]). Formamide acetals are useful reagents in the synthesis of enamino­nes; these compounds are found to be useful precursors for the synthesis of several heterocyclic compounds (Abdulla & Brinkmeyer, 1979[Abdulla, R. F. & Brinkmeyer, R. S. (1979). Tetrahedron, 35, 1675-1735.]). The present work is a continuation of our work on triazolo­pyrimidine derivatives (Elotmani et al., 2002[Elotmani, B., El Mahi, M. & Essassi, E. M. (2002). C. R. Chim. 5, 517-523.]).

In the crystal of the title compound (Fig. 1[link]), the mol­ecules are linked into a C(6) chain along the b-axis direction via C—H⋯O hydrogen bonds (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.36 3.2461 (19) 159
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the a axis, with C—H⋯O hydrogen bonds shown as dotted lines. H atoms not involved in the hydrogen bonds have been omitted.

Synthesis and crystallization

A mixture of ethyl 2-(5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)acetate (1 g, 4,5 mmol) and N,N-di­methyl­formamide diethyl acetal (DMF/DEA) (0.94 ml, 5.4 mmol) was heated to 423 K in solvent-free conditions until completion (TLC). The reaction was cooled to room temperature and, after addition ethanol to the reaction, the solid obtained was purified by column chromatography on silica gel with ethyl acetate–hexane (4:1) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (yield 67%, m.p. 453–455 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The appearance of the displacement ellipsoids for the ester group (atoms C9 and C10) is suggestive of a degree of disorder but this was not sufficiently severe as to produce resolved sites for these carbon atoms.

Table 2
Experimental details

Crystal data
Chemical formula C13H17N5O2
Mr 275.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 7.1482 (15), 10.306 (2), 19.705 (4)
β (°) 99.711 (3)
V3) 1430.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 26739, 3733, 1821
Rint 0.051
(sin θ/λ)max−1) 0.679
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.145, 0.87
No. of reflections 3733
No. of parameters 184
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl (2E)-3-dimethylamino-2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)prop-2-enoate top
Crystal data top
C13H17N5O2F(000) = 584
Mr = 275.32Dx = 1.278 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.1482 (15) ÅCell parameters from 7291 reflections
b = 10.306 (2) Åθ = 2.9–28.7°
c = 19.705 (4) ŵ = 0.09 mm1
β = 99.711 (3)°T = 298 K
V = 1430.9 (5) Å3Column, colourless
Z = 40.30 × 0.15 × 0.14 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3733 independent reflections
Radiation source: fine-focus sealed tube1821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.3333 pixels mm-1θmax = 28.8°, θmin = 2.1°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1313
Tmin = 0.84, Tmax = 0.99l = 2626
26739 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0857P)2]
where P = (Fo2 + 2Fc2)/3
3733 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 25 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3200 (2)0.87934 (14)0.75398 (7)0.0827 (4)
O20.14311 (19)0.81319 (12)0.65471 (6)0.0724 (4)
N10.25961 (18)0.52376 (13)0.49261 (6)0.0505 (4)
N20.3453 (2)0.72746 (15)0.44616 (6)0.0594 (4)
N30.4499 (2)0.82908 (12)0.54873 (7)0.0562 (4)
N40.38948 (17)0.70581 (11)0.55915 (6)0.0423 (3)
N50.7588 (2)0.63725 (14)0.73030 (6)0.0574 (4)
C10.3848 (2)0.64585 (14)0.62119 (7)0.0426 (4)
C20.3167 (2)0.52272 (15)0.61611 (8)0.0475 (4)
H20.31090.47600.65610.057*
C30.2544 (2)0.46373 (15)0.55158 (8)0.0476 (4)
C40.3276 (2)0.64584 (15)0.49726 (7)0.0453 (4)
C50.4170 (3)0.83295 (18)0.48033 (9)0.0627 (5)
H50.44330.90730.45690.075*
C60.1744 (3)0.32954 (16)0.54899 (10)0.0674 (5)
H6A0.12170.30790.50230.101*
H6B0.07670.32530.57690.101*
H6C0.27330.26910.56610.101*
C70.4400 (2)0.71961 (14)0.68543 (7)0.0482 (4)
C80.3019 (3)0.81162 (16)0.70288 (9)0.0590 (5)
C90.0033 (3)0.9128 (2)0.65923 (13)0.0949 (7)
H9A0.12290.87600.64710.114*
H9B0.01760.94390.70630.114*
C100.0219 (5)1.0159 (3)0.61586 (16)0.1600 (15)
H10A0.07271.08010.62010.240*
H10B0.14581.05340.62830.240*
H10C0.00550.98560.56920.240*
C110.6029 (3)0.70522 (15)0.73224 (8)0.0511 (4)
H110.60440.75160.77280.061*
C120.9119 (3)0.6354 (2)0.78962 (9)0.0810 (6)
H12A1.02720.66520.77590.122*
H12B0.92940.54840.80700.122*
H12C0.87980.69120.82490.122*
C130.7933 (3)0.5638 (2)0.67024 (9)0.0715 (6)
H13A0.74840.61250.62920.107*
H13B0.72730.48240.66850.107*
H13C0.92690.54820.67360.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1003 (11)0.0832 (9)0.0686 (9)0.0129 (8)0.0252 (8)0.0312 (7)
O20.0806 (9)0.0744 (8)0.0631 (8)0.0308 (7)0.0152 (7)0.0034 (6)
N10.0498 (8)0.0552 (8)0.0457 (8)0.0006 (6)0.0061 (6)0.0050 (6)
N20.0736 (10)0.0670 (9)0.0373 (8)0.0023 (8)0.0089 (7)0.0082 (7)
N30.0760 (10)0.0442 (8)0.0502 (8)0.0021 (7)0.0160 (7)0.0060 (6)
N40.0533 (8)0.0402 (7)0.0347 (7)0.0023 (6)0.0111 (6)0.0016 (5)
N50.0630 (9)0.0706 (9)0.0368 (8)0.0077 (8)0.0030 (6)0.0103 (6)
C10.0504 (9)0.0430 (9)0.0360 (8)0.0070 (7)0.0120 (7)0.0022 (6)
C20.0549 (10)0.0452 (9)0.0442 (9)0.0038 (7)0.0137 (7)0.0059 (7)
C30.0431 (9)0.0463 (9)0.0538 (10)0.0036 (7)0.0087 (7)0.0035 (7)
C40.0475 (9)0.0519 (9)0.0364 (8)0.0046 (7)0.0065 (7)0.0023 (7)
C50.0809 (13)0.0601 (11)0.0483 (11)0.0024 (10)0.0142 (9)0.0141 (9)
C60.0628 (12)0.0512 (10)0.0869 (14)0.0056 (9)0.0090 (10)0.0038 (9)
C70.0667 (11)0.0450 (9)0.0351 (8)0.0031 (8)0.0149 (8)0.0011 (6)
C80.0789 (13)0.0536 (10)0.0495 (10)0.0067 (9)0.0251 (9)0.0031 (8)
C90.0960 (18)0.0880 (16)0.1076 (19)0.0383 (14)0.0372 (14)0.0040 (14)
C100.181 (3)0.126 (3)0.189 (3)0.084 (2)0.076 (3)0.070 (2)
C110.0699 (12)0.0492 (9)0.0360 (8)0.0026 (8)0.0139 (8)0.0061 (7)
C120.0778 (14)0.1117 (17)0.0483 (11)0.0085 (12)0.0044 (10)0.0136 (10)
C130.0686 (13)0.0923 (14)0.0525 (11)0.0161 (11)0.0066 (9)0.0211 (10)
Geometric parameters (Å, º) top
O1—C81.2140 (19)C5—H50.9300
O2—C81.351 (2)C6—H6A0.9600
O2—C91.446 (2)C6—H6B0.9600
N1—C31.3226 (19)C6—H6C0.9600
N1—C41.346 (2)C7—C111.366 (2)
N2—C41.3343 (19)C7—C81.451 (2)
N2—C51.335 (2)C9—C101.384 (3)
N3—C51.329 (2)C9—H9A0.9700
N3—N41.3686 (17)C9—H9B0.9700
N4—C41.3722 (18)C10—H10A0.9600
N4—C11.3753 (17)C10—H10B0.9600
N5—C111.322 (2)C10—H10C0.9600
N5—C121.461 (2)C11—H110.9300
N5—C131.461 (2)C12—H12A0.9600
C1—C21.357 (2)C12—H12B0.9600
C1—C71.472 (2)C12—H12C0.9600
C2—C31.412 (2)C13—H13A0.9600
C2—H20.9300C13—H13B0.9600
C3—C61.494 (2)C13—H13C0.9600
C8—O2—C9118.22 (15)C11—C7—C1126.79 (14)
C3—N1—C4116.15 (13)C8—C7—C1116.53 (15)
C4—N2—C5102.12 (13)O1—C8—O2122.34 (17)
C5—N3—N4100.00 (13)O1—C8—C7126.19 (18)
N3—N4—C4110.32 (12)O2—C8—C7111.46 (14)
N3—N4—C1127.31 (12)C10—C9—O2111.6 (2)
C4—N4—C1122.36 (13)C10—C9—H9A109.3
C11—N5—C12120.37 (14)O2—C9—H9A109.3
C11—N5—C13123.80 (14)C10—C9—H9B109.3
C12—N5—C13115.81 (15)O2—C9—H9B109.3
C2—C1—N4114.63 (13)H9A—C9—H9B108.0
C2—C1—C7125.96 (13)C9—C10—H10A109.5
N4—C1—C7119.28 (13)C9—C10—H10B109.5
C1—C2—C3121.60 (14)H10A—C10—H10B109.5
C1—C2—H2119.2C9—C10—H10C109.5
C3—C2—H2119.2H10A—C10—H10C109.5
N1—C3—C2122.58 (15)H10B—C10—H10C109.5
N1—C3—C6118.06 (15)N5—C11—C7131.64 (15)
C2—C3—C6119.35 (15)N5—C11—H11114.2
N2—C4—N1128.08 (14)C7—C11—H11114.2
N2—C4—N4109.24 (14)N5—C12—H12A109.5
N1—C4—N4122.68 (13)N5—C12—H12B109.5
N3—C5—N2118.31 (15)H12A—C12—H12B109.5
N3—C5—H5120.8N5—C12—H12C109.5
N2—C5—H5120.8H12A—C12—H12C109.5
C3—C6—H6A109.5H12B—C12—H12C109.5
C3—C6—H6B109.5N5—C13—H13A109.5
H6A—C6—H6B109.5N5—C13—H13B109.5
C3—C6—H6C109.5H13A—C13—H13B109.5
H6A—C6—H6C109.5N5—C13—H13C109.5
H6B—C6—H6C109.5H13A—C13—H13C109.5
C11—C7—C8116.56 (14)H13B—C13—H13C109.5
C5—N3—N4—C40.53 (16)C1—N4—C4—N10.6 (2)
C5—N3—N4—C1178.47 (14)N4—N3—C5—N20.7 (2)
N3—N4—C1—C2179.68 (14)C4—N2—C5—N30.5 (2)
C4—N4—C1—C20.8 (2)C2—C1—C7—C1176.7 (2)
N3—N4—C1—C73.5 (2)N4—C1—C7—C11107.55 (18)
C4—N4—C1—C7175.41 (14)C2—C1—C7—C899.24 (19)
N4—C1—C2—C30.7 (2)N4—C1—C7—C876.51 (19)
C7—C1—C2—C3175.20 (15)C9—O2—C8—O19.6 (3)
C4—N1—C3—C20.3 (2)C9—O2—C8—C7171.17 (15)
C4—N1—C3—C6178.14 (14)C11—C7—C8—O12.3 (3)
C1—C2—C3—N10.5 (2)C1—C7—C8—O1178.67 (16)
C1—C2—C3—C6177.89 (15)C11—C7—C8—O2176.93 (14)
C5—N2—C4—N1179.27 (16)C1—C7—C8—O20.6 (2)
C5—N2—C4—N40.10 (18)C8—O2—C9—C1097.9 (3)
C3—N1—C4—N2178.96 (15)C12—N5—C11—C7177.77 (18)
C3—N1—C4—N40.3 (2)C13—N5—C11—C74.1 (3)
N3—N4—C4—N20.28 (17)C8—C7—C11—N5175.16 (17)
C1—N4—C4—N2178.77 (13)C1—C7—C11—N58.9 (3)
N3—N4—C4—N1179.69 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.363.2461 (19)159
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbdulla, R. F. & Brinkmeyer, R. S. (1979). Tetrahedron, 35, 1675–1735.  CrossRef CAS Google Scholar
First citationAshour, H., Shaaban, O., Rizk, O. & El-Ashmawy, I. (2013). Eur. J. Med. Chem. 62, 341–351.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElotmani, B., El Mahi, M. & Essassi, E. M. (2002). C. R. Chim. 5, 517–523.  CrossRef CAS Google Scholar
First citationFraley, M., Hoffman, W., Rubino, R., Hungate, R. W., Tebben, A. J., Rutledge, R. Z., McFall, R. C., Huckle, W. R., Kendall, R. L., Coll, K. E. & Thomas, K. A. (2002). Bioorg. Med. Chem. Lett. 12, 2767–2770.  CrossRef CAS Google Scholar
First citationHiasa, Y., Ohshima, M., Kitahori, Y., Yuasa, T., Fujita, T. & Iwata, C. (1982). Carcinogenesis, 3, 381–384.  CrossRef CAS Google Scholar
First citationLauria, A., Abbate, I., Patella, C., Martorana, A., Dattolo, G. & Almerico, A. M. (2013). Eur. J. Med. Chem. 62, 416–424.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds