research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 3-(4-fluoro­phen­yl)-2-formyl-7-methyl­imidazo[1,2-a]pyridin-1-ium chloride monohydrate

crossmark logo

aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cMIREA, Russian Technology University, Lomonosov Institute of Fine Chemical Technology, Moscow 119571, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by J. Reibenspies, Texas A & M University, USA (Received 25 July 2023; accepted 18 August 2023; online 12 September 2023)

In the title salt, C15H12FN2O+·Cl·H2O, the imidazo[1,2-a]pyridin-1-ium ring system of the cation is almostly planar [maximum deviaition = −0.047 (2) Å for the ring C atom with the attached arene ring] and forms a dihedral angle of 61.81 (6)° with the plane of the fluoro­phenyl ring. In the crystal, water mol­ecules form an R24(8) motif parallel to the (100) plane by bonding with the chloride ions via O—H⋯Cl hydrogen bonds. The cations are connected along the b axis via N—H⋯O hydrogen bonds involving the O atoms of water mol­ecules, and C—H⋯O, C—H⋯Cl and ππ inter­actions [centroid-to-centroid distance = 3.6195 (8) Å] form layers parallel to the (100) plane. Furthermore, these layers are connected via ππ inter­actions [centroid-to-centroid distance = 3.8051 (9) Å] that further consolidate the crystal structure.

1. Chemical context

Imidazo[1,2-a]pyridine is considered to be the most important derivative in the imidazo­pyridine system, with many important biological activities (Ribeiro et al., 1998[Ribeiro, I. G. M., da Silva, K. C., Parrini, S. C., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 225-235.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]). These derivatives exhibit a number of inter­esting properties, such as anti­cancer, anti­fungal, anti-inflammatory, anti­bacterial, anti­protozoal, anti­pyretic and anti-infective, as well as analgesic and pain relief and sedative properties (Ribeiro et al., 1998[Ribeiro, I. G. M., da Silva, K. C., Parrini, S. C., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 225-235.]; Almirante et al., 1965[Almirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A. & Murmann, W. (1965). J. Med. Chem. 8, 305-312.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]). Imidazo[1,2-a]pyridine is present in various pharmaceutical products, such as zolpidem (used to treat insomnia), alpidem (sedative) (Lacerda et al., 2014[Lacerda, R. B., Sales, N. M., da Silva, L. L., Tesch, R., Miranda, A. L. P., Barreiro, E. J., Fernandes, P. D. & Fraga, C. A. M. (2014). PLoS One, 9, e91660.]), zolimidine (used to treat peptic ulcers) (Tyagi et al., 2012[Tyagi, V., Khan, S., Bajpai, V., Gauniyal, H. M., Kumar, B. & Chauhan, P. M. S. (2012). J. Org. Chem. 77, 1414-1421.]; Martins et al., 2017[Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076-4086.]), olprinone (acute heart failure), saripidem (sedative), necopidem (sedative), soraprazan, miroprofen and minodronic acid (Kielesiński et al., 2015[Kielesiński, Ł., Tasior, M. & Gryko, D. T. (2015). Org. Chem. Front. 2, 21-28.]). Due to its importance in the pharmaceutical industry, much effort has been devoted to this heterocycle in order to develop an efficient, feasible and low-cost synthesis of imidazo[1,2-a]pyridine derivatives (Ribeiro et al., 1998[Ribeiro, I. G. M., da Silva, K. C., Parrini, S. C., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 225-235.]). Besides their biological activity, the transition-metal complexes of imidazole ligands have been found to possess a wide variety of functional properties, for example, as catalysts, supra­molecular building blocks, analytical reagents, etc. (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764-773.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.]). By the functionalization of the imidazole synthon their functional properties can be improved (Gurbanov et al., 2022[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019-1031.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763-4772.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]). In addition, the functional groups on the imidazole ring can participate in various types of inter­molecular inter­actions (Mahmudov et al., 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]). Acetal-containing 2-chloro-2-(di­eth­oxy­meth­yl)-3-(4-fluoro­phen­yl)oxirane (1) or 1-chloro-3,3-dieth­oxy-1-(4-fluoro­phen­yl)propan-2-one (2) in reactions with bi- and polyfunctional nucleophiles (Fig. 1[link]) turned out to be convenient in the mol­ecular design of various heterocyclic systems, in particular, heterocyclic carbaldehydes and their derivatives (Guseinov et al., 1994[Guseinov, F. I. (1994). Russ. J. Org. Chem. 30, 360-365.], 1995[Guseinov, F. I. & Tagiev, S. Sh. (1995). Russ. J. Org. Chem. 31, 86-91.], 1998[Guseinov, F. I. & Yudina, N. A. (1998). Chem. Heterocycl. Compd. 34, 115-120.], 2006[Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943-947.], 2017[Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327.], 2020[Guseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674-675.]; Pistsov et al., 2017[Pistsov, M. F., Lavrova, O. M., Saifutdinov, A. M., Burangulova, R. N., Kustov, L. M., Guseinov, F. I. & Musin, R. Z. (2017). Russ. J. Gen. Chem. 87, 2887-2890.]). We have found that electrophilic reagents (1 or 2) react with 2-amino-4-methyl­pyridine under certain conditions to transform into 3-(4-fluoro­phen­yl)-2-formyl-7-methyl­imidazo[1,2-a]pyridin-1-ium chloride (3) whose structure has been determined by NMR spectroscopy and X-ray diffraction methods (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Reaction mechanism of the title compound.

2. Structural commentary

In the title salt (Fig. 2[link]), the imidazo[1,2-a]pyridin-1-ium ring system (atoms N1/N4/C2/C3/C5–C8/C8A) of the cation is almost planar [maximum deviaition = −0.047 (2) Å for atom C3] and forms a dihedral angle of 61.81 (6)° with the plane of the fluoro­phenyl ring (C11–C16).

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

The bond lengths and angles in the mol­ecule of the title salt are comparable with those of closely related structures detailed in Section 4[link] (Database survey).

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, water mol­ecules form an [R_{2}^{4}](8) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) parallel to the (100) plane by bonding with the chloride ions via O—H⋯Cl hydrogen bonds (Table 1[link] and Figs. 3[link] and 4[link]). The cations are also connected along the b axis via N—H⋯O hydrogen bonds involving the O atoms of the water mol­ecules, and C—H⋯O, C—H⋯Cl and ππ inter­actions [Cg2⋯Cg2iv = 3.6195 (8) Å; symmetry code: (iv) −x + 1, −y + 1, −z + 1; Cg2 is a centroid of the six-membered ring (N4/C5–C8/C8A) of the imidazo[1,2-a]pyridin-1-ium ring system (N1/N4/C2/C3/C5–C8/C8A)] form layers parallel to the (100) plane (Fig. 5[link]). Furthermore, these layers are connected to each other via ππ inter­actions [Cg3⋯Cg3vii = 3.8051 (9) Å; symmetry code: (vii) −x + 1, −y, −z + 2; Cg3 is a centroid of the fluoro­phenyl ring (C11–C16)] that consolidate the crystal structure (Fig. 6[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O18i 0.91 (2) 1.77 (2) 2.6754 (16) 174 (2)
O18—H18A⋯Cl1ii 0.87 (2) 2.24 (2) 3.1070 (11) 175 (2)
O18—H18B⋯Cl1iii 0.87 (2) 2.24 (2) 3.1142 (11) 178.0 (19)
C8—H8⋯Cl1iv 0.95 2.69 3.6431 (15) 176
C12—H12⋯Cl1v 0.95 2.71 3.5610 (16) 150
C13—H13⋯O10vi 0.95 2.41 3.057 (2) 125
Symmetry codes: (i) [x-1, y, z]; (ii) x+1, y+1, z; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y+1, -z+1]; (v) x+1, y, z; (vi) [x+1, y-1, z].
[Figure 3]
Figure 3
View of the mol­ecular packing along the a axis. N—H⋯O and O—H⋯Cl hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
View of the mol­ecular packing along the b axis. Hydrogen bonds are depicted as in Fig. 3[link].
[Figure 5]
Figure 5
View of the mol­ecular packing along the c axis. Hydrogen bonds are depicted as in Fig. 3[link].
[Figure 6]
Figure 6
View of the ππ stacking inter­actions along the b axis in the unit cell.

The Hirshfeld surface mapped over dnorm was generated using CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) with a colour scale from −0.7283 a.u. for red to +1.3376 a.u. for blue. The front and rear views of the Hirshfeld surface mapped over dnorm are depicted in Fig. 7[link]. The bright-red circular spots on dnorm indicate the presence of inter­molecular N1—H1⋯O18i, C8—H8⋯Cl1iv, C12—H12⋯Cl1v and C13—H13⋯O10vi inter­actions (Table 1[link]). The percentage contributions from different inter­molecular inter­actions towards the formation of a three-dimensional Hirshfeld surface were computed using two-dimensional fingerprint calculations (Fig. 8[link]).

[Figure 7]
Figure 7
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale from −0.7283 to 1.3376 a.u.
[Figure 8]
Figure 8
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) F⋯H/H⋯F inter­actions. de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.

Fig. 8[link] shows the full two-dimensional fingerprint plots for the mol­ecule and those delineated into the major contacts. H⋯H inter­actions [Fig. 8[link](b)] are the major contributor (35.2%) to the crystal packing, with C⋯H/H⋯C [Fig. 8[link](c); 19.0%], O⋯H/H⋯O [Fig. 8[link](d); 15.5%] and F⋯H/H⋯F [Fig. 8[link](e); 9.9%] inter­actions representing the next highest contributions. The percentage contributions of comparatively weaker inter­actions are C⋯C (4.6%), N⋯H/H⋯N (2.8%), F⋯O/O⋯F (1.5%), Cl⋯C/C⋯Cl (1.3%), Cl⋯H/H⋯Cl (1.3%), N⋯C/C⋯N (1.3%), F⋯F (1.2%), F⋯C/C⋯F (1.1%) and O⋯O (0.1%). Relevant short inter­molecular atomic contacts are summarized in Table 2[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H13⋯O10 2.41 x + 1, y − 1, z
F1⋯H17C 2.78 x, y − 1, z + 1
H9⋯F1 2.79 x + 1, −y, −z + 2
H9⋯O10 2.71 x, −y + 1, −z + 2
H16⋯Cl1 3.04 x, y, z
H17B⋯C2 3.02 x + 1, −y + 1, −z + 1
H5⋯C6 3.02 x + 1, −y, −z + 1
H17A⋯O18 2.78 x + 1, −y + 1, −z + 1
H8⋯Cl1 2.69 x, −y + 1, −z + 1
H15⋯C9 3.08 x, −y, −z + 2
H12⋯Cl1 2.71 x + 1, y, z
H5⋯O18 2.76 x, y − 1, z
Cl1⋯H6 2.94 x + 1, −y, −z + 1
H18A⋯Cl1 2.24 x + 1, y + 1, z
O18⋯H1 1.77 x + 1, y, z

The results show that the H⋯H (35.2%) contacts give the major contribution to the crystal packing, and that the C⋯H/H⋯C (19.0%), O⋯H/H⋯O (15.5%) and F⋯H/H⋯F (9.9%) contacts also give a significant contribution to the total area of the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds most closely related to the imidazo[1,2-a]pyridin-1-ium unit of the title compound gave the following hits: refcodes LESMAZ (Yin, 2013[Yin, W.-Y. (2013). Acta Cryst. E69, o211.]), UREPIR (Nichol et al., 2011[Nichol, G. S., Sharma, A. & Li, H.-Y. (2011). Acta Cryst. E67, o1224.]), ABAJOE (Rybakov & Babaev, 2011[Rybakov, V. B. & Babaev, E. V. (2011). Acta Cryst. E67, o2814.]), BIZWAI02 (Airoldi et al., 2015[Airoldi, A., Bettoni, P., Donnola, M., Calestani, G. & Rizzoli, C. (2015). Acta Cryst. E71, 51-54.]), UREYIA (Türkyılmaz et al., 2011[Türkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, o1282.]) and NEQPOP (Qiao et al., 2006[Qiao, S., Yong, G.-P., Xie, Y. & Wang, Z.-Y. (2006). Acta Cryst. E62, o4634-o4635.]).

In the crystal of LESMAZ, the cations and anions are linked into chains parallel to [021] by O—H⋯Cl and N—H⋯Cl hydrogen bonds. In the crystal of UREPIR, N—H⋯O inter­actions form a one-dimensional chain, which propagates in the b-axis direction. C—H⋯O inter­actions are also found in the crystal packing. The crystal structure of ABAJOE is consolidated by weak C—H⋯O and C—H⋯Cl inter­actions involving the `olate' O atom and the Cl atom attached to the benzoyl group as acceptors. In the crystal of BIZWAI02, mol­ecules are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and ππ inter­actions [centroid-to-centroid distance = 3.5822 (11) Å], forming a three-dimensional structure. In the crystal of UREYIA, the components are linked by N—H⋯O and C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid separation = 3.642 (3) Å]. In the crystal of NEQPOP, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into two-dimensional layers.

5. Synthesis and crystallization

A solution of equimolar amounts of 2-amino­pyridine (410 mg, 3.8 mmol) and 2-chloro-2-(di­eth­oxy­meth­yl)-3-(4-fluoro­phen­yl)oxirane (1) or 1-chloro-3,3-dieth­oxy-1-(4-fluoro­phen­yl) propan-2-one (2) (1.05 g, 3.8 mmol) in 25 ml of 95% aqueous ethanol was heated at reflux for 8 h. The solvent was removed in vacuo. After purification by column chromatography using a chloro­form/ethyl acetate mixture (3:1 v/v), 2-(di­eth­oxy­meth­yl)-3-(4-fluoro­phen­yl)imidazo[1,2-a]pyridine was ob­tain­ed as a white powder. Gaseous HCl was passed through a solution of 2-(di­eth­oxy­meth­yl)-3-(4-fluoro­phen­yl)imidazo[1,2-a]pyridine in chloro­form, leading to the main product, 3-(4-fluoro­phen­yl)-2-formyl-7-methyl­imidazo[1,2-a]pyridin-1-ium chloride (3) in the form of a white precipitate; this was insoluble in chloro­form and was filtered off and recrystallized from aceto­nitrile (Fig. 1[link]). Yield 0.61 g (55%); m.p. 509–510 K. Analysis calculated (%) for C15H12ClFN2O: C 70.58, H 4.74, F 7.44, N 10.97, O 6.27; found: C 70.60, H 4.78, F 7.42, N 10.93, O 6.27. 1H NMR (300 MHz, DMSO-d6): δ 2.54 (s, 3H, CH3), 7.28 (d, J = 6.6 Hz, 1H, 6CH), 7.55 (dd, J = 8.8, 5.5 Hz, 2H, Ar), 7.75 (s, 1H, NH), 7.90 (dd, J = 8.6, 5.5 Hz, 2H, Ar), 8.35 (s, 1H, 8CH), 8.47 (d, J = 7.1 Hz, 1H, 5CH), 9.85 (s, 1H, CHO). 13C NMR (200 MHz, DMSO-d6): δ 21.27, 111.92, 116.44, 116.87, 119.67, 120.02, 126.18, 130.39, 131.39, 133.59 (d, J = 35 Hz, CF), 141.40, 147.07, 161.11, 166.06, 182.45. ESI–MS: m/z: 255.0928 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N-bound H atom and the H atoms of the water mol­ecule were located in a difference Fourier map and refined freely along with their isotropic displacement parameters. C-bound H atoms were included in calculated positions and treated as riding atoms (C—H = 0.95–0.98 Å), with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C15H12FN2O+·Cl·H2O
Mr 308.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.45681 (13), 8.41737 (10), 12.8928 (2)
α, β, γ (°) 74.0382 (12), 73.7634 (14), 72.7034 (13)
V3) 725.40 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.50
Crystal size (mm) 0.33 × 0.19 × 0.15
 
Data collection
Diffractometer Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.404, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15845, 3082, 3033
Rint 0.027
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.03
No. of reflections 3082
No. of parameters 203
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2019 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2023); cell refinement: CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2019 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

3-(4-Fluorophenyl)-2-formyl-7-methylimidazo[1,2-a]pyridin-1-ium chloride monohydrate top
Crystal data top
C15H12FN2O+·Cl·H2OZ = 2
Mr = 308.73F(000) = 320
Triclinic, P1Dx = 1.413 Mg m3
a = 7.45681 (13) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.41737 (10) ÅCell parameters from 11896 reflections
c = 12.8928 (2) Åθ = 3.6–77.3°
α = 74.0382 (12)°µ = 2.50 mm1
β = 73.7634 (14)°T = 100 K
γ = 72.7034 (13)°Prism, colorless
V = 725.40 (2) Å30.33 × 0.19 × 0.15 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
3082 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3033 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.0000 pixels mm-1θmax = 77.9°, θmin = 3.7°
ω scansh = 99
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2023)
k = 109
Tmin = 0.404, Tmax = 1.000l = 1616
15845 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.4038P]
where P = (Fo2 + 2Fc2)/3
3082 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01542 (4)0.11097 (4)0.64700 (3)0.02403 (11)
F10.56045 (14)0.35098 (11)1.02878 (8)0.0367 (2)
O180.90723 (15)0.80467 (12)0.61002 (9)0.0241 (2)
N40.37156 (15)0.27422 (14)0.62115 (9)0.0190 (2)
N10.14182 (17)0.49767 (15)0.65794 (10)0.0215 (2)
C8A0.26290 (18)0.42655 (16)0.57537 (11)0.0196 (3)
C110.37885 (19)0.08741 (17)0.81151 (11)0.0210 (3)
C50.51012 (19)0.17210 (16)0.55569 (12)0.0214 (3)
H50.5865320.0678210.5879520.026*
C120.5714 (2)0.03302 (17)0.81846 (11)0.0233 (3)
H120.6600700.0980820.7730400.028*
C30.30886 (19)0.24618 (17)0.73582 (11)0.0208 (3)
C70.4192 (2)0.37812 (17)0.39448 (11)0.0228 (3)
C20.16899 (19)0.38788 (17)0.75689 (11)0.0217 (3)
C80.28524 (19)0.48118 (17)0.46032 (11)0.0215 (3)
H80.2097040.5866660.4288550.026*
C140.5015 (2)0.20644 (18)0.95627 (12)0.0267 (3)
C160.2482 (2)0.00887 (19)0.87709 (12)0.0271 (3)
H160.1172470.0274570.8714620.032*
C60.5351 (2)0.22342 (17)0.44449 (12)0.0232 (3)
H60.6319030.1549670.3987470.028*
C130.6343 (2)0.11584 (18)0.89146 (12)0.0256 (3)
H130.7655130.1542500.8966190.031*
C170.4406 (2)0.4222 (2)0.27152 (12)0.0295 (3)
H17A0.3747080.3551530.2502430.044*
H17B0.5774140.3965550.2358050.044*
H17C0.3837050.5436510.2481160.044*
C150.3103 (2)0.1578 (2)0.95051 (12)0.0303 (3)
H150.2230730.2244710.9956770.036*
C90.0719 (2)0.4320 (2)0.86403 (12)0.0305 (3)
H90.0929570.3493290.9292170.037*
H18A0.937 (3)0.887 (3)0.6243 (19)0.046 (6)*
H18B0.926 (3)0.830 (3)0.538 (2)0.045 (6)*
H10.059 (3)0.602 (3)0.6466 (17)0.042 (5)*
O100.0336 (2)0.56891 (18)0.87279 (11)0.0572 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02505 (17)0.02388 (17)0.02491 (17)0.00803 (12)0.00593 (12)0.00495 (12)
F10.0455 (6)0.0280 (5)0.0283 (5)0.0034 (4)0.0120 (4)0.0055 (4)
O180.0284 (5)0.0197 (5)0.0241 (5)0.0053 (4)0.0058 (4)0.0045 (4)
N40.0200 (5)0.0177 (5)0.0196 (5)0.0050 (4)0.0035 (4)0.0047 (4)
N10.0221 (5)0.0188 (5)0.0217 (6)0.0011 (4)0.0052 (4)0.0050 (4)
C8A0.0195 (6)0.0174 (6)0.0228 (6)0.0051 (5)0.0046 (5)0.0048 (5)
C110.0231 (6)0.0203 (6)0.0189 (6)0.0031 (5)0.0039 (5)0.0057 (5)
C50.0201 (6)0.0178 (6)0.0265 (7)0.0047 (5)0.0032 (5)0.0068 (5)
C120.0236 (6)0.0232 (6)0.0216 (6)0.0041 (5)0.0030 (5)0.0060 (5)
C30.0214 (6)0.0215 (6)0.0205 (6)0.0060 (5)0.0045 (5)0.0048 (5)
C70.0267 (7)0.0225 (6)0.0220 (6)0.0126 (5)0.0023 (5)0.0048 (5)
C20.0218 (6)0.0223 (6)0.0202 (6)0.0044 (5)0.0047 (5)0.0036 (5)
C80.0245 (6)0.0187 (6)0.0227 (6)0.0070 (5)0.0064 (5)0.0031 (5)
C140.0356 (8)0.0216 (7)0.0194 (6)0.0015 (6)0.0077 (6)0.0026 (5)
C160.0249 (7)0.0286 (7)0.0261 (7)0.0068 (6)0.0051 (5)0.0032 (6)
C60.0242 (6)0.0218 (6)0.0247 (7)0.0073 (5)0.0006 (5)0.0094 (5)
C130.0260 (7)0.0250 (7)0.0235 (7)0.0007 (5)0.0069 (5)0.0075 (5)
C170.0375 (8)0.0301 (7)0.0219 (7)0.0135 (6)0.0021 (6)0.0054 (6)
C150.0330 (8)0.0305 (8)0.0244 (7)0.0113 (6)0.0036 (6)0.0006 (6)
C90.0306 (7)0.0321 (8)0.0227 (7)0.0010 (6)0.0039 (6)0.0073 (6)
O100.0698 (10)0.0467 (8)0.0304 (6)0.0263 (7)0.0082 (6)0.0152 (6)
Geometric parameters (Å, º) top
F1—C141.3542 (16)C7—C81.3734 (19)
O18—H18A0.86 (2)C7—C61.428 (2)
O18—H18B0.87 (2)C7—C171.4988 (19)
N4—C8A1.3719 (17)C2—C91.4605 (19)
N4—C51.3791 (17)C8—H80.9500
N4—C31.3955 (17)C14—C131.377 (2)
N1—C8A1.3411 (17)C14—C151.379 (2)
N1—C21.3811 (17)C16—H160.9500
N1—H10.92 (2)C16—C151.389 (2)
C8A—C81.4042 (19)C6—H60.9500
C11—C121.3920 (19)C13—H130.9500
C11—C31.4709 (18)C17—H17A0.9800
C11—C161.3973 (19)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C5—C61.354 (2)C15—H150.9500
C12—H120.9500C9—H90.9500
C12—C131.387 (2)C9—O101.2011 (19)
C3—C21.3654 (19)
H18A—O18—H18B103 (2)C8A—C8—H8120.9
C8A—N4—C5121.11 (12)C7—C8—C8A118.26 (12)
C8A—N4—C3108.76 (11)C7—C8—H8120.9
C5—N4—C3130.04 (11)F1—C14—C13118.85 (13)
C8A—N1—C2108.37 (11)F1—C14—C15118.03 (13)
C8A—N1—H1123.1 (13)C13—C14—C15123.12 (13)
C2—N1—H1128.5 (13)C11—C16—H16120.1
N4—C8A—C8121.05 (12)C15—C16—C11119.86 (13)
N1—C8A—N4108.00 (11)C15—C16—H16120.1
N1—C8A—C8130.92 (12)C5—C6—C7121.48 (12)
C12—C11—C3121.05 (12)C5—C6—H6119.3
C12—C11—C16120.14 (13)C7—C6—H6119.3
C16—C11—C3118.81 (12)C12—C13—H13120.9
N4—C5—H5120.7C14—C13—C12118.22 (13)
C6—C5—N4118.69 (12)C14—C13—H13120.9
C6—C5—H5120.7C7—C17—H17A109.5
C11—C12—H12119.9C7—C17—H17B109.5
C13—C12—C11120.26 (13)C7—C17—H17C109.5
C13—C12—H12119.9H17A—C17—H17B109.5
N4—C3—C11123.90 (11)H17A—C17—H17C109.5
C2—C3—N4105.71 (11)H17B—C17—H17C109.5
C2—C3—C11130.28 (12)C14—C15—C16118.39 (14)
C8—C7—C6119.34 (13)C14—C15—H15120.8
C8—C7—C17121.11 (13)C16—C15—H15120.8
C6—C7—C17119.51 (13)C2—C9—H9118.8
N1—C2—C9122.80 (12)O10—C9—C2122.45 (14)
C3—C2—N1109.06 (12)O10—C9—H9118.8
C3—C2—C9127.88 (13)
F1—C14—C13—C12179.27 (12)C12—C11—C3—N462.54 (18)
F1—C14—C15—C16179.42 (13)C12—C11—C3—C2121.88 (16)
N4—C8A—C8—C70.07 (19)C12—C11—C16—C151.0 (2)
N4—C5—C6—C71.2 (2)C3—N4—C8A—N13.08 (14)
N4—C3—C2—N11.89 (15)C3—N4—C8A—C8175.22 (12)
N4—C3—C2—C9172.39 (14)C3—N4—C5—C6175.22 (12)
N1—C8A—C8—C7177.93 (13)C3—C11—C12—C13179.08 (12)
N1—C2—C9—O102.3 (3)C3—C11—C16—C15178.93 (13)
C8A—N4—C5—C61.22 (18)C3—C2—C9—O10171.26 (17)
C8A—N4—C3—C11173.45 (12)C2—N1—C8A—N41.87 (15)
C8A—N4—C3—C23.04 (14)C2—N1—C8A—C8176.21 (13)
C8A—N1—C2—C30.05 (15)C8—C7—C6—C53.0 (2)
C8A—N1—C2—C9174.58 (13)C16—C11—C12—C130.8 (2)
C11—C12—C13—C140.2 (2)C16—C11—C3—N4117.56 (15)
C11—C3—C2—N1174.29 (13)C16—C11—C3—C258.0 (2)
C11—C3—C2—C911.4 (2)C6—C7—C8—C8A2.29 (19)
C11—C16—C15—C140.1 (2)C13—C14—C15—C161.0 (2)
C5—N4—C8A—N1179.80 (11)C17—C7—C8—C8A175.47 (12)
C5—N4—C8A—C81.90 (18)C17—C7—C6—C5174.78 (13)
C5—N4—C3—C113.3 (2)C15—C14—C13—C121.2 (2)
C5—N4—C3—C2179.83 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O18i0.91 (2)1.77 (2)2.6754 (16)174 (2)
O18—H18A···Cl1ii0.87 (2)2.24 (2)3.1070 (11)175 (2)
O18—H18B···Cl1iii0.87 (2)2.24 (2)3.1142 (11)178.0 (19)
C8—H8···Cl1iv0.952.693.6431 (15)176
C12—H12···Cl1v0.952.713.5610 (16)150
C13—H13···O10vi0.952.413.057 (2)125
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y, z; (vi) x+1, y1, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H13···O102.41x+1, y-1, z
F1···H17C2.78x, y-1, z+1
H9···F12.79-x+1, -y, -z+2
H9···O102.71-x, -y+1, -z+2
H16···Cl13.04x, y, z
H17B···C23.02-x+1, -y+1, -z+1
H5···C63.02-x+1, -y, -z+1
H17A···O182.78-x+1, -y+1, -z+1
H8···Cl12.69-x, -y+1, -z+1
H15···C93.08-x, -y, -z+2
H12···Cl12.71x+1, y, z
H5···O182.76x, y-1, z
Cl1···H62.94-x+1, -y, -z+1
H18A···Cl12.24x+1, y+1, z
O18···H11.77x+1, y, z
 

Acknowledgements

The author's contributions are as follows: conceptualization by FIG, MA and AB; synthesis by VOO, PVS, YLS and AIS; X-ray analysis by PVS, AIS and STÇ; writing (review and editing of the manuscript) by FIG, MA and AB; supervision by FIG, MA and AB.

References

First citationAiroldi, A., Bettoni, P., Donnola, M., Calestani, G. & Rizzoli, C. (2015). Acta Cryst. E71, 51–54.  CSD CrossRef IUCr Journals Google Scholar
First citationAlmirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A. & Murmann, W. (1965). J. Med. Chem. 8, 305–312.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGuseinov, F. I. (1994). Russ. J. Org. Chem. 30, 360–365.  CAS Google Scholar
First citationGuseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674–675.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327.  Web of Science CSD CrossRef Google Scholar
First citationGuseinov, F. I. & Tagiev, S. Sh. (1995). Russ. J. Org. Chem. 31, 86–91.  Google Scholar
First citationGuseinov, F. I. & Yudina, N. A. (1998). Chem. Heterocycl. Compd. 34, 115–120.  CrossRef CAS Google Scholar
First citationGuseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943–947.  CrossRef CAS Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKielesiński, Ł., Tasior, M. & Gryko, D. T. (2015). Org. Chem. Front. 2, 21–28.  Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773.  Web of Science CrossRef CAS Google Scholar
First citationLacerda, R. B., Sales, N. M., da Silva, L. L., Tesch, R., Miranda, A. L. P., Barreiro, E. J., Fernandes, P. D. & Fraga, C. A. M. (2014). PLoS One, 9, e91660.  Web of Science CrossRef PubMed Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMartins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.  Web of Science CrossRef CAS Google Scholar
First citationNichol, G. S., Sharma, A. & Li, H.-Y. (2011). Acta Cryst. E67, o1224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPistsov, M. F., Lavrova, O. M., Saifutdinov, A. M., Burangulova, R. N., Kustov, L. M., Guseinov, F. I. & Musin, R. Z. (2017). Russ. J. Gen. Chem. 87, 2887–2890.  Web of Science CrossRef CAS Google Scholar
First citationQiao, S., Yong, G.-P., Xie, Y. & Wang, Z.-Y. (2006). Acta Cryst. E62, o4634–o4635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRibeiro, I. G. M., da Silva, K. C., Parrini, S. C., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 225–235.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRybakov, V. B. & Babaev, E. V. (2011). Acta Cryst. E67, o2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTürkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, o1282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTyagi, V., Khan, S., Bajpai, V., Gauniyal, H. M., Kumar, B. & Chauhan, P. M. S. (2012). J. Org. Chem. 77, 1414–1421.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYin, W.-Y. (2013). Acta Cryst. E69, o211.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds