research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-{4-[bis­­(4-methyl­phen­yl)amino]­phen­yl}ethene-1,2,2-tricarbo­nitrile

crossmark logo

aAlfasial University, Riyadh, Saudi Arabia, and bPenn State Scranton, Dunmore, PA, USA
*Correspondence e-mail: mbader@alfaisal.edu

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 19 February 2024; accepted 24 February 2024; online 29 February 2024)

The title compound, C25H18N4, crystallizes in the centrosymmetric ortho­rhom­bic space group Pbca, with eight mol­ecules in the unit cell. The main feature noticeable in the structure is the impact of the tri­cyano­vinyl (TCV) group in forcing partial planarity of the portion of the mol­ecule carrying the TCV group and directing the mol­ecular packing in the solid state, resulting in the formation of π-stacks of dimers within the unit cell. Short ππ stack closest atom-to-atom distances of 3.444 (15) Å are observed. Such motif patterns are favorable as they are thought to be conducive for better charge transport in organic semiconductors, which results in enhanced device performance. Intra­molecular charge transfer is evident from the shortening in the observed experimental bond lengths. The nitro­gen atoms (of the cyano groups) are involved in extensive short contacts, primarily through C—H⋯NC inter­actions with distances of 2.637 (17) Å.

1. Chemical context

Tri­phenyl­amine and its derivatives have been employed in a wide range of applications in materials chemistry. Some of the most exploited applications of this important building block include: hole-transport materials, organic light-emitting diodes, photoconductors, photodiodes, semiconductors, and solar cell applications. The optical properties of tri­phenyl­amine derivatives have been explored in optical telecommunications, optical data storage, laser frequency conversion, color displays, and non-linear optics including optical power limiters and multiphoton absorption (Khasbaatar et al., 2023[Khasbaatar, A., Xu, Z., Lee, J.-H., Campillo-Alvarado, G., Hwang, C., Onusaitis, B. N. & Diao, Y. (2023). Chem. Rev. 123, 8395-8487.]; Kong et al., 2012[Kong, Q., Qian, H., Zhou, Y., Li, J. & Xiao, H. (2012). Mater. Chem. Phys. 135, 1048-1056.]; Itoo et al., 2022[Itoo, A. M., Paul, M., Padaga, S. G., Ghosh, B. & Biswas, S. (2022). ACS Omega, 7, 45882-45909.]; Bian 2023[Bian, Y., Liu, Y. & Guo, Y. (2023). Sci. Bull. 68, 975-980.]). In particular, donor/acceptor mol­ecules incorporating this building block have received considerable attention. Synthetically, many creative and inter­esting mol­ecular architectures incorporating tri­phenyl­amines have been reported (El-Nahass et al., 2013[El-Nahass, M. M., Zeyada, H. M., Abd-El-Rahman, K. F. & Darwish, A. A. A. (2013). Eur. Phys. J. Appl. Phys. 62, 10202.]; Ogunyemi et al., 2020[Ogunyemi, B. T., Oyeneyin, O. E., Esan, O. T. & Adejoro, I. A. (2020). Results Chem. 2, 100069.]).

Both mol­ecular design and solid-state structures are important in effectively using mol­ecular materials in the above-mentioned applications. Highly conjugated mol­ecules with delocalized electrons synthesized by systematic modifications allow for access to a wide range of structures. However, the way the mol­ecules are arranged in the solid state, either in thin films or in single crystals, dictates the performance of devices built with these mol­ecular materials. Attention to solid-state structures of organic functional materials has steadily gained momentum. Much more work is still needed in this area to help better understand the competing inter- and intra­molecular inter­actions in determining their solid-state structures. This study focuses on one the impact of the presence of the tri­cyano­vinyl group on the solid-state structure of the title compound, which is also compared with those of closely related structures.

[Scheme 1]

2. Structural commentary

The crystal structure of tri­phenyl­amine is known and has been examined several times (Martin et al., 2007[Martin, E., Pulham, C. R. & Parsons, S. (2007). CSD Communication (CCDC No. 660790. CCDC, Cambridge, England]; Sobolev et al., 1985[Sobolev, A. N., Belsky, V. K., Romm, I. P., Chernikova, N. Yu. & Guryanova, E. N. (1985). Acta Cryst. C41, 967-971.]; Howells et al., 1954[Howells, E. R., Lovell, F. M., Rogers, D. & Wilson, A. J. C. (1954). Acta Cryst. 7, 298-299.]) There are no significant close inter­actions within the unit cell of tri­phenyl­amine except for C—H⋯π with a relatively long distance (2.817Å). We also note that there have been several recent structural reports on tri­phenyl­amine derivatives, with various structural features including multi­cyano­derivatives (Ishi et al., 2019[Ishi-i, T., Tanaka, H., Youfu, R., Aizawa, N., Yasuda, T., Kato, S. & Matsumoto, T. (2019). New J. Chem. 43, 4998-5010.]; Akahane et al., 2018[Akahane, S., Takeda, T., Hoshino, N. & Akutagawa, T. (2018). Cryst. Growth Des. 18, 6284-6292.]; Hariharan et al., 2017[Hariharan, P. S., Prasad, V. K., Nandi, S., Anoop, A., Moon, D. & Anthony, S. P. (2017). Cryst. Growth Des. 17, 146-155.]; Song et al., 2006[Song, Y., Di, C., Yang, X., Li, S., Xu, W., Liu, Y., Yang, L., Shuai, Z., Zhang, D. & Zhu, D. (2006). J. Am. Chem. Soc. 128, 15940-15941.]; Tang et al., 2010[Tang, X., Liu, W., Wu, J., Lee, C.-S., You, J. & Wang, P. (2010). J. Org. Chem. 75, 7273-7278.]).

The closest reported structures to the title compound are the corresponding mol­ecule without the methyl groups tri­cyano­vinyl­tri­phenyl­amine, which we will refer to as Ph3N-TCV (CYVTPA; Vozzhennikov et al., 1979[Vozzhennikov, V. M., Materikin, V. L. & Kotov, B. V. (1979). Zh. Fiz. Khim. 53, 1580.]; Popova et al., 1976[Popova, E. G., Chetkina, L. A. & Kotov, B. V. (1976). Zh. Strukt. Khim., 17, 510.], 1977[Popova, E. G., Chetkina, L. A. & Kotov, B. V. (1977). J. Struct. Chem. 17, 438-443.]). It is worth mentioning that the title compound forms shiny metallic crystals with large smooth surfaces·We note that, as expected, the title compound adopts a propeller mol­ecular shape and crystallizes in the ortho­rhom­bic space group Pbca, similar to Ph3N-TCV. (Fig. 1[link]) The angles around the central nitro­gen atom are all nearly the same, showing similar trends, with the smallest angle between the phenyl groups without the electron-accepting group: 116.71 (14), 120.27 (14), 123.02 (15)° in the title compound Me2-Ph3N-TCV and 116, 121, 123° in Ph3N-TCV, whereas the C—N bond lengths are clearly significantly shorter for the ring bearing the electron acceptor. Almost identical lengths are observed in this structure and Ph3N-TCV: 1.366 (2), 1.441 (2), 1.444 (2) Å in the title compound compared with 1.38, 1.44, 1,44 Å in Ph3N-TCV. The shortest lengths (depicted in italics) are for the N—C bond on the phenyl ring carrying the TCV groups, suggesting, as expected, intra­molecular charge transfer (Fig. 2[link]). The angles around the central nitrogen atom indicate planarity and range from to 116.71 (14) to 123.02 (15)°.

[Figure 1]
Figure 1
The mol­ecule in the crystal. Ellipsoids represent 50% probability levels.
[Figure 2]
Figure 2
Bond lengths indicating charge-transfer inter­actions in the title compound.

3. Supra­molecular features

In the crystal (Fig. 3[link]), the mol­ecules form π-stacked dimers involving the acceptor-carrying phenyl rings of two adjacent mol­ecules with a shortest atom-to-atom distance of 3.444 (15) Å, which compares with 3.616 Å in Ph3N-TCV. The dimers are further held together by C—H⋯NC inter­actions on both ends (Fig. 4[link]). With distances of 2.637 (17) Å, the inter­actions in the title compound are slightly weaker than those observed in Ph3N-TCV (2.462 Å).

[Figure 3]
Figure 3
Unit cell of the title compound.
[Figure 4]
Figure 4
π-Stacking and C—H⋯N inter­actions in the title compound.

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) in February 2024 revealed more than 30 hits each for `tri­phenyl­amine' and `tri­cyano­vin­yl'. No hits were found for the title compound. The closely related structure for a similar compound without the methyl groups (Popova et al., 1977[Popova, E. G., Chetkina, L. A. & Kotov, B. V. (1977). J. Struct. Chem. 17, 438-443.]) is compared with the title compound above.

5. Synthesis and crystallization

N,N-p-di­tolyl­aniline (Aldrich, 0.5 mmol) was reacted with tetra­cyano­ethyl­ene (TCNE, Aldrich, 0.75 mmol) in DMF (5 mL) in a 25 mL round-bottom flask at room temperature. After 2 h the reaction was worked out either by addition of 6 M HCl or extraction by methyl­ene chloride. The product was isolated as a purple solid, m.p. 462–463 K, and crystallized by slow evaporation from aceto­nitrile. 1H NMR, ppm: 7.13 (d, 6H); 7.15 (d, 4H); 7.30 (d, 2H); 2.32 (s, 6H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 1
Experimental details

Crystal data
Chemical formula C25H18N4
Mr 374.43
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 173
a, b, c (Å) 16.8662 (15), 12.8555 (11), 18.7561 (16)
V3) 4066.8 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.35 × 0.32 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.975, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 23265, 4170, 2586
Rint 0.057
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.02
No. of reflections 4170
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

1-{4-[Bis(4-methylphenyl)amino]phenyl}ethene-1,2,2-tricarbonitrile top
Crystal data top
C25H18N4Dx = 1.223 Mg m3
Mr = 374.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2998 reflections
a = 16.8662 (15) Åθ = 2.2–24.6°
b = 12.8555 (11) ŵ = 0.07 mm1
c = 18.7561 (16) ÅT = 173 K
V = 4066.8 (6) Å3Plate, red
Z = 80.35 × 0.32 × 0.03 mm
F(000) = 1568
Data collection top
Bruker APEXII CCD
diffractometer
2586 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.057
φ and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2121
Tmin = 0.975, Tmax = 0.998k = 1516
23265 measured reflectionsl = 2313
4170 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.047P)2 + 1.2157P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4170 reflectionsΔρmax = 0.39 e Å3
264 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.54561 (9)0.35769 (12)0.25270 (8)0.0327 (4)
N20.40435 (13)0.75779 (16)0.48843 (10)0.0608 (6)
N30.56270 (11)0.81259 (15)0.62522 (10)0.0520 (5)
N40.71782 (13)0.57500 (19)0.55835 (12)0.0784 (7)
C10.54228 (11)0.42447 (14)0.30928 (10)0.0309 (4)
C20.47659 (11)0.49077 (14)0.31939 (10)0.0341 (4)
H2A0.4332000.4874580.2871700.041*
C30.47442 (12)0.56000 (15)0.37507 (10)0.0360 (5)
H3A0.4294650.6038640.3803220.043*
C40.53662 (11)0.56791 (14)0.42448 (10)0.0331 (4)
C50.60170 (11)0.50065 (15)0.41415 (10)0.0380 (5)
H5A0.6449200.5036970.4465540.046*
C60.60455 (11)0.43136 (15)0.35909 (10)0.0367 (5)
H6A0.6492990.3870290.3542800.044*
C70.53210 (12)0.64360 (15)0.48125 (10)0.0359 (5)
C80.58477 (12)0.66465 (15)0.53418 (11)0.0402 (5)
C90.46017 (13)0.70824 (16)0.48442 (10)0.0401 (5)
C100.57010 (12)0.74718 (17)0.58452 (11)0.0418 (5)
C110.65825 (14)0.61249 (18)0.54528 (12)0.0487 (6)
C120.48557 (11)0.36131 (14)0.19788 (9)0.0319 (4)
C130.42598 (12)0.28855 (16)0.19709 (11)0.0408 (5)
H13A0.4249810.2348030.2318360.049*
C140.36727 (13)0.29368 (18)0.14546 (12)0.0491 (6)
H14A0.3260130.2433690.1456310.059*
C150.36736 (13)0.37017 (19)0.09383 (11)0.0479 (6)
C160.42856 (14)0.44230 (18)0.09488 (11)0.0524 (6)
H16A0.4302980.4950200.0594260.063*
C170.48744 (13)0.43899 (16)0.14681 (11)0.0438 (5)
H17A0.5285200.4895500.1472000.053*
C180.30260 (15)0.3765 (2)0.03817 (13)0.0773 (9)
H18A0.2797050.3072220.0308040.116*0.5
H18B0.3249910.4018770.0067830.116*0.5
H18C0.2611720.4243330.0544530.116*0.5
H18D0.2975400.4483990.0215120.116*0.5
H18E0.2522540.3537450.0590980.116*0.5
H18F0.3160730.3312880.0021370.116*0.5
C190.60719 (10)0.28093 (14)0.24428 (10)0.0297 (4)
C200.65333 (10)0.28135 (14)0.18337 (10)0.0313 (4)
H20A0.6454770.3332900.1480390.038*
C210.71086 (11)0.20612 (15)0.17394 (10)0.0358 (5)
H21A0.7419660.2068920.1317150.043*
C220.72438 (11)0.12945 (14)0.22459 (10)0.0344 (5)
C230.67765 (11)0.13075 (15)0.28548 (11)0.0391 (5)
H23A0.6859920.0794600.3211660.047*
C240.61923 (11)0.20484 (15)0.29552 (11)0.0376 (5)
H24A0.5874960.2035840.3373500.045*
C250.78680 (13)0.04717 (17)0.21395 (13)0.0520 (6)
H25A0.7995880.0416960.1631200.078*
H25B0.7668010.0198480.2311750.078*
H25C0.8346240.0661090.2406280.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0356 (9)0.0306 (9)0.0321 (9)0.0070 (7)0.0031 (7)0.0046 (7)
N20.0746 (14)0.0627 (13)0.0451 (12)0.0302 (12)0.0004 (10)0.0061 (10)
N30.0542 (12)0.0501 (12)0.0516 (12)0.0003 (9)0.0070 (9)0.0149 (10)
N40.0614 (14)0.0978 (18)0.0760 (16)0.0188 (13)0.0223 (12)0.0394 (14)
C10.0368 (10)0.0253 (10)0.0306 (10)0.0008 (8)0.0011 (8)0.0027 (8)
C20.0379 (10)0.0318 (11)0.0327 (10)0.0059 (9)0.0030 (9)0.0007 (9)
C30.0414 (11)0.0307 (11)0.0358 (11)0.0083 (9)0.0019 (9)0.0019 (9)
C40.0428 (11)0.0269 (10)0.0297 (10)0.0013 (9)0.0041 (8)0.0020 (8)
C50.0387 (11)0.0431 (12)0.0323 (11)0.0028 (9)0.0047 (9)0.0040 (9)
C60.0359 (10)0.0396 (12)0.0347 (11)0.0085 (9)0.0029 (9)0.0041 (9)
C70.0451 (11)0.0314 (11)0.0312 (11)0.0021 (9)0.0034 (9)0.0050 (8)
C80.0450 (12)0.0358 (12)0.0396 (12)0.0010 (10)0.0041 (9)0.0019 (9)
C90.0551 (13)0.0352 (12)0.0301 (11)0.0061 (11)0.0014 (10)0.0005 (9)
C100.0459 (12)0.0398 (12)0.0398 (12)0.0044 (10)0.0080 (10)0.0038 (10)
C110.0493 (14)0.0481 (14)0.0486 (14)0.0057 (11)0.0028 (11)0.0173 (11)
C120.0361 (10)0.0312 (11)0.0285 (10)0.0083 (9)0.0021 (8)0.0038 (8)
C130.0434 (11)0.0406 (12)0.0385 (12)0.0026 (10)0.0042 (9)0.0004 (9)
C140.0419 (12)0.0553 (15)0.0502 (14)0.0016 (11)0.0068 (10)0.0124 (11)
C150.0430 (12)0.0658 (16)0.0348 (12)0.0242 (12)0.0065 (10)0.0147 (11)
C160.0652 (15)0.0573 (15)0.0348 (12)0.0259 (13)0.0006 (11)0.0071 (11)
C170.0490 (12)0.0405 (12)0.0419 (12)0.0041 (10)0.0013 (10)0.0059 (10)
C180.0597 (16)0.121 (2)0.0513 (16)0.0463 (16)0.0174 (12)0.0201 (16)
C190.0308 (9)0.0269 (10)0.0314 (10)0.0009 (8)0.0033 (8)0.0040 (8)
C200.0354 (10)0.0268 (10)0.0315 (10)0.0008 (8)0.0038 (8)0.0019 (8)
C210.0353 (10)0.0377 (12)0.0343 (11)0.0004 (9)0.0028 (9)0.0054 (9)
C220.0298 (10)0.0300 (11)0.0434 (12)0.0001 (8)0.0023 (9)0.0050 (9)
C230.0395 (11)0.0321 (11)0.0456 (12)0.0037 (9)0.0021 (10)0.0081 (9)
C240.0379 (11)0.0384 (12)0.0364 (11)0.0033 (9)0.0058 (9)0.0046 (9)
C250.0455 (12)0.0478 (14)0.0627 (15)0.0147 (11)0.0015 (11)0.0018 (12)
Geometric parameters (Å, º) top
N1—C11.366 (2)C14—H14A0.9500
N1—C191.441 (2)C15—C161.388 (3)
N1—C121.444 (2)C15—C181.513 (3)
N2—C91.139 (3)C16—C171.392 (3)
N3—C101.143 (2)C16—H16A0.9500
N4—C111.141 (3)C17—H17A0.9500
C1—C61.409 (3)C18—H18A0.9800
C1—C21.411 (2)C18—H18B0.9800
C2—C31.373 (3)C18—H18C0.9800
C2—H2A0.9500C18—H18D0.9800
C3—C41.404 (3)C18—H18E0.9800
C3—H3A0.9500C18—H18F0.9800
C4—C51.411 (3)C19—C201.382 (2)
C4—C71.444 (3)C19—C241.386 (3)
C5—C61.365 (3)C20—C211.381 (2)
C5—H5A0.9500C20—H20A0.9500
C6—H6A0.9500C21—C221.388 (3)
C7—C81.359 (3)C21—H21A0.9500
C7—C91.472 (3)C22—C231.388 (3)
C8—C111.424 (3)C22—C251.506 (3)
C8—C101.442 (3)C23—C241.383 (3)
C12—C131.373 (3)C23—H23A0.9500
C12—C171.384 (3)C24—H24A0.9500
C13—C141.387 (3)C25—H25A0.9800
C13—H13A0.9500C25—H25B0.9800
C14—C151.380 (3)C25—H25C0.9800
C1—N1—C19123.02 (15)C16—C17—H17A120.3
C1—N1—C12120.27 (14)C15—C18—H18A109.5
C19—N1—C12116.71 (14)C15—C18—H18B109.5
N1—C1—C6121.61 (16)H18A—C18—H18B109.5
N1—C1—C2121.09 (16)C15—C18—H18C109.5
C6—C1—C2117.29 (17)H18A—C18—H18C109.5
C3—C2—C1121.00 (17)H18B—C18—H18C109.5
C3—C2—H2A119.5C15—C18—H18D109.5
C1—C2—H2A119.5H18A—C18—H18D141.1
C2—C3—C4121.97 (18)H18B—C18—H18D56.3
C2—C3—H3A119.0H18C—C18—H18D56.3
C4—C3—H3A119.0C15—C18—H18E109.5
C3—C4—C5116.52 (17)H18A—C18—H18E56.3
C3—C4—C7119.74 (17)H18B—C18—H18E141.1
C5—C4—C7123.73 (17)H18C—C18—H18E56.3
C6—C5—C4122.11 (18)H18D—C18—H18E109.5
C6—C5—H5A118.9C15—C18—H18F109.5
C4—C5—H5A118.9H18A—C18—H18F56.3
C5—C6—C1121.11 (18)H18B—C18—H18F56.3
C5—C6—H6A119.4H18C—C18—H18F141.1
C1—C6—H6A119.4H18D—C18—H18F109.5
C8—C7—C4129.64 (18)H18E—C18—H18F109.5
C8—C7—C9113.38 (17)C20—C19—C24119.55 (17)
C4—C7—C9116.98 (17)C20—C19—N1119.58 (16)
C7—C8—C11125.56 (19)C24—C19—N1120.84 (16)
C7—C8—C10120.84 (19)C21—C20—C19119.90 (17)
C11—C8—C10113.58 (19)C21—C20—H20A120.0
N2—C9—C7178.5 (2)C19—C20—H20A120.0
N3—C10—C8176.3 (2)C20—C21—C22121.67 (18)
N4—C11—C8175.1 (2)C20—C21—H21A119.2
C13—C12—C17120.05 (18)C22—C21—H21A119.2
C13—C12—N1119.94 (17)C23—C22—C21117.49 (17)
C17—C12—N1120.01 (18)C23—C22—C25120.97 (18)
C12—C13—C14119.9 (2)C21—C22—C25121.54 (18)
C12—C13—H13A120.1C24—C23—C22121.65 (18)
C14—C13—H13A120.1C24—C23—H23A119.2
C15—C14—C13121.5 (2)C22—C23—H23A119.2
C15—C14—H14A119.2C23—C24—C19119.73 (18)
C13—C14—H14A119.2C23—C24—H24A120.1
C14—C15—C16117.84 (19)C19—C24—H24A120.1
C14—C15—C18121.4 (2)C22—C25—H25A109.5
C16—C15—C18120.7 (2)C22—C25—H25B109.5
C15—C16—C17121.4 (2)H25A—C25—H25B109.5
C15—C16—H16A119.3C22—C25—H25C109.5
C17—C16—H16A119.3H25A—C25—H25C109.5
C12—C17—C16119.3 (2)H25B—C25—H25C109.5
C12—C17—H17A120.3
C19—N1—C1—C67.9 (3)C19—N1—C12—C17103.2 (2)
C12—N1—C1—C6172.42 (17)C17—C12—C13—C140.6 (3)
C19—N1—C1—C2173.19 (17)N1—C12—C13—C14178.40 (17)
C12—N1—C1—C26.5 (3)C12—C13—C14—C150.6 (3)
N1—C1—C2—C3178.05 (17)C13—C14—C15—C160.2 (3)
C6—C1—C2—C30.9 (3)C13—C14—C15—C18179.2 (2)
C1—C2—C3—C40.3 (3)C14—C15—C16—C171.0 (3)
C2—C3—C4—C50.2 (3)C18—C15—C16—C17178.4 (2)
C2—C3—C4—C7178.70 (17)C13—C12—C17—C160.1 (3)
C3—C4—C5—C60.1 (3)N1—C12—C17—C16179.13 (17)
C7—C4—C5—C6178.76 (18)C15—C16—C17—C120.9 (3)
C4—C5—C6—C10.5 (3)C1—N1—C19—C20122.68 (19)
N1—C1—C6—C5177.93 (18)C12—N1—C19—C2057.6 (2)
C2—C1—C6—C51.0 (3)C1—N1—C19—C2459.2 (2)
C3—C4—C7—C8179.8 (2)C12—N1—C19—C24120.46 (19)
C5—C4—C7—C81.1 (3)C24—C19—C20—C210.1 (3)
C3—C4—C7—C90.9 (3)N1—C19—C20—C21178.05 (16)
C5—C4—C7—C9179.71 (18)C19—C20—C21—C220.4 (3)
C4—C7—C8—C110.9 (3)C20—C21—C22—C230.1 (3)
C9—C7—C8—C11178.3 (2)C20—C21—C22—C25179.62 (18)
C4—C7—C8—C10177.54 (19)C21—C22—C23—C240.5 (3)
C9—C7—C8—C103.2 (3)C25—C22—C23—C24178.97 (19)
C1—N1—C12—C13101.9 (2)C22—C23—C24—C190.9 (3)
C19—N1—C12—C1377.7 (2)C20—C19—C24—C230.6 (3)
C1—N1—C12—C1777.1 (2)N1—C19—C24—C23178.66 (17)
 

Acknowledgements

The authors also acknowledge Dr Victor Young Jr of the X-ray Crystallographic Laboratory, Department of Chemistry at the University of Minnesota for the data collection.

Funding information

Research Development Grants and Professional Development Grants from Penn State Scranton (PTP) and inter­nal research grants from Alfaisal University IRG-2020 (MMB) are highly appreciated.

References

First citationAkahane, S., Takeda, T., Hoshino, N. & Akutagawa, T. (2018). Cryst. Growth Des. 18, 6284–6292.  CrossRef CAS Google Scholar
First citationBian, Y., Liu, Y. & Guo, Y. (2023). Sci. Bull. 68, 975–980.  CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Nahass, M. M., Zeyada, H. M., Abd-El-Rahman, K. F. & Darwish, A. A. A. (2013). Eur. Phys. J. Appl. Phys. 62, 10202.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHariharan, P. S., Prasad, V. K., Nandi, S., Anoop, A., Moon, D. & Anthony, S. P. (2017). Cryst. Growth Des. 17, 146–155.  CrossRef CAS Google Scholar
First citationHowells, E. R., Lovell, F. M., Rogers, D. & Wilson, A. J. C. (1954). Acta Cryst. 7, 298–299.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationIshi-i, T., Tanaka, H., Youfu, R., Aizawa, N., Yasuda, T., Kato, S. & Matsumoto, T. (2019). New J. Chem. 43, 4998–5010.  CAS Google Scholar
First citationItoo, A. M., Paul, M., Padaga, S. G., Ghosh, B. & Biswas, S. (2022). ACS Omega, 7, 45882–45909.  CrossRef CAS PubMed Google Scholar
First citationKhasbaatar, A., Xu, Z., Lee, J.-H., Campillo-Alvarado, G., Hwang, C., Onusaitis, B. N. & Diao, Y. (2023). Chem. Rev. 123, 8395–8487.  CrossRef CAS PubMed Google Scholar
First citationKong, Q., Qian, H., Zhou, Y., Li, J. & Xiao, H. (2012). Mater. Chem. Phys. 135, 1048–1056.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMartin, E., Pulham, C. R. & Parsons, S. (2007). CSD Communication (CCDC No. 660790. CCDC, Cambridge, England  Google Scholar
First citationOgunyemi, B. T., Oyeneyin, O. E., Esan, O. T. & Adejoro, I. A. (2020). Results Chem. 2, 100069.  CrossRef Google Scholar
First citationPopova, E. G., Chetkina, L. A. & Kotov, B. V. (1976). Zh. Strukt. Khim., 17, 510.  Google Scholar
First citationPopova, E. G., Chetkina, L. A. & Kotov, B. V. (1977). J. Struct. Chem. 17, 438–443.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSobolev, A. N., Belsky, V. K., Romm, I. P., Chernikova, N. Yu. & Guryanova, E. N. (1985). Acta Cryst. C41, 967–971.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSong, Y., Di, C., Yang, X., Li, S., Xu, W., Liu, Y., Yang, L., Shuai, Z., Zhang, D. & Zhu, D. (2006). J. Am. Chem. Soc. 128, 15940–15941.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTang, X., Liu, W., Wu, J., Lee, C.-S., You, J. & Wang, P. (2010). J. Org. Chem. 75, 7273–7278.  CrossRef CAS PubMed Google Scholar
First citationVozzhennikov, V. M., Materikin, V. L. & Kotov, B. V. (1979). Zh. Fiz. Khim. 53, 1580.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds