research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of rac-2,3-di­phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zine-1,1,4-trione and N-[(2S,5R)-1,1,4-trioxo-2,3-di­phenyl-1,3-thia­zinan-5-yl]acet­amide

crossmark logo

aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 13 January 2023; accepted 25 January 2023; online 31 January 2023)

The syntheses and crystal structures of two thia­zinone compounds, namely, rac-2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zine-1,1,4-trione, C16H15NO3S, in its racemic form, and N-[(2S,5R)-1,1,4-trioxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acet­amide, C18H18N2O4S, in an enanti­opure form, are reported. The thia­zine rings in the two structures differ in their puckering, as a half-chair in the first and a boat pucker in the second. The extended structures for both compounds have only C—H⋯O-type inter­actions between symmetry-related mol­ecules, and exhibit no ππ stacking inter­actions in spite of each having two phenyl rings.

1. Chemical context

The 2,3-di­hydro-4H-1,3-thia­zin-4-ones are a group of six-membered heterocycles with a wide range of biological activity (Ryabukhin et al., 1996[Ryabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131-190.]; Silverberg & Moyer, 2019[Silverberg, L. J. & Moyer, Q. J. (2019). Arkivoc, (i), 139-227.]). Surrey's research (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.]; Surrey, 1963a[Surrey, A. R. (1963a). US Patent 3082209.],b[Surrey, A. R. (1963b). US Patent 3093639.]) resulted in the discovery of two drugs, the anti­anxiety and muscle relaxant chlormezanone, C11H12ClNO3S, [2-(4-chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide] (O'Neil, 2006[O'Neil, M. J. (2006). Editor. The Merck Index, 14th ed., p. 349. Whitehouse Station, NJ: Merck & Co. Inc.]; Tanaka & Horayama, 2005[Tanaka, R. & Horayama, N. (2005). Anal. Sci. X, 21, X57-X58.]) and the muscle relaxant dichlormezanone, C11H11Cl2NO3S, [2-(3,4-di­chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide] (Elks & Ganellin, 1990[Elks, J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 382. Cambridge: Chapman and Hall.]). These sulfones showed greater activity than the sulfides from which they were synthesized (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.]).

[Scheme 1]

We have previously reported the preparation of the sulfones rac-2,3-di­hydro-2,3-diphenyl-4H-1,3-thia­zin-4-one 1,1-dioxide and N-[(2S,5R)-1,1-dioxido-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide (Silverberg, 2020[Silverberg, L. J. (2020). World patent WO2020231873 A1.]). We have also reported X-ray crystal structures of the corresponding sulfides and sulfoxides (Yennawar & Silverberg, 2014[Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.], 2015[Yennawar, H. P. & Silverberg, L. J. (2015). Acta Cryst. E71, e5.]; Yennawar et al., 2015[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62-64.], 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.], 2017[Yennawar, H. P., Noble, D. J. & Silverberg, L. J. (2017). Acta Cryst. E73, 1417-1420.]). The crystal structure of chlormezanone has been reported (Tanaka & Horayama, 2005[Tanaka, R. & Horayama, N. (2005). Anal. Sci. X, 21, X57-X58.]). Herein we report the crystal structures of rac-2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zine-1,1,4-trione, 1, and N-[(2S,5R)-1,1,4-trioxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acet­amide, 2.

2. Structural commentary

Compound 1 has one chiral center at C1 with an S configuration in the arbitrarily chosen asymmetric unit but crystal symmetry generates a racemic mixture (space group P21/c). Compound 2 has two chiral centers, at C1 and C3 (S and R respectively), synthesized as such, and crystallizes in space group P212121. In 1, the dihedral angles between the thia­zine ring (all atoms) and the pendant C5–C10 and C11–C16 phenyl groups are 84.02 (14) and 79.56 (12)°, respectively; the dihedral angle between the pendant rings is 61.26 (15)°. The equivalent angles in 2 are 81.25 (15), 82.58 (13) and 50.40 (15)°, respectively.

The structure of 1 (Fig. 1[link]) has a half-chair puckering of the thia­zine ring with puckering amplitude Q = 0.605 (2) Å, θ = 47.2 (2)°, φ = 346.7 (3)°, while in 2 (Fig. 2[link]) the ring has a boat pucker [Q = 0.770 (2) Å, θ = 85.31 (15)°, φ = 61.89 (17)°]. This change in the puckering of the central ring system of the two mol­ecules leads to differing orientations of one of the phenyl rings, which is clear from the overlay diagram (Fig. 3[link]).

[Figure 1]
Figure 1
The asymmetric unit of 1 with displacement ellipsoids drawn at 50% probability level.
[Figure 2]
Figure 2
The asymmetric unit of 2 with displacement ellipsoids drawn at 50% probability level.
[Figure 3]
Figure 3
Overlay plot of 1 and 2 where the three atoms S1, N1, and C11 are matched. Atoms C3 and C8 of compound 1 are labeled.

3. Supra­molecular features

In both structures, only C—H⋯O-type hydrogen-bond inter­actions between symmetry-related mol­ecules are observed (Tables 1[link] and 2[link]). In 1, a single hydrogen bond [C12—H12⋯O1 = 3.454 (4) Å, 157°] and its symmetry-equivalent form a pair of parallel inter­actions (Fig. 4[link]). In 2 (Fig. 5[link]), the carbon atoms C1 and C4, both of the thia­zine ring, as well as C8 of one of the phenyl rings each donate an H atom for three distinct inter­actions involving three of the four oxygen atoms in the mol­ecule. Although both compounds each have two phenyl rings, neither of the lattices exhibit any ππ stacking inter­actions.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.56 3.454 (4) 157
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.39 3.365 (3) 173
C4—H4A⋯O4ii 0.97 2.29 3.185 (4) 153
C8—H8⋯O3iii 0.93 2.51 3.378 (5) 155
Symmetry codes: (i) [x-1, y, z]; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Crystal packing diagram for 1 showing inter­molecular pairs of C—H⋯O hydrogen bonds.
[Figure 5]
Figure 5
Crystal packing diagram for 2 showing inter­molecular C—H⋯O hydrogen bonds.

4. Database survey

Searches undertaken using the American Chemical Society's Chemical Abstract Service (CAS) Scifinder platform did not find crystal structures of any 1,3-thia­zin-4-one sulfones other than chlormezanone (CSD refcode KAPNAR; Tanaka & Horayama, 2005[Tanaka, R. & Horayama, N. (2005). Anal. Sci. X, 21, X57-X58.]).

5. Synthesis and crystallization

General oxidation procedure (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.]; Silverberg, 2020[Silverberg, L. J. (2020). World patent WO2020231873 A1.]; Cannon et al. 2015[Cannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). Intl. J. Chem. 7, 73-84.]): the heterocycle (0.267 mmol) was dissolved in glacial acetic acid (1.2 ml). An aqueous solution of KMnO4 (0.535 mmol in 1.45 ml water) was added dropwise at room temperature with vigorous stirring. The reaction was followed by TLC. Solid sodium bis­ulfite (NaHSO3/Na2S2O5) was added until the mixture remained colorless and then 1.45 ml of water were added and stirred for 10 min. The mixture was extracted with CH2Cl2 (3 × 5 ml). The organics were combined and washed once with sat. NaCl. The solution was dried over Na2SO4 and filtered. The product was purified by chromatography in a silica gel micro-column.

rac-2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zine-1,1,4-trione, 1: Eluted with mixtures of ethyl acetate and hexa­nes. White solid (0.053 g, 70%). m.p.: 418–421 K. Crystals for X-ray diffraction studies were grown by slow evaporation from toluene solution.

N-[(2S,5R)-1,1,4-trioxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acet­amide, 2: Eluted with a mixture of 10% acetone and 90% ethyl acetate. White solid (0.076 g, 80%). m.p.: 443–467 K (decomposition). Crystals were grown by slow evaporation from ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were placed in their geometrically calculated positions and their coordin­ates refined using the riding model with parent-atom—H lengths of 0.93 Å (CH), 0.98 Å (chiral-CH), 0.96 Å (CH3), 0.97 Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C16H15NO3S C18H18N2O4S
Mr 301.35 358.40
Crystal system, space group Monoclinic, P21/c Orthorhombic, P212121
Temperature (K) 173 298
a, b, c (Å) 14.4485 (6), 10.2031 (5), 10.4950 (4) 5.5230 (4), 10.6857 (9), 28.430 (2)
α, β, γ (°) 90, 107.179 (4), 90 90, 90, 90
V3) 1478.13 (11) 1677.8 (2)
Z 4 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 2.03 0.22
Crystal size (mm) 0.2 × 0.18 × 0.09 0.22 × 0.06 × 0.06
 
Data collection
Diffractometer Rigaku Oxford Diffraction Synergy Custom system, HyPix-Arc 150 Bruker SMART CCD area detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.668, 1.000 0.656, 0.900
No. of measured, independent and observed [I > 2σ(I)] reflections 7437, 2856, 2139 13301, 4037, 3460
Rint 0.056 0.035
(sin θ/λ)max−1) 0.628 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 1.10 0.042, 0.103, 1.04
No. of reflections 2856 4037
No. of parameters 191 231
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.34 0.24, −0.14
Absolute structure Flack x determined using 1213 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.07 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SMART and SAINT (Bruker, 2016[Bruker (2016). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022) for (1); SMART (Bruker, 2016) for (2). Cell refinement: CrysAlis PRO (Rigaku OD, 2022) for (1); SAINT (Bruker, 2016) for (2). Data reduction: CrysAlis PRO (Rigaku OD, 2022) for (1); SAINT (Bruker, 2016) for (2). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1); SHELXS (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

rac-2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-1,1,4-trione (1) top
Crystal data top
C16H15NO3SF(000) = 632
Mr = 301.35Dx = 1.354 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.4485 (6) ÅCell parameters from 3416 reflections
b = 10.2031 (5) Åθ = 3.2–73.3°
c = 10.4950 (4) ŵ = 2.03 mm1
β = 107.179 (4)°T = 173 K
V = 1478.13 (11) Å3Block, clear colourless
Z = 40.2 × 0.18 × 0.09 mm
Data collection top
Rigaku Oxford Diffraction Synergy Custom system, HyPix-Arc 150
diffractometer
2856 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source2139 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 10.0000 pixels mm-1θmax = 75.6°, θmin = 3.2°
ω scansh = 1517
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1112
Tmin = 0.668, Tmax = 1.000l = 1213
7437 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.268P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.32 e Å3
2856 reflectionsΔρmin = 0.34 e Å3
191 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0023 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45082 (4)0.66477 (7)0.66401 (5)0.0380 (2)
O10.52700 (12)0.5704 (2)0.67907 (19)0.0514 (6)
O20.41925 (14)0.6961 (2)0.77812 (16)0.0519 (6)
O30.22170 (13)0.91599 (19)0.44575 (18)0.0455 (5)
N10.27444 (13)0.7076 (2)0.48536 (18)0.0306 (5)
C10.35000 (16)0.6063 (3)0.5290 (2)0.0310 (5)
H10.3744400.5839840.4519210.037*
C40.47674 (18)0.8100 (3)0.5937 (2)0.0396 (6)
H4A0.5325250.8544610.6569100.048*
H4B0.4939810.7903810.5111270.048*
C30.38813 (19)0.8988 (3)0.5617 (3)0.0425 (6)
H3A0.3992820.9714860.5054380.051*
H3B0.3848380.9380470.6465310.051*
C20.28912 (18)0.8402 (3)0.4920 (2)0.0348 (6)
C50.18322 (17)0.6594 (3)0.3978 (2)0.0333 (6)
C60.17961 (19)0.6182 (3)0.2711 (2)0.0440 (7)
H60.2353360.6254520.2411210.053*
C70.0947 (2)0.5664 (4)0.1879 (3)0.0559 (9)
H70.0919080.5379000.1006550.067*
C80.0141 (2)0.5563 (4)0.2324 (3)0.0633 (10)
H80.0441260.5199580.1759390.076*
C90.0179 (2)0.5990 (4)0.3588 (3)0.0682 (11)
H90.0380420.5929640.3883630.082*
C100.10296 (19)0.6506 (3)0.4427 (3)0.0496 (8)
H100.1058070.6794550.5297970.060*
C110.31292 (16)0.4818 (3)0.5756 (2)0.0334 (6)
C120.3255 (2)0.3631 (3)0.5188 (3)0.0437 (7)
H120.3560670.3604390.4501530.052*
C130.2933 (2)0.2481 (3)0.5624 (3)0.0550 (8)
H130.3015050.1667050.5230150.066*
C140.2495 (2)0.2515 (3)0.6624 (3)0.0541 (8)
H140.2279090.1725990.6923650.065*
C150.2371 (2)0.3693 (3)0.7189 (3)0.0468 (7)
H150.2072090.3711150.7882720.056*
C160.26749 (17)0.4849 (3)0.6758 (2)0.0391 (6)
H160.2575390.5660390.7141040.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0329 (4)0.0492 (5)0.0252 (3)0.0062 (3)0.0018 (2)0.0054 (3)
O10.0332 (10)0.0563 (14)0.0540 (11)0.0048 (9)0.0038 (8)0.0172 (10)
O20.0568 (12)0.0699 (15)0.0249 (9)0.0242 (11)0.0060 (8)0.0045 (9)
O30.0431 (11)0.0385 (11)0.0531 (11)0.0069 (9)0.0117 (8)0.0068 (9)
N10.0264 (10)0.0339 (12)0.0271 (9)0.0014 (9)0.0010 (7)0.0010 (9)
C10.0288 (12)0.0369 (14)0.0242 (11)0.0019 (11)0.0029 (8)0.0001 (10)
C40.0332 (13)0.0488 (18)0.0306 (12)0.0078 (12)0.0002 (9)0.0007 (12)
C30.0429 (15)0.0410 (16)0.0409 (13)0.0035 (13)0.0085 (11)0.0046 (12)
C20.0387 (13)0.0361 (15)0.0287 (12)0.0004 (12)0.0088 (9)0.0008 (11)
C50.0266 (12)0.0412 (16)0.0273 (11)0.0008 (11)0.0006 (9)0.0025 (11)
C60.0344 (13)0.061 (2)0.0318 (13)0.0004 (13)0.0024 (10)0.0038 (13)
C70.0457 (16)0.075 (2)0.0375 (14)0.0016 (16)0.0020 (11)0.0111 (15)
C80.0393 (16)0.083 (3)0.0542 (18)0.0118 (17)0.0070 (13)0.0056 (18)
C90.0319 (15)0.118 (3)0.0511 (18)0.0105 (19)0.0072 (12)0.003 (2)
C100.0347 (14)0.079 (2)0.0340 (13)0.0036 (15)0.0083 (10)0.0019 (14)
C110.0284 (12)0.0365 (15)0.0299 (11)0.0023 (11)0.0005 (9)0.0008 (11)
C120.0441 (15)0.0421 (17)0.0402 (14)0.0065 (13)0.0051 (11)0.0036 (13)
C130.063 (2)0.0324 (17)0.0579 (18)0.0028 (15)0.0007 (15)0.0000 (14)
C140.0525 (17)0.0420 (19)0.0573 (18)0.0064 (15)0.0001 (14)0.0102 (15)
C150.0428 (15)0.0516 (19)0.0431 (15)0.0038 (14)0.0083 (11)0.0098 (14)
C160.0398 (14)0.0400 (16)0.0360 (13)0.0006 (12)0.0089 (10)0.0013 (12)
Geometric parameters (Å, º) top
S1—O11.435 (2)C6—C71.383 (4)
S1—O21.438 (2)C7—H70.9500
S1—C11.807 (2)C7—C81.381 (4)
S1—C41.744 (3)C8—H80.9500
O3—C21.226 (3)C8—C91.382 (5)
N1—C11.475 (3)C9—H90.9500
N1—C21.368 (3)C9—C101.387 (4)
N1—C51.451 (3)C10—H100.9500
C1—H11.0000C11—C121.385 (4)
C1—C111.514 (4)C11—C161.394 (3)
C4—H4A0.9900C12—H120.9500
C4—H4B0.9900C12—C131.389 (4)
C4—C31.523 (4)C13—H130.9500
C3—H3A0.9900C13—C141.377 (5)
C3—H3B0.9900C14—H140.9500
C3—C21.524 (4)C14—C151.375 (4)
C5—C61.381 (3)C15—H150.9500
C5—C101.377 (4)C15—C161.381 (4)
C6—H60.9500C16—H160.9500
O1—S1—O2118.62 (12)C5—C6—H6120.0
O1—S1—C1106.20 (12)C5—C6—C7119.9 (3)
O1—S1—C4111.28 (13)C7—C6—H6120.0
O2—S1—C1110.23 (11)C6—C7—H7120.2
O2—S1—C4108.92 (14)C8—C7—C6119.6 (3)
C4—S1—C199.96 (11)C8—C7—H7120.2
C2—N1—C1126.0 (2)C7—C8—H8119.9
C2—N1—C5117.7 (2)C7—C8—C9120.2 (3)
C5—N1—C1114.2 (2)C9—C8—H8119.9
S1—C1—H1108.3C8—C9—H9119.8
N1—C1—S1111.31 (17)C8—C9—C10120.4 (3)
N1—C1—H1108.3C10—C9—H9119.8
N1—C1—C11112.84 (19)C5—C10—C9119.1 (3)
C11—C1—S1107.70 (15)C5—C10—H10120.5
C11—C1—H1108.3C9—C10—H10120.5
S1—C4—H4A109.9C12—C11—C1119.3 (2)
S1—C4—H4B109.9C12—C11—C16119.7 (3)
H4A—C4—H4B108.3C16—C11—C1121.0 (2)
C3—C4—S1109.11 (19)C11—C12—H12120.1
C3—C4—H4A109.9C11—C12—C13119.8 (3)
C3—C4—H4B109.9C13—C12—H12120.1
C4—C3—H3A107.6C12—C13—H13119.9
C4—C3—H3B107.6C14—C13—C12120.2 (3)
C4—C3—C2118.7 (2)C14—C13—H13119.9
H3A—C3—H3B107.1C13—C14—H14120.0
C2—C3—H3A107.6C15—C14—C13119.9 (3)
C2—C3—H3B107.6C15—C14—H14120.0
O3—C2—N1120.7 (2)C14—C15—H15119.7
O3—C2—C3117.7 (2)C14—C15—C16120.7 (3)
N1—C2—C3121.5 (2)C16—C15—H15119.7
C6—C5—N1118.8 (2)C11—C16—H16120.2
C10—C5—N1120.3 (2)C15—C16—C11119.6 (3)
C10—C5—C6120.9 (2)C15—C16—H16120.2
S1—C1—C11—C12111.1 (2)C4—C3—C2—O3167.2 (2)
S1—C1—C11—C1668.1 (2)C4—C3—C2—N115.3 (4)
S1—C4—C3—C245.9 (3)C2—N1—C1—S129.3 (3)
O1—S1—C1—N1168.32 (16)C2—N1—C1—C11150.5 (2)
O1—S1—C1—C1167.50 (19)C2—N1—C5—C696.5 (3)
O1—S1—C4—C3172.01 (17)C2—N1—C5—C1086.0 (3)
O2—S1—C1—N162.00 (19)C5—N1—C1—S1167.57 (16)
O2—S1—C1—C1162.2 (2)C5—N1—C1—C1146.3 (3)
O2—S1—C4—C355.4 (2)C5—N1—C2—O313.2 (3)
N1—C1—C11—C12125.6 (2)C5—N1—C2—C3169.4 (2)
N1—C1—C11—C1655.2 (3)C5—C6—C7—C80.0 (5)
N1—C5—C6—C7177.1 (3)C6—C5—C10—C90.3 (5)
N1—C5—C10—C9177.2 (3)C6—C7—C8—C90.7 (6)
C1—S1—C4—C360.16 (19)C7—C8—C9—C100.9 (6)
C1—N1—C2—O3175.8 (2)C8—C9—C10—C50.4 (6)
C1—N1—C2—C36.8 (3)C10—C5—C6—C70.5 (4)
C1—N1—C5—C668.1 (3)C11—C12—C13—C140.4 (4)
C1—N1—C5—C10109.4 (3)C12—C11—C16—C151.1 (4)
C1—C11—C12—C13178.9 (2)C12—C13—C14—C150.4 (4)
C1—C11—C16—C15178.1 (2)C13—C14—C15—C160.4 (4)
C4—S1—C1—N152.56 (18)C14—C15—C16—C111.2 (4)
C4—S1—C1—C11176.73 (18)C16—C11—C12—C130.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.563.454 (4)157
Symmetry code: (i) x+1, y+1, z+1.
N-[(2S,5R)-1,1,4-Trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (2) top
Crystal data top
C18H18N2O4SDx = 1.419 Mg m3
Mr = 358.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4224 reflections
a = 5.5230 (4) Åθ = 2.4–25.0°
b = 10.6857 (9) ŵ = 0.22 mm1
c = 28.430 (2) ÅT = 298 K
V = 1677.8 (2) Å3Rod, colorless
Z = 40.22 × 0.06 × 0.06 mm
F(000) = 752
Data collection top
Bruker SMART CCD area detector
diffractometer
3460 reflections with I > 2σ(I)
phi and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 1.4°
Tmin = 0.656, Tmax = 0.900h = 75
13301 measured reflectionsk = 1214
4037 independent reflectionsl = 3637
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.035P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.24 e Å3
4037 reflectionsΔρmin = 0.14 e Å3
231 parametersAbsolute structure: Flack x determined using 1213 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.07 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29097 (13)0.61561 (6)0.04750 (2)0.04039 (18)
O10.2013 (5)0.5960 (2)0.00084 (6)0.0665 (7)
O20.5430 (4)0.5943 (2)0.05600 (8)0.0655 (6)
O30.0948 (4)0.72050 (18)0.18769 (6)0.0575 (6)
O40.3983 (4)0.8940 (2)0.13514 (8)0.0659 (6)
N10.1594 (4)0.56459 (18)0.13538 (6)0.0394 (5)
N20.0062 (5)0.8977 (2)0.12438 (9)0.0485 (6)
C10.1124 (4)0.5198 (2)0.08754 (7)0.0333 (5)
H10.0584320.5367130.0807160.040*
C20.0930 (5)0.6841 (2)0.14753 (8)0.0409 (6)
C30.0251 (5)0.7713 (2)0.10656 (8)0.0398 (6)
H30.1322740.7456900.0938670.048*
C40.2134 (6)0.7692 (2)0.06686 (8)0.0424 (6)
H4A0.3590080.8110130.0776600.051*
H4B0.1506870.8162060.0403300.051*
C110.1560 (4)0.3832 (2)0.07738 (7)0.0350 (5)
C160.3688 (5)0.3203 (3)0.08898 (9)0.0448 (6)
H160.4933710.3620020.1044120.054*
C150.3932 (6)0.1953 (3)0.07738 (10)0.0559 (8)
H150.5330400.1525660.0859680.067*
C140.2132 (7)0.1331 (3)0.05326 (10)0.0596 (9)
H140.2327170.0492130.0453560.072*
C130.0065 (7)0.1949 (3)0.04104 (10)0.0565 (8)
H130.1144790.1532890.0245160.068*
C120.0235 (5)0.3194 (2)0.05317 (8)0.0434 (6)
H120.1656810.3606210.0449900.052*
C50.2702 (5)0.4889 (2)0.17177 (7)0.0393 (6)
C60.1536 (6)0.3843 (3)0.18873 (9)0.0535 (8)
H60.0040730.3603010.1766700.064*
C70.2639 (10)0.3152 (3)0.22429 (10)0.0815 (13)
H70.1887470.2435300.2357470.098*
C80.4806 (12)0.3516 (5)0.24243 (12)0.0976 (17)
H80.5531130.3044690.2660630.117*
C90.5929 (8)0.4575 (5)0.22597 (12)0.0839 (13)
H90.7385870.4833510.2391810.101*
C100.4902 (6)0.5261 (3)0.18983 (10)0.0560 (8)
H100.5685520.5963190.1779020.067*
C170.2027 (7)0.9434 (3)0.14185 (9)0.0490 (7)
C180.1753 (8)1.0631 (3)0.16996 (11)0.0678 (10)
H18A0.3300401.1032680.1728520.102*
H18B0.0645661.1181030.1541500.102*
H18C0.1138531.0436990.2007000.102*
H20.139 (5)0.924 (3)0.1348 (9)0.042 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0452 (4)0.0358 (3)0.0402 (3)0.0022 (3)0.0046 (3)0.0016 (2)
O10.1092 (19)0.0556 (12)0.0347 (9)0.0001 (14)0.0030 (11)0.0010 (8)
O20.0404 (11)0.0512 (13)0.1048 (17)0.0035 (10)0.0137 (12)0.0130 (11)
O30.0835 (16)0.0502 (12)0.0387 (9)0.0055 (11)0.0013 (10)0.0095 (8)
O40.0562 (14)0.0671 (15)0.0742 (14)0.0093 (13)0.0051 (11)0.0223 (12)
N10.0536 (15)0.0329 (10)0.0317 (9)0.0008 (10)0.0029 (9)0.0018 (8)
N20.0530 (16)0.0315 (12)0.0611 (14)0.0018 (12)0.0034 (12)0.0078 (10)
C10.0321 (12)0.0353 (12)0.0324 (10)0.0017 (10)0.0035 (9)0.0027 (9)
C20.0461 (16)0.0349 (13)0.0415 (12)0.0033 (12)0.0008 (12)0.0033 (10)
C30.0431 (15)0.0303 (12)0.0460 (13)0.0002 (11)0.0029 (11)0.0054 (10)
C40.0506 (15)0.0347 (12)0.0419 (12)0.0013 (13)0.0016 (12)0.0019 (9)
C110.0406 (14)0.0327 (11)0.0317 (10)0.0004 (11)0.0015 (9)0.0009 (9)
C160.0480 (16)0.0434 (14)0.0431 (13)0.0080 (13)0.0010 (11)0.0002 (11)
C150.072 (2)0.0458 (16)0.0498 (15)0.0223 (16)0.0092 (15)0.0110 (12)
C140.095 (3)0.0319 (13)0.0516 (15)0.0005 (17)0.0225 (18)0.0014 (11)
C130.072 (2)0.0451 (16)0.0521 (15)0.0183 (17)0.0068 (15)0.0108 (12)
C120.0463 (15)0.0445 (15)0.0394 (12)0.0049 (13)0.0010 (12)0.0051 (11)
C50.0445 (15)0.0420 (13)0.0315 (10)0.0043 (12)0.0011 (11)0.0019 (9)
C60.071 (2)0.0473 (15)0.0422 (13)0.0011 (16)0.0077 (13)0.0033 (12)
C70.138 (4)0.060 (2)0.0462 (16)0.015 (3)0.012 (2)0.0154 (14)
C80.147 (5)0.100 (4)0.0458 (18)0.058 (3)0.020 (2)0.0019 (19)
C90.073 (3)0.118 (4)0.060 (2)0.039 (3)0.0289 (19)0.029 (2)
C100.0483 (18)0.071 (2)0.0483 (14)0.0058 (16)0.0050 (13)0.0119 (14)
C170.065 (2)0.0384 (14)0.0435 (13)0.0077 (15)0.0061 (15)0.0038 (10)
C180.095 (3)0.0437 (16)0.0649 (18)0.0125 (19)0.0055 (19)0.0156 (13)
Geometric parameters (Å, º) top
S1—O11.431 (2)C15—H150.9300
S1—O21.431 (2)C15—C141.378 (5)
S1—C11.821 (2)C14—H140.9300
S1—C41.783 (3)C14—C131.364 (5)
O3—C21.206 (3)C13—H130.9300
O4—C171.218 (4)C13—C121.384 (4)
N1—C11.465 (3)C12—H120.9300
N1—C21.373 (3)C5—C61.377 (4)
N1—C51.449 (3)C5—C101.378 (4)
N2—C31.446 (3)C6—H60.9300
N2—C171.348 (4)C6—C71.393 (5)
N2—H20.84 (3)C7—H70.9300
C1—H10.9800C7—C81.360 (7)
C1—C111.507 (3)C8—H80.9300
C2—C31.538 (3)C8—C91.373 (6)
C3—H30.9800C9—H90.9300
C3—C41.535 (4)C9—C101.384 (5)
C4—H4A0.9700C10—H100.9300
C4—H4B0.9700C17—C181.515 (4)
C11—C161.394 (4)C18—H18A0.9600
C11—C121.386 (3)C18—H18B0.9600
C16—H160.9300C18—H18C0.9600
C16—C151.382 (4)
O1—S1—C1108.03 (13)C16—C15—H15119.5
O1—S1—C4109.74 (13)C14—C15—C16121.0 (3)
O2—S1—O1118.01 (15)C14—C15—H15119.5
O2—S1—C1109.38 (12)C15—C14—H14120.1
O2—S1—C4109.15 (14)C13—C14—C15119.8 (3)
C4—S1—C1101.20 (11)C13—C14—H14120.1
C2—N1—C1119.34 (19)C14—C13—H13119.9
C2—N1—C5116.91 (18)C14—C13—C12120.2 (3)
C5—N1—C1123.75 (19)C12—C13—H13119.9
C3—N2—H2112 (2)C11—C12—H12119.6
C17—N2—C3122.0 (3)C13—C12—C11120.7 (3)
C17—N2—H2120 (2)C13—C12—H12119.6
S1—C1—H1107.1C6—C5—N1120.4 (2)
N1—C1—S1107.50 (16)C10—C5—N1118.5 (3)
N1—C1—H1107.1C10—C5—C6121.1 (3)
N1—C1—C11117.76 (19)C5—C6—H6120.7
C11—C1—S1109.76 (16)C5—C6—C7118.7 (3)
C11—C1—H1107.1C7—C6—H6120.7
O3—C2—N1122.4 (2)C6—C7—H7119.7
O3—C2—C3121.6 (2)C8—C7—C6120.6 (4)
N1—C2—C3115.99 (19)C8—C7—H7119.7
N2—C3—C2108.5 (2)C7—C8—H8119.9
N2—C3—H3109.0C7—C8—C9120.2 (4)
N2—C3—C4108.7 (2)C9—C8—H8119.9
C2—C3—H3109.0C8—C9—H9119.8
C4—C3—C2112.5 (2)C8—C9—C10120.3 (4)
C4—C3—H3109.0C10—C9—H9119.8
S1—C4—H4A108.8C5—C10—C9119.0 (4)
S1—C4—H4B108.8C5—C10—H10120.5
C3—C4—S1113.79 (17)C9—C10—H10120.5
C3—C4—H4A108.8O4—C17—N2123.0 (2)
C3—C4—H4B108.8O4—C17—C18122.5 (3)
H4A—C4—H4B107.7N2—C17—C18114.5 (3)
C16—C11—C1123.8 (2)C17—C18—H18A109.5
C12—C11—C1117.2 (2)C17—C18—H18B109.5
C12—C11—C16118.9 (2)C17—C18—H18C109.5
C11—C16—H16120.3H18A—C18—H18B109.5
C15—C16—C11119.5 (3)H18A—C18—H18C109.5
C15—C16—H16120.3H18B—C18—H18C109.5
S1—C1—C11—C1673.2 (2)C2—N1—C5—C6114.0 (3)
S1—C1—C11—C12103.8 (2)C2—N1—C5—C1064.0 (3)
O1—S1—C1—N1165.13 (17)C2—C3—C4—S150.6 (3)
O1—S1—C1—C1165.65 (19)C3—N2—C17—O415.9 (4)
O1—S1—C4—C3111.3 (2)C3—N2—C17—C18165.1 (2)
O2—S1—C1—N165.22 (19)C4—S1—C1—N149.88 (19)
O2—S1—C1—C1164.00 (19)C4—S1—C1—C11179.10 (17)
O2—S1—C4—C3117.9 (2)C11—C16—C15—C142.0 (4)
O3—C2—C3—N28.7 (4)C16—C11—C12—C130.6 (4)
O3—C2—C3—C4129.0 (3)C16—C15—C14—C130.7 (4)
N1—C1—C11—C1650.2 (3)C15—C14—C13—C120.6 (4)
N1—C1—C11—C12132.9 (2)C14—C13—C12—C110.7 (4)
N1—C2—C3—N2169.1 (2)C12—C11—C16—C151.9 (4)
N1—C2—C3—C448.8 (3)C5—N1—C1—S1117.4 (2)
N1—C5—C6—C7178.9 (3)C5—N1—C1—C117.2 (3)
N1—C5—C10—C9177.3 (3)C5—N1—C2—O39.9 (4)
N2—C3—C4—S1170.82 (19)C5—N1—C2—C3167.9 (2)
C1—S1—C4—C32.7 (2)C5—C6—C7—C81.1 (5)
C1—N1—C2—O3169.2 (3)C6—C5—C10—C90.8 (4)
C1—N1—C2—C313.1 (4)C6—C7—C8—C90.3 (6)
C1—N1—C5—C664.9 (3)C7—C8—C9—C102.0 (6)
C1—N1—C5—C10117.0 (3)C8—C9—C10—C52.2 (5)
C1—C11—C16—C15178.8 (2)C10—C5—C6—C70.9 (4)
C1—C11—C12—C13177.7 (2)C17—N2—C3—C288.7 (3)
C2—N1—C1—S163.7 (3)C17—N2—C3—C4148.7 (3)
C2—N1—C1—C11171.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.393.365 (3)173
C4—H4A···O4ii0.972.293.185 (4)153
C8—H8···O3iii0.932.513.378 (5)155
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2.
 

Funding information

Research reported here was conducted on instrumentation funded by NSF (for Bruker AXS system) CHEM-0131112, and SIG S10 grants of the National Institutes of Health (for the Rigaku rotating anode system) under award numbers 1S10OD028589–01 and 1S10RR023439–01 to Dr Neela Yennawar.

References

First citationBruker (2016). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). Intl. J. Chem. 7, 73–84.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElks, J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 382. Cambridge: Chapman and Hall.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationO'Neil, M. J. (2006). Editor. The Merck Index, 14th ed., p. 349. Whitehouse Station, NJ: Merck & Co. Inc.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRyabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131–190.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilverberg, L. J. (2020). World patent WO2020231873 A1.  Google Scholar
First citationSilverberg, L. J. & Moyer, Q. J. (2019). Arkivoc, (i), 139-227.  CrossRef Google Scholar
First citationSurrey, A. R. (1963a). US Patent 3082209.  Google Scholar
First citationSurrey, A. R. (1963b). US Patent 3093639.  Google Scholar
First citationSurrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.  CrossRef CAS Web of Science Google Scholar
First citationTanaka, R. & Horayama, N. (2005). Anal. Sci. X, 21, X57–X58.  CAS Google Scholar
First citationYennawar, H. P., Noble, D. J. & Silverberg, L. J. (2017). Acta Cryst. E73, 1417–1420.  CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2015). Acta Cryst. E71, e5.  CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62–64.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541–1543.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds