metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-chlorido-bis­­[(2,2′-bi­pyridine-κ2N,N′)chlorido(N,N-di­methyl­formamide-κO)nickel(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 5 February 2016; accepted 13 February 2016; online 20 February 2016)

The title compound, [Ni2Cl2(μ-Cl)2(C10H8N2)2(C3H7NO)2], exists as a centrosymmetric dimer of two octa­hedral nickel centers. In the crystal, two chloride ions bridge the two nickel centers with one terminal chloride ion bound to each nickel atom. Coupled with a chelating bi­pyridine ligand and an O-bound N,N-di­methyl­formamide solvent mol­ecule, each nickel center exhibits an slightly distorted octa­hedral coordination environment. The meridional chloride ions all sit in equatorial positions, with the bi­pyridine ligand occupying one equatorial and one axial position, and the N,N-di­methyl­formamide ligand occupying the final axial position. The 2,2′-bi­pyridine ligand binds to nickel in a near planar fashion, with the non-H atoms possessing a mean devation from planarity of 0.046 Å. No ππ inter­actions are observed in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The structure of the title compound possesses neutral (bipy)NiCl2(DMF) units which dimerize and are related by a crystallographic inversion center (Fig. 1[link]). Each octa­hedral NiII ion is surrounded by two nitro­gen atoms from the bi­pyridine ligand, three chlorine atoms (one terminal and two bridging) and a coordinated N,N-di­methyl­formamide mol­ecule. All three chlorine atoms sit on equatorial positions, while the axial positions are occupied by the DMF oxygen atom and a pyridyl nitro­gen atom. This is in contrast to the closely related aquo complex, where the bi­pyridine occupies two equatorial positions and the terminal chlorine sits in an axial site (Ikotun et al., 2007[Ikotun, O. F., Ouellette, W., Lloret, F., Julve, M. & Doyle, R. P. (2007). Eur. J. Inorg. Chem. pp. 2083-2088.]). The arrangement with a terminal equatorial chloride is observed in tridentate bi­pyridine derivatives (Chen et al., 2009[Chen, Y.-L., Li, B.-Z., Yang, P. & Wu, J.-Z. (2009). Acta Cryst. C65, m238-m240.]; Hirotsu et al., 2010[Hirotsu, M., Tsukahara, Y. & Kinoshita, I. (2010). Bull. Chem. Soc. Jpn, 83, 1058-1066.]). The Ni—Cl bond trans to the pyridine ring is significantly shorter [2.3971 (7) Å] than the Ni—Cl bond trans to the terminal Cl atom [2.5049 (7) Å], consistent with the trans influence. Packing of the crystal structure can be seen in Fig. 2[link]. No ππ inter­actions wer noted in the structure.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. The unlabeled atoms are generated by an inversion center. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres or arbitrary radius.
[Figure 2]
Figure 2
View of the mol­ecular packing of the title compound along the b axis.

Synthesis and crystallization

A mixture of NiCl2·6H2O, 2,2′-bi­pyridine and N,N-di­methyl­formamide was heated in a sealed thick-walled glass tube at 373 K for 48 h. Pale-green needle-shaped crystals suitable for a single-crystal diffraction study were isolated from the tube. The synthesis of closely related complexes is described by Cocker & Bachman (2004[Cocker, T. M. & Bachman, R. E. (2004). Mol. Cryst. Liq. Cryst. 408, 1-19.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Ni2Cl4(C10H8N2)2(C3H7NO)2]
Mr 717.78
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 120
a, b, c (Å) 11.9130 (9), 11.445 (1), 20.7458 (17)
V3) 2828.6 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.44
Crystal size (mm) 0.15 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.240, 0.384
No. of measured, independent and observed [I > 2σ(I)] reflections 12752, 2670, 2139
Rint 0.053
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.073, 1.04
No. of reflections 2670
No. of parameters 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.30
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Di-µ-chlorido-bis[(2,2'-bipyridine-κ2N,N')chlorido(N,N-dimethylformamide-κO)nickel(II)] top
Crystal data top
[Ni2Cl4(C10H8N2)2(C3H7NO)2]F(000) = 1472
Mr = 717.78Dx = 1.686 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 5383 reflections
a = 11.9130 (9) Åθ = 4.3–70.2°
b = 11.445 (1) ŵ = 5.44 mm1
c = 20.7458 (17) ÅT = 120 K
V = 2828.6 (4) Å3Plate, green
Z = 40.15 × 0.05 × 0.02 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2670 independent reflections
Radiation source: Cu2139 reflections with I > 2σ(I)
HELIOS MX monochromatorRint = 0.053
φ and ω scansθmax = 70.2°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1413
Tmin = 0.240, Tmax = 0.384k = 1311
12752 measured reflectionsl = 1925
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0299P)2 + 1.4865P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2670 reflectionsΔρmax = 0.26 e Å3
183 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.49476 (3)0.38808 (4)0.43948 (2)0.01585 (12)
Cl20.63495 (4)0.46540 (5)0.51055 (3)0.01834 (14)
Cl10.61409 (5)0.25008 (6)0.38155 (3)0.02148 (15)
O10.45006 (13)0.26410 (15)0.50647 (8)0.0190 (4)
N20.36328 (15)0.34487 (17)0.37970 (9)0.0156 (4)
N10.52288 (15)0.50115 (17)0.36496 (9)0.0168 (4)
N30.49296 (15)0.10292 (18)0.56455 (10)0.0196 (4)
C50.45302 (18)0.4894 (2)0.31397 (11)0.0167 (5)
C60.35961 (18)0.4053 (2)0.32359 (11)0.0171 (5)
C100.28304 (18)0.2671 (2)0.39238 (12)0.0198 (5)
H100.28550.22590.43210.024*
C110.51802 (19)0.1879 (2)0.52417 (11)0.0191 (5)
H110.59230.19110.50760.023*
C10.60826 (19)0.5763 (2)0.36081 (11)0.0196 (5)
H10.65610.58590.39710.023*
C40.4687 (2)0.5525 (2)0.25765 (11)0.0202 (5)
H40.41840.54350.22250.024*
C20.6298 (2)0.6409 (2)0.30573 (12)0.0231 (6)
H20.69220.69240.30390.028*
C80.19164 (19)0.3053 (2)0.29244 (12)0.0233 (6)
H80.13280.29130.26250.028*
C90.19615 (19)0.2441 (2)0.34992 (12)0.0225 (6)
H90.14070.18730.36000.027*
C120.5762 (2)0.0156 (2)0.58366 (12)0.0242 (6)
H12A0.64290.02310.55640.036*
H12B0.54420.06280.57860.036*
H12C0.59710.02790.62880.036*
C70.27354 (18)0.3871 (2)0.27914 (11)0.0197 (5)
H70.27130.43050.24010.024*
C30.5587 (2)0.6290 (2)0.25328 (12)0.0237 (6)
H30.57140.67260.21500.028*
C130.3814 (2)0.0931 (3)0.59311 (13)0.0298 (6)
H13A0.32980.14620.57090.045*
H13B0.38520.11390.63890.045*
H13C0.35450.01260.58870.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0160 (2)0.0169 (2)0.0146 (2)0.00102 (17)0.00107 (15)0.00083 (17)
Cl20.0161 (3)0.0210 (3)0.0179 (3)0.0006 (2)0.0021 (2)0.0016 (2)
Cl10.0209 (3)0.0220 (3)0.0215 (3)0.0016 (2)0.0026 (2)0.0017 (2)
O10.0196 (8)0.0193 (10)0.0180 (8)0.0006 (7)0.0003 (6)0.0032 (7)
N20.0158 (9)0.0149 (11)0.0160 (10)0.0000 (8)0.0001 (8)0.0025 (8)
N10.0173 (9)0.0171 (12)0.0160 (9)0.0018 (8)0.0012 (8)0.0001 (8)
N30.0186 (9)0.0192 (12)0.0209 (10)0.0006 (9)0.0008 (8)0.0023 (9)
C50.0166 (11)0.0180 (14)0.0156 (11)0.0036 (10)0.0008 (9)0.0015 (10)
C60.0173 (11)0.0171 (14)0.0169 (11)0.0036 (10)0.0024 (9)0.0026 (10)
C100.0204 (11)0.0181 (14)0.0208 (12)0.0003 (10)0.0037 (9)0.0005 (10)
C110.0178 (11)0.0222 (14)0.0174 (11)0.0032 (11)0.0019 (9)0.0023 (11)
C10.0195 (11)0.0200 (14)0.0192 (12)0.0008 (10)0.0003 (10)0.0023 (10)
C40.0245 (12)0.0212 (15)0.0148 (11)0.0023 (11)0.0003 (9)0.0003 (10)
C20.0215 (12)0.0215 (15)0.0263 (13)0.0029 (11)0.0025 (10)0.0025 (11)
C80.0177 (11)0.0291 (17)0.0230 (13)0.0020 (11)0.0019 (10)0.0091 (12)
C90.0182 (11)0.0200 (15)0.0294 (13)0.0023 (10)0.0029 (10)0.0067 (12)
C120.0264 (13)0.0218 (15)0.0242 (13)0.0013 (11)0.0058 (10)0.0020 (11)
C70.0206 (11)0.0225 (15)0.0161 (11)0.0043 (11)0.0003 (9)0.0005 (10)
C30.0284 (13)0.0240 (16)0.0187 (12)0.0011 (11)0.0054 (10)0.0048 (11)
C130.0247 (13)0.0319 (17)0.0329 (15)0.0003 (12)0.0052 (11)0.0109 (13)
Geometric parameters (Å, º) top
Ni1—Cl22.3971 (7)C11—H110.9500
Ni1—Cl2i2.5049 (7)C1—H10.9500
Ni1—Cl12.4413 (7)C1—C21.385 (3)
Ni1—O12.0563 (17)C4—H40.9500
Ni1—N22.0582 (19)C4—C31.387 (4)
Ni1—N12.044 (2)C2—H20.9500
Cl2—Ni1i2.5049 (7)C2—C31.385 (3)
O1—C111.246 (3)C8—H80.9500
N2—C61.355 (3)C8—C91.384 (4)
N2—C101.332 (3)C8—C71.380 (3)
N1—C51.353 (3)C9—H90.9500
N1—C11.335 (3)C12—H12A0.9800
N3—C111.318 (3)C12—H12B0.9800
N3—C121.463 (3)C12—H12C0.9800
N3—C131.459 (3)C7—H70.9500
C5—C61.484 (3)C3—H30.9500
C5—C41.387 (3)C13—H13A0.9800
C6—C71.395 (3)C13—H13B0.9800
C10—H100.9500C13—H13C0.9800
C10—C91.385 (3)
Cl2—Ni1—Cl2i85.88 (2)O1—C11—H11118.1
Cl2—Ni1—Cl197.81 (2)N3—C11—H11118.1
Cl1—Ni1—Cl2i174.92 (2)N1—C1—H1118.7
O1—Ni1—Cl2i91.29 (5)N1—C1—C2122.6 (2)
O1—Ni1—Cl291.12 (5)C2—C1—H1118.7
O1—Ni1—Cl192.13 (5)C5—C4—H4120.4
O1—Ni1—N292.55 (7)C5—C4—C3119.2 (2)
N2—Ni1—Cl2i86.61 (6)C3—C4—H4120.4
N2—Ni1—Cl2171.71 (6)C1—C2—H2120.6
N2—Ni1—Cl189.49 (6)C1—C2—C3118.8 (2)
N1—Ni1—Cl296.73 (6)C3—C2—H2120.6
N1—Ni1—Cl2i89.44 (6)C9—C8—H8120.4
N1—Ni1—Cl186.66 (6)C7—C8—H8120.4
N1—Ni1—O1172.15 (7)C7—C8—C9119.2 (2)
N1—Ni1—N279.69 (8)C10—C9—H9120.6
Ni1—Cl2—Ni1i94.12 (2)C8—C9—C10118.7 (2)
C11—O1—Ni1120.95 (15)C8—C9—H9120.6
C6—N2—Ni1114.81 (15)N3—C12—H12A109.5
C10—N2—Ni1125.98 (16)N3—C12—H12B109.5
C10—N2—C6119.2 (2)N3—C12—H12C109.5
C5—N1—Ni1115.31 (16)H12A—C12—H12B109.5
C1—N1—Ni1125.58 (16)H12A—C12—H12C109.5
C1—N1—C5118.8 (2)H12B—C12—H12C109.5
C11—N3—C12121.5 (2)C6—C7—H7120.4
C11—N3—C13121.4 (2)C8—C7—C6119.3 (2)
C13—N3—C12117.0 (2)C8—C7—H7120.4
N1—C5—C6114.9 (2)C4—C3—H3120.6
N1—C5—C4121.6 (2)C2—C3—C4118.9 (2)
C4—C5—C6123.5 (2)C2—C3—H3120.6
N2—C6—C5115.0 (2)N3—C13—H13A109.5
N2—C6—C7121.0 (2)N3—C13—H13B109.5
C7—C6—C5124.0 (2)N3—C13—H13C109.5
N2—C10—H10118.7H13A—C13—H13B109.5
N2—C10—C9122.5 (2)H13A—C13—H13C109.5
C9—C10—H10118.7H13B—C13—H13C109.5
O1—C11—N3123.8 (2)
Ni1—O1—C11—N3176.70 (18)C5—C4—C3—C20.6 (4)
Ni1—N2—C6—C51.9 (3)C6—N2—C10—C90.9 (4)
Ni1—N2—C6—C7178.44 (18)C6—C5—C4—C3180.0 (2)
Ni1—N2—C10—C9179.02 (18)C10—N2—C6—C5179.8 (2)
Ni1—N1—C5—C66.5 (3)C10—N2—C6—C70.1 (3)
Ni1—N1—C5—C4173.88 (18)C1—N1—C5—C6179.0 (2)
Ni1—N1—C1—C2172.30 (19)C1—N1—C5—C40.6 (3)
N2—C6—C7—C80.6 (4)C1—C2—C3—C40.3 (4)
N2—C10—C9—C80.9 (4)C4—C5—C6—N2174.8 (2)
N1—C5—C6—N25.6 (3)C4—C5—C6—C74.8 (4)
N1—C5—C6—C7174.8 (2)C9—C8—C7—C60.6 (4)
N1—C5—C4—C30.5 (4)C12—N3—C11—O1180.0 (2)
N1—C1—C2—C31.4 (4)C7—C8—C9—C100.1 (4)
C5—N1—C1—C21.5 (4)C13—N3—C11—O11.2 (4)
C5—C6—C7—C8179.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-L., Li, B.-Z., Yang, P. & Wu, J.-Z. (2009). Acta Cryst. C65, m238–m240.  CSD CrossRef IUCr Journals Google Scholar
First citationCocker, T. M. & Bachman, R. E. (2004). Mol. Cryst. Liq. Cryst. 408, 1–19.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHirotsu, M., Tsukahara, Y. & Kinoshita, I. (2010). Bull. Chem. Soc. Jpn, 83, 1058–1066.  CSD CrossRef CAS Google Scholar
First citationIkotun, O. F., Ouellette, W., Lloret, F., Julve, M. & Doyle, R. P. (2007). Eur. J. Inorg. Chem. pp. 2083–2088.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds