organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-2-[(Pyren-1-yl­imino)­meth­yl]quinolin-8-ol

aDepartment of Environmental Science, University of Kalyani, Nadia Kalyani 741 235, West Bengal, India, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 30 March 2016; accepted 31 March 2016; online 8 April 2016)

In the title compound, C26H16N2O, the pyrene ring system (r.m.s. deviation = 0.021 Å) is inclined to the planar quinoline ring system (r.m.s. deviation = 0.017 Å) by 30.62 (5)°, and the conformation about the bridging N=C bond is E. There is an intra­molecular O—H⋯N hydrogen bond with an S(5) ring motif present. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(14) ring motif, flanked by two R21(7) ring motifs. The dimers stack along the b axis with slipped parallel ππ inter­actions involving neighbouring mol­ecules; the shortest ππ inter­action involves aromatic rings of the quinoline ring system [inter-centroid distance = 3.6267 (11) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound has recently been shown to act as a reversible pyrene-based turn-on luminescent chemosensor for the selective detection of Fe3+ in an aqueous environment (Mukherjee & Talukder, 2016[Mukherjee, S. & Talukder, S. (2016). J. Fluoresc. 172, 124-130.]).

In the title compound, Fig. 1[link], the pyrene ring system (C1–C16) is planar (r.m.s. deviation = 0.021 Å) and it is inclined to the planar quinoline ring system (N2/C18–C26; r.m.s. deviation = 0.017 Å) by 30.62 (5)°. The conformation about the N1=C17 bond is E and there is an intra­molecular O—H⋯N hydrogen bond with an S(5) ring motif present (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.91 (2) 2.03 (2) 2.666 (2) 125 (2)
C2—H2⋯O1i 0.94 2.52 3.422 (2) 161
C17—H17⋯O1i 0.94 2.57 3.436 (2) 153
Symmetry code: (i) -x, -y-1, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 1[link]).

In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](14) ring motif, flanked by two [R_{2}^{1}](7) ring motifs (Fig. 2[link] and Table 1[link]). The dimers stack along the b axis with slipped parallel ππ inter­actions involving neighbouring mol­ecules (Fig. 3[link]); the shortest ππ inter­action involves aromatic rings (N2/C18–C21/C26) and (C21–C26) of the quinoline ring system [Cg1⋯Cg6i = 3.6267 (11) Å, inter­planar distance = 3.466 (1) Å, slippage = 1.078 Å, symmetry code: (i) x, y + 1, z; where Cg1 and Cg6 are the centroids of rings (N2/C18–C21/C26) and (C21–C26), respectively].

[Figure 2]
Figure 2
A view of the inversion dimer formed by pairs of C—H⋯O hydrogen bonds (dashed lines; see Table 1[link]). H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as a dashed lines (see Table 1[link]), and H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized by a 1:1 condensation of 8-hy­droxy­quinoline-2-carboxaldehyde and 1-amino­pyrene in methanol, and characterized by 1H NMR, 13C NMR, FTIR and UV–Vis spectroscopic studies as reported on recently (Mukherjee & Talukder, 2016[Mukherjee, S. & Talukder, S. (2016). J. Fluoresc. 172, 124-130.]). Brown rod-like crystals were obtained by slow evaporation of a solution in methanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H16N2O
Mr 372.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 203
a, b, c (Å) 15.9840 (19), 4.8453 (3), 23.071 (3)
β (°) 93.835 (9)
V3) 1782.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.27 × 0.10
 
Data collection
Diffractometer Stoe IPDS 2
No. of measured, independent and observed [I > 2σ(I)] reflections 17513, 3558, 2092
Rint 0.075
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 0.88
No. of reflections 3558
No. of parameters 265
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.12
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

The title compound was synthesized by a 1:1 condensation of 8-hydroxyquinoline-2-carboxaldehyde and 1-aminopyrene in methanol, and characterized by 1H NMR, 13C NMR, FTIR and UV–Vis spectroscopic studies as reported on recently (Mukherjee & Talukder, 2016). Brown rod-like crystals were obtained by slow evaporation of a solution in methanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound has recently been shown to act as a reversible pyrene-based turn-on luminescent chemosensor for the selective detection of Fe3+ in an aqueous environment (Mukherjee & Talukder, 2016).

In the title compound, Fig. 1, the pyrene ring system (C1–C16) is planar (r.m.s. deviation = 0.021 Å) and it is inclined to the planar quinoline ring system (N2/C18–C26; r.m.s. deviation = 0.017 Å) by 30.62 (5)°. The conformation about the N1C17 bond is E and there is an intramolecular O—H···N hydrogen bond with an S(5) ring motif present (Fig. 1 and Table 1).

In the crystal, molecules are linked by pairs of C—H···O hydrogen bonds, forming inversion dimers with an R22(14) ring motif, flanked by two R21(7) ring motifs (Fig. 2 and Table 1). The dimers stack up the b axis with slipped parallel ππ interactions involving neighbouring molecules (Fig. 3); the shortest ππ interaction involves aromatic rings (N2/C18–C21/C26) and (C21–C26) of the quinoline ring system [Cg1···Cg6i = 3.6267 (11) Å, interplanar distance = 3.466 (1) Å, slippage = 1.078 Å, symmetry code: (i) x, y + 1, z; where Cg1 and Cg6 are the centroids of rings (N2/C18–C21/C26) and (C21–C26), respectively].

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular O—H···N hydrogen bond is shown as a dashed line (see Table 1).
[Figure 2] Fig. 2. A view of the inversion dimer formed by pairs of C—H···O hydrogen bonds (dashed lines; see Table 1). H atoms not involved in these interactions have been omitted for clarity.
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as a dashed lines (see Table 1), and H atoms not involved in these interactions have been omitted for clarity.
(E)-2-[(Pyren-1-ylimino)methyl]quinolin-8-ol top
Crystal data top
C26H16N2OF(000) = 776
Mr = 372.41Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.9840 (19) ÅCell parameters from 7937 reflections
b = 4.8453 (3) Åθ = 1.3–26.7°
c = 23.071 (3) ŵ = 0.09 mm1
β = 93.835 (9)°T = 203 K
V = 1782.8 (3) Å3Rod, brown
Z = 40.50 × 0.27 × 0.10 mm
Data collection top
Stoe IPDS 2
diffractometer
2092 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.075
Plane graphite monochromatorθmax = 26.3°, θmin = 1.3°
φ + ω scansh = 1917
17513 measured reflectionsk = 65
3558 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
3558 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C26H16N2OV = 1782.8 (3) Å3
Mr = 372.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.9840 (19) ŵ = 0.09 mm1
b = 4.8453 (3) ÅT = 203 K
c = 23.071 (3) Å0.50 × 0.27 × 0.10 mm
β = 93.835 (9)°
Data collection top
Stoe IPDS 2
diffractometer
2092 reflections with I > 2σ(I)
17513 measured reflectionsRint = 0.075
3558 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.16 e Å3
3558 reflectionsΔρmin = 0.12 e Å3
265 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00534 (9)0.8729 (3)0.43353 (6)0.0610 (4)
H1O0.0175 (14)0.737 (4)0.4572 (9)0.091*
N10.24740 (9)0.0215 (3)0.50451 (6)0.0396 (4)
N20.11816 (9)0.5020 (3)0.43966 (6)0.0383 (3)
C10.25103 (11)0.1993 (3)0.55347 (7)0.0371 (4)
C20.18087 (11)0.2776 (4)0.58217 (7)0.0416 (4)
H20.12840.19900.57120.050*
C30.18745 (11)0.4697 (4)0.62665 (7)0.0422 (4)
H30.13930.51830.64560.051*
C40.26386 (11)0.5926 (3)0.64404 (7)0.0385 (4)
C50.27221 (12)0.8001 (4)0.68850 (7)0.0449 (5)
H50.22480.85280.70780.054*
C60.34677 (13)0.9210 (4)0.70319 (7)0.0474 (5)
H60.35001.05700.73230.057*
C70.42106 (12)0.8468 (3)0.67542 (7)0.0399 (4)
C80.49893 (13)0.9696 (4)0.68975 (8)0.0494 (5)
H80.50341.10740.71850.059*
C90.56911 (13)0.8912 (4)0.66230 (8)0.0509 (5)
H90.62100.97550.67260.061*
C100.56414 (12)0.6905 (4)0.61980 (8)0.0473 (5)
H100.61260.64070.60140.057*
C110.48832 (11)0.5606 (3)0.60381 (7)0.0391 (4)
C120.47988 (12)0.3507 (4)0.56009 (7)0.0429 (4)
H120.52790.29120.54230.051*
C130.40516 (11)0.2356 (4)0.54364 (7)0.0408 (4)
H130.40220.10140.51410.049*
C140.33014 (11)0.3141 (3)0.57034 (7)0.0351 (4)
C150.33661 (11)0.5137 (3)0.61542 (7)0.0355 (4)
C160.41497 (11)0.6392 (3)0.63201 (7)0.0366 (4)
C170.18879 (11)0.1557 (3)0.49708 (7)0.0403 (4)
H170.15040.18020.52580.048*
C180.18104 (11)0.3225 (3)0.44361 (7)0.0362 (4)
C190.23649 (11)0.2867 (4)0.39939 (7)0.0417 (4)
H190.28090.15990.40430.050*
C200.22571 (12)0.4362 (4)0.34949 (7)0.0436 (4)
H200.26240.41210.31970.052*
C210.15907 (11)0.6278 (3)0.34257 (7)0.0387 (4)
C220.14091 (12)0.7905 (4)0.29233 (7)0.0464 (5)
H220.17440.77610.26050.056*
C230.07445 (12)0.9689 (4)0.29029 (8)0.0474 (5)
H230.06251.07440.25660.057*
C240.02363 (12)0.9985 (4)0.33712 (8)0.0487 (5)
H240.02171.12270.33480.058*
C250.04069 (11)0.8446 (4)0.38630 (8)0.0430 (4)
C260.10779 (11)0.6530 (3)0.38955 (7)0.0377 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0568 (9)0.0638 (10)0.0638 (9)0.0192 (8)0.0142 (7)0.0138 (7)
N10.0470 (9)0.0346 (8)0.0369 (8)0.0014 (7)0.0005 (7)0.0030 (6)
N20.0409 (9)0.0340 (8)0.0397 (8)0.0012 (7)0.0001 (6)0.0018 (6)
C10.0468 (11)0.0312 (9)0.0331 (9)0.0013 (8)0.0009 (8)0.0000 (7)
C20.0454 (11)0.0398 (10)0.0396 (9)0.0016 (8)0.0025 (8)0.0037 (8)
C30.0432 (11)0.0421 (10)0.0417 (10)0.0037 (9)0.0067 (8)0.0007 (8)
C40.0491 (11)0.0332 (9)0.0335 (9)0.0016 (8)0.0050 (8)0.0010 (7)
C50.0566 (12)0.0414 (10)0.0374 (9)0.0035 (9)0.0071 (8)0.0050 (8)
C60.0683 (14)0.0394 (10)0.0344 (9)0.0015 (10)0.0023 (9)0.0049 (8)
C70.0522 (11)0.0339 (10)0.0328 (9)0.0033 (8)0.0025 (8)0.0043 (7)
C80.0660 (14)0.0415 (11)0.0393 (10)0.0100 (10)0.0074 (10)0.0034 (8)
C90.0517 (12)0.0491 (12)0.0502 (11)0.0115 (10)0.0092 (9)0.0093 (9)
C100.0460 (11)0.0452 (11)0.0498 (10)0.0009 (9)0.0023 (8)0.0091 (9)
C110.0439 (11)0.0337 (9)0.0390 (9)0.0014 (8)0.0022 (8)0.0080 (8)
C120.0469 (11)0.0399 (10)0.0420 (10)0.0061 (9)0.0045 (8)0.0047 (8)
C130.0526 (12)0.0335 (9)0.0362 (9)0.0022 (8)0.0036 (8)0.0020 (7)
C140.0448 (11)0.0287 (9)0.0318 (8)0.0016 (8)0.0025 (7)0.0039 (7)
C150.0462 (11)0.0280 (9)0.0319 (8)0.0022 (8)0.0004 (7)0.0043 (7)
C160.0480 (11)0.0285 (9)0.0326 (8)0.0005 (8)0.0015 (7)0.0074 (7)
C170.0472 (11)0.0360 (10)0.0375 (9)0.0005 (8)0.0013 (8)0.0014 (8)
C180.0390 (10)0.0308 (9)0.0381 (9)0.0023 (8)0.0022 (7)0.0005 (7)
C190.0443 (11)0.0410 (10)0.0395 (9)0.0057 (8)0.0004 (8)0.0014 (8)
C200.0498 (11)0.0431 (10)0.0382 (10)0.0040 (9)0.0056 (8)0.0002 (8)
C210.0455 (11)0.0334 (9)0.0364 (9)0.0048 (8)0.0038 (8)0.0008 (7)
C220.0602 (13)0.0410 (10)0.0377 (10)0.0006 (9)0.0010 (9)0.0001 (8)
C230.0592 (13)0.0406 (10)0.0409 (10)0.0005 (9)0.0087 (9)0.0063 (8)
C240.0494 (12)0.0435 (11)0.0521 (11)0.0056 (9)0.0049 (9)0.0048 (9)
C250.0416 (11)0.0414 (11)0.0458 (10)0.0001 (9)0.0016 (8)0.0015 (8)
C260.0419 (10)0.0306 (9)0.0398 (9)0.0043 (8)0.0046 (8)0.0003 (7)
Geometric parameters (Å, º) top
O1—C251.362 (2)C10—H100.9400
O1—H1O0.914 (16)C11—C161.430 (2)
N1—C171.274 (2)C11—C121.433 (2)
N1—C11.418 (2)C12—C131.349 (2)
N2—C181.328 (2)C12—H120.9400
N2—C261.369 (2)C13—C141.436 (2)
C1—C21.393 (2)C13—H130.9400
C1—C141.412 (2)C14—C151.419 (2)
C2—C31.384 (2)C15—C161.422 (2)
C2—H20.9400C17—C181.473 (2)
C3—C41.393 (2)C17—H170.9400
C3—H30.9400C18—C191.406 (2)
C4—C151.427 (2)C19—C201.361 (2)
C4—C51.436 (2)C19—H190.9400
C5—C61.351 (3)C20—C211.414 (2)
C5—H50.9400C20—H200.9400
C6—C71.432 (2)C21—C261.407 (2)
C6—H60.9400C21—C221.416 (2)
C7—C81.399 (2)C22—C231.368 (3)
C7—C161.418 (2)C22—H220.9400
C8—C91.378 (3)C23—C241.402 (2)
C8—H80.9400C23—H230.9400
C9—C101.379 (3)C24—C251.370 (2)
C9—H90.9400C24—H240.9400
C10—C111.393 (2)C25—C261.416 (2)
C25—O1—H1O100.9 (15)C14—C13—H13119.4
C17—N1—C1120.46 (15)C1—C14—C15119.39 (15)
C18—N2—C26117.16 (14)C1—C14—C13122.38 (15)
C2—C1—C14119.75 (15)C15—C14—C13118.23 (16)
C2—C1—N1123.56 (16)C14—C15—C16120.59 (16)
C14—C1—N1116.54 (15)C14—C15—C4120.00 (16)
C3—C2—C1120.80 (17)C16—C15—C4119.41 (15)
C3—C2—H2119.6C7—C16—C15120.75 (16)
C1—C2—H2119.6C7—C16—C11119.38 (16)
C2—C3—C4121.51 (17)C15—C16—C11119.85 (15)
C2—C3—H3119.2N1—C17—C18120.16 (16)
C4—C3—H3119.2N1—C17—H17119.9
C3—C4—C15118.53 (15)C18—C17—H17119.9
C3—C4—C5122.87 (16)N2—C18—C19122.82 (15)
C15—C4—C5118.58 (17)N2—C18—C17115.95 (15)
C6—C5—C4121.42 (17)C19—C18—C17121.22 (16)
C6—C5—H5119.3C20—C19—C18119.85 (17)
C4—C5—H5119.3C20—C19—H19120.1
C5—C6—C7121.52 (17)C18—C19—H19120.1
C5—C6—H6119.2C19—C20—C21119.79 (16)
C7—C6—H6119.2C19—C20—H20120.1
C8—C7—C16119.11 (17)C21—C20—H20120.1
C8—C7—C6122.58 (17)C26—C21—C20116.30 (15)
C16—C7—C6118.31 (17)C26—C21—C22118.96 (16)
C9—C8—C7120.85 (18)C20—C21—C22124.74 (16)
C9—C8—H8119.6C23—C22—C21119.76 (17)
C7—C8—H8119.6C23—C22—H22120.1
C8—C9—C10120.73 (18)C21—C22—H22120.1
C8—C9—H9119.6C22—C23—C24121.80 (17)
C10—C9—H9119.6C22—C23—H23119.1
C9—C10—C11120.96 (18)C24—C23—H23119.1
C9—C10—H10119.5C25—C24—C23119.28 (18)
C11—C10—H10119.5C25—C24—H24120.4
C10—C11—C16118.96 (17)C23—C24—H24120.4
C10—C11—C12123.13 (17)O1—C25—C24121.29 (17)
C16—C11—C12117.91 (16)O1—C25—C26118.13 (16)
C13—C12—C11122.10 (17)C24—C25—C26120.58 (17)
C13—C12—H12119.0N2—C26—C21124.07 (16)
C11—C12—H12119.0N2—C26—C25116.33 (15)
C12—C13—C14121.25 (16)C21—C26—C25119.60 (16)
C12—C13—H13119.4
C17—N1—C1—C226.9 (2)C8—C7—C16—C110.1 (2)
C17—N1—C1—C14157.61 (16)C6—C7—C16—C11179.74 (15)
C14—C1—C2—C30.8 (3)C14—C15—C16—C7177.43 (15)
N1—C1—C2—C3174.55 (16)C4—C15—C16—C71.8 (2)
C1—C2—C3—C40.4 (3)C14—C15—C16—C111.1 (2)
C2—C3—C4—C150.8 (2)C4—C15—C16—C11179.69 (14)
C2—C3—C4—C5177.58 (17)C10—C11—C16—C70.0 (2)
C3—C4—C5—C6178.05 (18)C12—C11—C16—C7179.86 (15)
C15—C4—C5—C60.4 (3)C10—C11—C16—C15178.57 (15)
C4—C5—C6—C70.4 (3)C12—C11—C16—C151.3 (2)
C5—C6—C7—C8179.80 (17)C1—N1—C17—C18174.56 (15)
C5—C6—C7—C160.6 (3)C26—N2—C18—C190.9 (2)
C16—C7—C8—C90.0 (2)C26—N2—C18—C17177.84 (15)
C6—C7—C8—C9179.57 (17)N1—C17—C18—N2179.95 (16)
C7—C8—C9—C100.3 (3)N1—C17—C18—C191.3 (3)
C8—C9—C10—C110.5 (3)N2—C18—C19—C201.3 (3)
C9—C10—C11—C160.3 (2)C17—C18—C19—C20177.40 (17)
C9—C10—C11—C12179.85 (17)C18—C19—C20—C210.4 (3)
C10—C11—C12—C13177.25 (17)C19—C20—C21—C260.8 (2)
C16—C11—C12—C132.6 (2)C19—C20—C21—C22178.81 (18)
C11—C12—C13—C141.5 (3)C26—C21—C22—C230.2 (3)
C2—C1—C14—C151.6 (2)C20—C21—C22—C23179.72 (18)
N1—C1—C14—C15174.06 (14)C21—C22—C23—C240.7 (3)
C2—C1—C14—C13178.08 (15)C22—C23—C24—C250.2 (3)
N1—C1—C14—C136.2 (2)C23—C24—C25—O1177.90 (17)
C12—C13—C14—C1179.23 (16)C23—C24—C25—C261.3 (3)
C12—C13—C14—C151.0 (2)C18—N2—C26—C210.4 (2)
C1—C14—C15—C16177.97 (15)C18—N2—C26—C25179.63 (15)
C13—C14—C15—C162.3 (2)C20—C21—C26—N21.2 (3)
C1—C14—C15—C41.2 (2)C22—C21—C26—N2178.43 (16)
C13—C14—C15—C4178.51 (15)C20—C21—C26—C25178.82 (16)
C3—C4—C15—C140.0 (2)C22—C21—C26—C251.6 (2)
C5—C4—C15—C14178.49 (15)O1—C25—C26—N22.9 (2)
C3—C4—C15—C16179.21 (15)C24—C25—C26—N2177.82 (17)
C5—C4—C15—C160.7 (2)O1—C25—C26—C21177.05 (16)
C8—C7—C16—C15178.69 (15)C24—C25—C26—C212.2 (3)
C6—C7—C16—C151.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.91 (2)2.03 (2)2.666 (2)125 (2)
C2—H2···O1i0.942.523.422 (2)161
C17—H17···O1i0.942.573.436 (2)153
Symmetry code: (i) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.914 (16)2.03 (2)2.666 (2)125.0 (18)
C2—H2···O1i0.942.523.422 (2)161
C17—H17···O1i0.942.573.436 (2)153
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC26H16N2O
Mr372.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)203
a, b, c (Å)15.9840 (19), 4.8453 (3), 23.071 (3)
β (°) 93.835 (9)
V3)1782.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.27 × 0.10
Data collection
DiffractometerStoe IPDS 2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17513, 3558, 2092
Rint0.075
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 0.88
No. of reflections3558
No. of parameters265
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.12

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS2014 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The University of Kalyani, and DST–FIST, DST–PURSE, New Delhi, are gratefully acknowledged for financial support, and instrumental and infrastructural facilities. HSE is grateful to the University of Neuchâtel for continued support.

References

First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, S. & Talukder, S. (2016). J. Fluoresc. 172, 124–130.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds