research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-1-(2,4-di­methyl­furan-3-yl)-3-phenyl­prop-2-en-1-one

crossmark logo

a"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, bDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 6 July 2023; accepted 10 July 2023; online 14 July 2023)

The title compound, C15H14O2, adopts an E configuration about the C=C double bond. The furan ring is inclined to the phenyl ring by 12.03 (9)°. In the crystal, pairs of mol­ecules are linked by C—H⋯O hydrogen bonds, forming dimers with R22(14) ring motifs. The mol­ecules are connected via C—H⋯π inter­actions, forming a three dimensional network. No ππ inter­actions are observed.

1. Chemical context

Various C—C, C—N, C—S and C—O bond-formation reactions are keystones in organic synthesis. The application of such reactions has been expanded considerably, extending these approaches in different branches of chemistry, including green, medicinal, pharmaceutical and natural products chemistry, material science, supra­molecular chemistry (Asadov et al., 2003[Asadov, K. A., Gurevich, P. A., Egorova, E. A., Burangulova, R. N. & Guseinov, F. N. (2003). Chem. Heterocycl. Compd. 39, 1521-1522.]; Çelik et al., 2023[Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.]; Chalkha et al., 2023[Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833-14837.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). α,β-Unsaturated ketones containing ar­yl–aryl or ar­yl–alkyl groups at both ends are known as chalcones or enones. There have been several important examples of enone derivatives used as target products and also as synthetic inter­mediates. Many natural compounds containing enone moieties, such as cyanthiwigin U, (+)-cepharamine, phorbol and grandisine G, have been the object of a total synthesis (Cuthbertson & Taylor, 2013[Cuthbertson, J. D. & Taylor, R. J. K. (2013). Angew. Chem. Int. Ed. 52, 1490-1493.]; Kawamura et al., 2016[Kawamura, S., Chu, H., Felding, J. & Baran, P. S. (2016). Nature, 532, 90-93.]). These compounds have been obtained by many solvent-assisted or solvent-free methods. The enone moiety is a widespread structural motif of various synthetic biologically active compounds, possessing enzyme inhibitory, anti­cancer and anti­microbial activity (Poustforoosh et al., 2022[Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.]; Tapera et al., 2022[Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.]; Sarkı et al., 2023[Sarkı, G., Tüzün, B., Ünlüer, D. & Kantekin, H. (2023). Inorg. Chim. Acta, 545, 121113.]).

In a continuation of our investigations in heterocyclic systems exhibiting biological activity and in the framework of ongoing structural studies (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.], 2022[Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.]), we report herein the crystal structure and Hirshfeld surface analysis of the title compound, (E)-1-(2,4-di­methyl­furan-3-yl)-3-phenyl­prop-2-en-1-one.

[Scheme 1]

2. Structural commentary

As seen as Fig. 1[link], the title compound adopts an E configuration about the C=C double bond. The whole mol­ecule is nearly planar. The furan ring (O1/C2–C5) is inclined to the phenyl ring (C9–C14) by 12.03 (9)°. The torsion angles are C2—C3—C6—O2 = 14.5 (2), C2—C3—C6—C7 = −164.79 (15), C3—C6—C7—C8 = −173.80 (15), C6—C7—C8—C9 = 179.30 (15) and C7—C8—C9—C10 = 172.52 (16)°. The geometrical parameter values of the the title compound are in agreement with those reported for similar compounds in the Database survey section.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of mol­ecules are linked by C—H⋯O hydrogen bonds, forming dimers with [R_{2}^{2}](14) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]; Figs. 2[link] and 3[link]). The mol­ecules are connected via C—H⋯π inter­actions, forming a three-dimensional network (Table 1[link]; Fig. 4[link]). No ππ inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the furan (O1/C2–C5) and phenyl (C9–C14) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.95 2.52 3.413 (2) 157
C12—H12⋯Cg1ii 0.95 2.91 3.7339 (19) 146
C15—H15BCg2iii 0.98 2.85 3.6366 (19) 137
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the C—H⋯O hydrogen bonds and C—H⋯π inter­actions of the title compound down the a axis. Only the H atoms involved in these inter­actions have been included.
[Figure 3]
Figure 3
View of the C—H⋯O hydrogen bonds and C—H⋯π inter­actions of the title compound down the b axis. Only the H atoms involved in these inter­actions have been included.
[Figure 4]
Figure 4
View of the C—H⋯O hydrogen bonds and C—H⋯π inter­actions of the title compound down the c axis. Only the H atoms involved in these inter­actions have been included.

CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to compute Hirshfeld surfaces of the title mol­ecule and two-dimensional fingerprints. The dnorm mappings for the title compound were performed in the range −0.1518 (red) to +1.1567 (blue) a.u. On the dnorm surfaces, bright-red spots indicate the locations of the C—H⋯O inter­actions and O⋯C/C⋯O contacts (Tables 1[link] and 2[link]; Fig. 5[link]a,b).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

H1B⋯H8 2.57 −1 + x, y, z
H1C⋯H13 2.52 [{3\over 2}] − x, 1 − y, [{1\over 2}] + z
H1B⋯H8 2.47 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z
H1A⋯H10 2.39 [{3\over 2}] + x, [{3\over 2}] − y, 1 − z
C12⋯H5 2.94 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
H13⋯H1A 2.49 [{1\over 2}] − x, 1 − y, −[{1\over 2}] + z
C15⋯H11 3.05 2 − x, −[{1\over 2}] + y, [{1\over 2}] − z
[Figure 5]
Figure 5
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.1518 to +1.1567 a.u.

The most important inter­atomic contact is H⋯H (51.1%; Fig. 6[link]b) as it makes the highest contribution to the crystal packing. The C⋯H/H⋯C (Fig. 6[link]c; 25.3%), O⋯H/H⋯O (Fig. 6[link]d; 15.9%), C⋯C (5.1%) and O⋯C/C⋯O (2.5%) contacts have little directional influence on the mol­ecular packing.

[Figure 6]
Figure 6
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the `1-(furan-3-yl)-3-phenyl­prop-2-en-1-one' skeleton of the title compound yielded one hit, 1-(3-fur­yl)-3-[3-(tri­fluoro­meth­yl)phen­yl]prop-2-en-1-one (CSD refcode KUDNAA; Bąkowicz et al., 2015[Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2015). Z. Kristallogr. 230, 131-137.]). When the positions of the furan and phenyl rings are switched, 1-(3-chloro­phen­yl)-3-(3-fur­yl)prop-2-en-1-one (NUQFOW; Zingales et al. 2015[Zingales, S. K., Wallace, M. Z. & Padgett, C. W. (2015). Acta Cryst. E71, o707.]), (E)-3-(2-fur­yl)-1-phenyl­prop-2-en-1-one (NOTCUW01; Vázquez-Vuelvas et al. 2015[Vázquez-Vuelvas, O. F., Enríquez-Figueroa, R. A., García-Ortega, H., Flores-Alamo, M. & Pineda-Contreras, A. (2015). Acta Cryst. E71, 161-164.]) are the most similar structures.

In KUDNAA, mol­ecules are linked by inter­molecular C—H⋯O inter­actions, forming zigzag chains with C(5) motifs along the b-axis direction. In addition, mol­ecules are connected by face-to-face ππ stacking inter­actions [centroid–centroid distances = 3.926 (3) and 3.925 (2) Å] between the opposing benzene and furan rings of the mol­ecules along the c-axis direction. In NUQFOW, the mol­ecule exhibits a non-planar geometry, the furan ring being inclined to the benzene ring by 50.52 (16)°. In the crystal of NUQFOW, mol­ecules stack along the a-axis; however, there are no significant inter­molecular inter­actions present. In NOTCUW01, the mol­ecule also adopts an E configuration about the C=C double bond and the furan and phenyl rings are inclined to one another by 24.07 (7)°. In the crystal of NOTCUW01, mol­ecules are connected by weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming ribbons extending along the c-axis direction.

5. Synthesis and crystallization

To a solution of 1-(2,4-di­methyl­furan-3-yl)ethan-1-one (2 g, 14.5 mmol) in ethanol (10 mL), were added 10 mL of aqueous solution of sodium hydroxide (0.65 g, 16.3 mmol) and the mixture was stirred at room temperature for 2 h. Then benzaldehyde (1.73 g, 16.3 mmol) was added to the vigorously stirred reaction mixture and it was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (yield 90%; m.p. 349–350 K).

1H NMR (300 MHz, DMSO-d6, ppm): 2.1 (s, 3H, CH3); 2.5 (s, 3H, CH3); 7.2 (d, 1H, =CH, 3JH–H = 15.8 Hz); 7.3 (s, 1H, fur.), 7.4 (m, 3H, arom.), 7.5 (d, 1H, =CH, 3JH–H = 15.8 Hz); 7.8 (m, 2H, arom.). 13C NMR (75 MHz, DMSO-d6, ppm): 10.3 (CH3), 15.0 (CH3), 120.4 (Cquat.), 122.9 (Cquat.), 126.3 (=CH), 128.9 (CH, arom.), 129.4 (CH, arom.), 130.9 (CH, arom.), 134.8 (Cquat.), 139.0 (CH, furan), 142.8 (=CH), 158.2 (Cquat.), 187.7 (CO).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95 and 0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C15H14O2
Mr 226.26
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 5.84787 (5), 12.18109 (9), 16.24568 (15)
V3) 1157.24 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.24 × 0.20 × 0.18
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.579, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12000, 2410, 2382
Rint 0.031
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.06
No. of reflections 2410
No. of parameters 157
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.24
Absolute structure Flack x determined using 940 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.16 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-1-(2,4-Dimethylfuran-3-yl)-3-phenylprop-2-en-1-one top
Crystal data top
C15H14O2Dx = 1.299 Mg m3
Mr = 226.26Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 10780 reflections
a = 5.84787 (5) Åθ = 4.5–77.7°
b = 12.18109 (9) ŵ = 0.68 mm1
c = 16.24568 (15) ÅT = 100 K
V = 1157.24 (2) Å3Prism, colourless
Z = 40.24 × 0.20 × 0.18 mm
F(000) = 480
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2382 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.031
φ and ω scansθmax = 77.8°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 76
Tmin = 0.579, Tmax = 1.000k = 1515
12000 measured reflectionsl = 2020
2410 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.3199P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.18 e Å3
2410 reflectionsΔρmin = 0.24 e Å3
157 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0046 (4)
Primary atom site location: difference Fourier mapAbsolute structure: Flack x determined using 940 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.16 (7)
Special details top

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1250 (2)0.42159 (10)0.52334 (8)0.0225 (3)
O20.4218 (2)0.63977 (10)0.51486 (7)0.0208 (3)
C10.0327 (3)0.59606 (14)0.58548 (11)0.0211 (4)
H1A0.19360.59030.60180.032*
H1B0.00640.66720.55900.032*
H1C0.06470.58980.63430.032*
C20.0234 (3)0.50662 (13)0.52698 (10)0.0174 (3)
C30.1991 (3)0.49066 (13)0.47138 (10)0.0162 (3)
C40.1518 (3)0.38801 (13)0.43028 (10)0.0183 (4)
C50.0431 (3)0.34981 (13)0.46379 (11)0.0197 (3)
H50.11500.28280.44880.024*
C60.3897 (3)0.56901 (13)0.46209 (10)0.0165 (3)
C70.5382 (3)0.56193 (14)0.38864 (10)0.0184 (3)
H70.50120.51220.34560.022*
C80.7247 (3)0.62533 (13)0.38247 (10)0.0169 (3)
H80.75280.67420.42690.020*
C90.8896 (3)0.62758 (13)0.31489 (10)0.0162 (3)
C101.0585 (3)0.70888 (13)0.31532 (11)0.0193 (3)
H101.06110.76150.35840.023*
C111.2225 (3)0.71374 (14)0.25365 (11)0.0217 (4)
H111.33600.76950.25470.026*
C121.2207 (3)0.63690 (14)0.19019 (11)0.0206 (4)
H121.33310.64000.14800.025*
C131.0538 (3)0.55571 (14)0.18888 (11)0.0214 (4)
H131.05180.50330.14560.026*
C140.8901 (3)0.55079 (14)0.25044 (11)0.0207 (3)
H140.77710.49480.24900.025*
C150.2820 (3)0.32838 (14)0.36480 (11)0.0222 (4)
H15A0.26370.36670.31220.033*
H15B0.22310.25340.35980.033*
H15C0.44440.32600.37960.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0189 (6)0.0244 (6)0.0242 (6)0.0017 (5)0.0021 (5)0.0025 (5)
O20.0195 (6)0.0223 (6)0.0207 (6)0.0032 (5)0.0029 (5)0.0048 (5)
C10.0186 (7)0.0235 (8)0.0211 (8)0.0027 (7)0.0039 (7)0.0001 (6)
C20.0161 (7)0.0175 (7)0.0187 (8)0.0009 (6)0.0019 (6)0.0034 (6)
C30.0155 (7)0.0171 (7)0.0161 (7)0.0005 (6)0.0013 (6)0.0017 (6)
C40.0190 (8)0.0175 (8)0.0184 (7)0.0015 (6)0.0016 (6)0.0009 (6)
C50.0190 (7)0.0160 (7)0.0241 (8)0.0030 (6)0.0008 (7)0.0005 (6)
C60.0155 (7)0.0167 (7)0.0172 (7)0.0020 (6)0.0014 (6)0.0011 (6)
C70.0189 (7)0.0185 (7)0.0177 (7)0.0006 (6)0.0009 (6)0.0025 (6)
C80.0181 (7)0.0154 (7)0.0172 (7)0.0021 (6)0.0007 (6)0.0011 (6)
C90.0155 (7)0.0170 (7)0.0160 (7)0.0009 (6)0.0002 (6)0.0010 (6)
C100.0192 (8)0.0182 (7)0.0204 (8)0.0017 (7)0.0003 (7)0.0035 (6)
C110.0192 (8)0.0208 (8)0.0250 (8)0.0056 (7)0.0037 (7)0.0011 (7)
C120.0193 (8)0.0224 (8)0.0200 (8)0.0008 (7)0.0044 (7)0.0006 (7)
C130.0225 (8)0.0218 (8)0.0199 (8)0.0018 (7)0.0024 (7)0.0047 (7)
C140.0193 (7)0.0201 (8)0.0226 (8)0.0055 (7)0.0023 (7)0.0042 (6)
C150.0222 (8)0.0187 (8)0.0258 (9)0.0009 (7)0.0014 (7)0.0060 (7)
Geometric parameters (Å, º) top
O1—C21.352 (2)C8—C91.461 (2)
O1—C51.389 (2)C8—H80.9500
O2—C61.230 (2)C9—C101.399 (2)
C1—C21.482 (2)C9—C141.404 (2)
C1—H1A0.9800C10—C111.388 (2)
C1—H1B0.9800C10—H100.9500
C1—H1C0.9800C11—C121.392 (2)
C2—C31.382 (2)C11—H110.9500
C3—C41.444 (2)C12—C131.390 (2)
C3—C61.475 (2)C12—H120.9500
C4—C51.346 (2)C13—C141.385 (2)
C4—C151.496 (2)C13—H130.9500
C5—H50.9500C14—H140.9500
C6—C71.478 (2)C15—H15A0.9800
C7—C81.340 (2)C15—H15B0.9800
C7—H70.9500C15—H15C0.9800
C2—O1—C5106.96 (13)C7—C8—H8116.4
C2—C1—H1A109.5C9—C8—H8116.4
C2—C1—H1B109.5C10—C9—C14118.27 (15)
H1A—C1—H1B109.5C10—C9—C8118.39 (14)
C2—C1—H1C109.5C14—C9—C8123.32 (15)
H1A—C1—H1C109.5C11—C10—C9120.97 (15)
H1B—C1—H1C109.5C11—C10—H10119.5
O1—C2—C3109.92 (14)C9—C10—H10119.5
O1—C2—C1116.68 (14)C10—C11—C12120.04 (16)
C3—C2—C1133.39 (16)C10—C11—H11120.0
C2—C3—C4106.33 (14)C12—C11—H11120.0
C2—C3—C6122.53 (15)C13—C12—C11119.66 (16)
C4—C3—C6131.14 (15)C13—C12—H12120.2
C5—C4—C3105.95 (15)C11—C12—H12120.2
C5—C4—C15123.41 (16)C14—C13—C12120.33 (15)
C3—C4—C15130.63 (15)C14—C13—H13119.8
C4—C5—O1110.84 (14)C12—C13—H13119.8
C4—C5—H5124.6C13—C14—C9120.75 (16)
O1—C5—H5124.6C13—C14—H14119.6
O2—C6—C3119.83 (15)C9—C14—H14119.6
O2—C6—C7120.92 (15)C4—C15—H15A109.5
C3—C6—C7119.25 (14)C4—C15—H15B109.5
C8—C7—C6120.31 (15)H15A—C15—H15B109.5
C8—C7—H7119.8C4—C15—H15C109.5
C6—C7—H7119.8H15A—C15—H15C109.5
C7—C8—C9127.15 (15)H15B—C15—H15C109.5
C5—O1—C2—C30.31 (17)C2—C3—C6—C7164.79 (15)
C5—O1—C2—C1178.43 (14)C4—C3—C6—C715.8 (3)
O1—C2—C3—C40.56 (18)O2—C6—C7—C86.9 (2)
C1—C2—C3—C4177.90 (17)C3—C6—C7—C8173.80 (15)
O1—C2—C3—C6179.00 (14)C6—C7—C8—C9179.30 (15)
C1—C2—C3—C62.5 (3)C7—C8—C9—C10172.52 (16)
C2—C3—C4—C50.59 (18)C7—C8—C9—C148.9 (3)
C6—C3—C4—C5178.92 (17)C14—C9—C10—C110.1 (3)
C2—C3—C4—C15179.55 (17)C8—C9—C10—C11178.70 (16)
C6—C3—C4—C150.0 (3)C9—C10—C11—C120.1 (3)
C3—C4—C5—O10.42 (18)C10—C11—C12—C130.2 (3)
C15—C4—C5—O1179.47 (15)C11—C12—C13—C140.2 (3)
C2—O1—C5—C40.08 (18)C12—C13—C14—C90.2 (3)
C2—C3—C6—O214.5 (2)C10—C9—C14—C130.1 (3)
C4—C3—C6—O2164.92 (16)C8—C9—C14—C13178.66 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the furan (O1/C2–C5) and phenyl (C9–C14) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.952.442.792 (2)102
C10—H10···O2i0.952.523.413 (2)157
C12—H12···Cg1ii0.952.913.7339 (19)146
C15—H15B···Cg2iii0.982.853.6366 (19)137
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+3/2, y+1, z1/2; (iii) x+1, y1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
H1B···H82.57-1 + x, y, z
H1C···H132.523/2 - x, 1 - y, 1/2 + z
H1B···H82.47-1/2 + x, 3/2 - y, 1 - z
H1A···H102.39-3/2 + x, 3/2 - y, 1 - z
C12···H52.941 - x, 1/2 + y, 1/2 - z
H13···H1A2.491/2 - x, 1 - y, -1/2 + z
C15···H113.052 - x, -1/2 + y, 1/2 - z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and AİS; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and RMR; supervision, ANK and MA.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationAsadov, K. A., Gurevich, P. A., Egorova, E. A., Burangulova, R. N. & Guseinov, F. N. (2003). Chem. Heterocycl. Compd. 39, 1521–1522.  CrossRef CAS Google Scholar
First citationBąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2015). Z. Kristallogr. 230, 131–137.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationÇelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.  Google Scholar
First citationChalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.  Web of Science CSD CrossRef Google Scholar
First citationCuthbertson, J. D. & Taylor, R. J. K. (2013). Angew. Chem. Int. Ed. 52, 1490–1493.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKawamura, S., Chu, H., Felding, J. & Baran, P. S. (2016). Nature, 532, 90–93.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMaharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPoustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSarkı, G., Tüzün, B., Ünlüer, D. & Kantekin, H. (2023). Inorg. Chim. Acta, 545, 121113.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.  Web of Science CSD CrossRef Google Scholar
First citationVázquez-Vuelvas, O. F., Enríquez-Figueroa, R. A., García-Ortega, H., Flores-Alamo, M. & Pineda-Contreras, A. (2015). Acta Cryst. E71, 161–164.  CSD CrossRef IUCr Journals Google Scholar
First citationZingales, S. K., Wallace, M. Z. & Padgett, C. W. (2015). Acta Cryst. E71, o707.  CSD CrossRef IUCr Journals Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds