research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{4-[(4-methyl­benz­yl)­­oxy]-N′-(4-methyl­benzyl­­idene)benzohydrazidato}nickel(II)

crossmark logo

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and dDepartment of Chemical and Pharmaceutical SCiences, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 August 2022; accepted 25 September 2022; online 30 September 2022)

In the title complex, [Ni(C23H21N2O2)2], the central NiII atom is located on an inversion centre and exhibits a slightly distorted square-planar N2O2 coordination environment. A trans-configuration of the N,O chelating ligands results from the imposed site symmetry of the central NiII atom. In the crystal, individual mol­ecules stack along the a axis through weak ππ stacking inter­actions between the phenyl rings.

1. Chemical context

Variously substituted hydrazone ligands have attracted special attention because of their chelating capabilities and structural properties, such as the degree of rigidity, a conjugated π-system and an N—H unit that readily participates in hydrogen bonding and may be easily deprotonated. The corresponding nickel(II) complexes are of considerable inter­est since they exhibit a broad spectrum of physiological and pharmacological activities (Yang et al., 2020[Yang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248.]; Al-Qadsy et al., 2021[Al-Qadsy, I., Al-Odayni, A.-B., Saeed, W. S., Alrabie, A., Al-Adhreai, A., Al-Faqeeh, L. A. S., Lama, P., Alghamdi, A. A. & Farooqui, M. (2021). Crystals, 11, 110.]; Neethu et al., 2021[Neethu, K. S., Sivaselvam, S., Theetharappan, M., Ranjitha, J., Bhuvanesh, N. S. P., Ponpandian, N., Neelakantan, M. A. & Kaveri, M. V. (2021). Inorg. Chim. Acta, 524, 120419.]; Krishnamoorthy et al., 2012[Krishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423-4436.]), most of which are structure-dependent properties.

[Scheme 1]

We report here the synthesis and crystal structure of another NiII complex with a derivatized hydrazone ligand.

2. Structural commentary

The central metal NiII atom of the title complex is located on an inversion center. Hence, the asymmetric unit comprises half a mol­ecule (Fig. 1[link]). The enolizable O atom and the azometh­ine N atom of the ligand coordinate to the NiII atom to form a five-membered chelate ring. The NiII atom exhibits a slightly distorted square-planar coordination environment with the deprotonated ligands in a trans configuration imposed by the crystal symmetry. The Ni—N1 and Ni—O1 bond lengths are 1.8677 (12) and 1.8363 (10) Å, respectively, with a chelating angle of 83.47 (5)°. These data are in agreement with previously reported crystal structures of related complexes (Yang et al., 2020[Yang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248.]; Al-Qadsy et al., 2021[Al-Qadsy, I., Al-Odayni, A.-B., Saeed, W. S., Alrabie, A., Al-Adhreai, A., Al-Faqeeh, L. A. S., Lama, P., Alghamdi, A. A. & Farooqui, M. (2021). Crystals, 11, 110.]; Neethu et al., 2021[Neethu, K. S., Sivaselvam, S., Theetharappan, M., Ranjitha, J., Bhuvanesh, N. S. P., Ponpandian, N., Neelakantan, M. A. & Kaveri, M. V. (2021). Inorg. Chim. Acta, 524, 120419.]; Krishnamoorthy et al., 2012[Krishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423-4436.]), irrespective of the substituents present in the ligand.

[Figure 1]
Figure 1
Mol­ecular structure of the centrosymmetric nickel(II) complex, drawn with displacement ellipsoids at the 50% probability level. [symmetry code for primed atoms: −x + 2, −y, −z + 2.]

As expected, the C9—O1 bond length of 1.3009 (18) Å lies between a C—O single bond (1.43 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Robin Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1-S19.]) and a C=O double bond (1.21 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Robin Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1-S19.]). The bond lengths N1—C8 of 1.2977 (19) Å and N2—C9 of 1.3145 (18) Å are close to the value of a typical C=N bond (1.30 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Robin Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1-S19.]). These data reveal that the —CH=N—N=C—O fragment of the ligand remains a conjugated system even after the loss of a H atom from its enolized carbonyl O atom. The complex is stabilized by weak intra­molecular C8—H8⋯O1, C3—H3⋯N2 and C11—H11⋯O1 hydrogen bonds involving phenyl and methylene donor groups and the coordinating atoms as acceptor groups (Table 1[link]). The benzyl­idene ring is tilted by 26.06 (6)° with respect to the N2O2 coordination plane, while the phenyl rings of the ether moiety form a dihedral angle of 83.29 (5)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.38 2.9455 (18) 118
C3—H3⋯N2 0.95 2.37 2.945 (2) 118
C11—H11⋯O1 0.95 2.43 2.7590 (19) 100
Symmetry code: (i) [-x+2, -y, -z+2].

The bond-valence sum (BVS) calculated for the NiII atom present in the complex, using the parameters of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), indicate a higher value (2.97 valence units) than expected for a formal ionic charge of +2. The calculated high value can be reasonably attributed to a very pronounced covalent bonding associated with the Ni—O and Ni—N bonds. As a matter of fact, a set of new optimized r0 parameters to be used for the BVS calculation for model compounds involving NiII—O, NiII—S, NiII—N inter­actions has been proposed (Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]). By using these values, the BVS calculation for this complex gives a value of 2.36 valence units.

3. Supra­molecular features

Individual mol­ecular complexes are weakly packed along the a axis through π-ring inter­actions involving the phenyl rings, with centroid-to-centroid distances of 4.6914 (2) Å and a slippage of ca 3.0-3.3 Å, as shown in Fig. 2[link]. In addition, the five-membered chelate rings of neighbouring complexes have even shorter distances [3.4555 (2) Å with a slippage of 0.96 Å].

[Figure 2]
Figure 2
Crystal packing of individual complexes showing the π-ring inter­actions as dotted lines.

4. Database survey

A search in the Cambridge Crystal Structure Database (CSD, version 5.43, update June 2022); Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) retrieved more than twenty bis-chelated square-planar nickel(II) complexes with hydrazone-based ligands also bearing bulky ferrocenyl groups (Krishnamoorthy et al., 2012[Krishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423-4436.]), 2,2′-bi­thio­phenyl (Yang et al., 2020[Yang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248.]) or 9-anthryl­methyl­ene fragments (Mondal et al., 2014[Mondal, S., Das, C., Ghosh, B., Pakhira, B., Blake, A. J., Drew, M. G. B. & Chattopadhyay, S. K. (2014). Polyhedron, 80, 272-281.]). However, no species comprising a long benzyl-phenyl ether chain has been reported so far. It is worth noting that all characterized NiII complexes exhibit a trans-configuration of ligands, where the —CH=N—N=C—O fragment is chelating, and the coordination Ni—O and Ni—N bond lengths do not appear to be significantly affected by the electronic or steric properties of groups present on the ligands.

5. Synthesis and crystallization

To a solution of 4-(4-methyl­benz­yloxy)benzoyl­hydrazine (0.26 g, 1 mmol in 25 ml of ethanol), 4-methyl benzaldehyde (0.12 g, 1 mmol) was added and the mixture was refluxed for half an hour. A solution of nickel(II) acetate tetra­hydrate (0.13 g, 0.5 mmol in 5 ml of ethanol) was then added and refluxing was continued for 2 h. The obtained orange precipitate was filtered off and washed three times with hot ethanol. The product was recrystallized from a mixture of chloro­form and aceto­nitrile (5:1, v/v) and orange crystals, suitable for X-ray diffraction, were filtered off, washed with hot ethanol, and left to dry in a desiccator over silica gel. Yield: 0.45 g, 58%. Melting point: >523 K. FT–IR: 1603, 1585 ν (C=N—N=C), 486 ν (M—N), 503 ν (M—O). LC–MS (ESI) m/z: [M + H]+. Calculated for C46H42N4O4Ni 773.2632; found 773.2636. μeff: 0.832 B·M. Molar conductance (ohm−1 cm2 mol−1): 1.0. NMR spectra were not obtained due to the low solubility of the complex even in DMSO.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were included in idealized positions as riding contributions with fixed isotropic displacement parameters [C—H = 0.95–0.99 Å; Uiso(H) = 1.2 or 1.5 Ueq(C)].

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C23H21N2O2)2]
Mr 773.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 4.6914 (2), 13.0677 (7), 16.9923 (8)
α, β, γ (°) 68.441 (5), 83.739 (6), 88.032 (6)
V3) 963.05 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.32 × 0.08 × 0.03
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.761, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 9456, 4375, 3883
Rint 0.024
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.06
No. of reflections 4375
No. of parameters 252
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.19
Computer programs: CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrystalStructure (Rigaku, 2018); cell refinement: CrystalStructure (Rigaku, 2018); data reduction: CrystalStructure (Rigaku, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis{4-[(4-methylbenzyl)oxy]-N'-(4-methylbenzylidene)benzohydrazidato}nickel(II) top
Crystal data top
[Ni(C23H21N2O2)2]Z = 1
Mr = 773.54F(000) = 406
Triclinic, P1Dx = 1.334 Mg m3
a = 4.6914 (2) ÅMo Kα radiation, λ = 0.71075 Å
b = 13.0677 (7) ÅCell parameters from 8457 reflections
c = 16.9923 (8) Åθ = 1.7–27.5°
α = 68.441 (5)°µ = 0.55 mm1
β = 83.739 (6)°T = 173 K
γ = 88.032 (6)°Platelet, orange
V = 963.05 (9) Å30.32 × 0.08 × 0.03 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3883 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.024
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 65
Tmin = 0.761, Tmax = 0.984k = 1616
9456 measured reflectionsl = 2222
4375 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.1727P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.006
4375 reflectionsΔρmax = 0.42 e Å3
252 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.0000000.0000001.0000000.02390 (10)
O10.8708 (2)0.13421 (8)0.93185 (7)0.0267 (2)
O20.2680 (3)0.52033 (9)0.65888 (7)0.0339 (3)
N10.7701 (3)0.05385 (10)0.94061 (8)0.0250 (3)
N20.6329 (3)0.02767 (10)0.87729 (8)0.0272 (3)
C10.1840 (3)0.32649 (13)0.85447 (11)0.0313 (3)
C20.2533 (4)0.21651 (14)0.80907 (11)0.0389 (4)
H20.1833650.1810190.7552460.047*
C30.4201 (4)0.15681 (13)0.83933 (11)0.0354 (4)
H30.4576440.0810180.8073860.042*
C40.5340 (3)0.20830 (12)0.91727 (10)0.0267 (3)
C50.4694 (4)0.31917 (12)0.96220 (10)0.0302 (3)
H50.5466930.3559801.0147160.036*
C60.2951 (4)0.37703 (13)0.93214 (11)0.0325 (3)
H60.2508660.4520770.9649380.039*
C70.0032 (4)0.38838 (15)0.82047 (13)0.0408 (4)
H7A0.1914850.3532410.8133250.049*
H7B0.0264080.4645910.8605520.049*
H7C0.0863060.3876200.7653830.049*
C80.7190 (3)0.15674 (12)0.95597 (10)0.0269 (3)
H80.8189710.2070250.9998310.032*
C90.7016 (3)0.12306 (12)0.87971 (9)0.0248 (3)
C100.5783 (3)0.22452 (12)0.82102 (9)0.0246 (3)
C110.6537 (4)0.32665 (12)0.82264 (10)0.0285 (3)
H110.7822090.3296480.8612510.034*
C120.5427 (4)0.42268 (12)0.76866 (10)0.0311 (3)
H120.5924880.4913220.7709520.037*
C130.3584 (3)0.41942 (12)0.71090 (9)0.0272 (3)
C140.2802 (4)0.31891 (13)0.70838 (10)0.0300 (3)
H140.1542290.3163080.6690170.036*
C150.3889 (4)0.22253 (12)0.76416 (10)0.0289 (3)
H150.3325850.1537810.7634160.035*
C160.1042 (4)0.52370 (13)0.59118 (10)0.0338 (4)
H16A0.0776910.4822640.6148590.041*
H16B0.2140980.4899490.5538920.041*
C170.0433 (4)0.64249 (13)0.54117 (10)0.0342 (4)
C180.1936 (5)0.69725 (15)0.46333 (12)0.0467 (5)
H180.3415400.6604360.4415200.056*
C190.1304 (6)0.80648 (16)0.41616 (13)0.0533 (5)
H190.2351210.8427240.3623080.064*
C200.0782 (5)0.86203 (16)0.44579 (14)0.0549 (6)
C210.2279 (6)0.80699 (18)0.52500 (17)0.0641 (6)
H210.3726180.8444990.5473170.077*
C220.1685 (5)0.69813 (16)0.57170 (14)0.0490 (5)
H220.2747420.6615530.6252380.059*
C230.1500 (7)0.98005 (19)0.3935 (2)0.0871 (10)
H23A0.1000611.0284060.4225210.104*
H23B0.3556320.9857300.3870910.104*
H23C0.0406491.0022340.3372990.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02565 (16)0.01922 (14)0.02805 (16)0.00079 (10)0.01098 (11)0.00788 (11)
O10.0289 (6)0.0218 (5)0.0305 (5)0.0003 (4)0.0119 (4)0.0083 (4)
O20.0470 (7)0.0234 (5)0.0318 (6)0.0040 (5)0.0195 (5)0.0069 (5)
N10.0265 (6)0.0217 (6)0.0269 (6)0.0018 (5)0.0089 (5)0.0073 (5)
N20.0305 (7)0.0212 (6)0.0303 (6)0.0023 (5)0.0131 (5)0.0074 (5)
C10.0277 (8)0.0324 (8)0.0412 (9)0.0015 (6)0.0071 (7)0.0214 (7)
C20.0479 (11)0.0329 (8)0.0393 (9)0.0032 (8)0.0218 (8)0.0128 (7)
C30.0457 (10)0.0248 (7)0.0360 (9)0.0020 (7)0.0170 (7)0.0077 (7)
C40.0287 (8)0.0234 (7)0.0306 (8)0.0018 (6)0.0084 (6)0.0117 (6)
C50.0353 (9)0.0253 (7)0.0313 (8)0.0008 (6)0.0093 (7)0.0106 (6)
C60.0363 (9)0.0252 (7)0.0376 (8)0.0041 (6)0.0050 (7)0.0126 (7)
C70.0373 (10)0.0442 (10)0.0525 (11)0.0026 (8)0.0119 (8)0.0291 (9)
C80.0282 (8)0.0235 (7)0.0297 (7)0.0019 (6)0.0097 (6)0.0088 (6)
C90.0236 (7)0.0245 (7)0.0264 (7)0.0004 (6)0.0054 (6)0.0086 (6)
C100.0251 (7)0.0229 (7)0.0252 (7)0.0010 (6)0.0052 (6)0.0075 (6)
C110.0324 (8)0.0256 (7)0.0294 (8)0.0010 (6)0.0114 (6)0.0100 (6)
C120.0396 (9)0.0226 (7)0.0328 (8)0.0003 (6)0.0126 (7)0.0098 (6)
C130.0308 (8)0.0235 (7)0.0251 (7)0.0025 (6)0.0069 (6)0.0055 (6)
C140.0333 (8)0.0275 (7)0.0316 (8)0.0016 (6)0.0142 (7)0.0107 (6)
C150.0318 (8)0.0236 (7)0.0329 (8)0.0010 (6)0.0095 (6)0.0103 (6)
C160.0415 (10)0.0290 (8)0.0323 (8)0.0039 (7)0.0175 (7)0.0095 (7)
C170.0419 (10)0.0281 (8)0.0329 (8)0.0019 (7)0.0176 (7)0.0079 (7)
C180.0639 (13)0.0373 (10)0.0352 (9)0.0030 (9)0.0061 (9)0.0090 (8)
C190.0788 (16)0.0381 (10)0.0358 (10)0.0077 (10)0.0143 (10)0.0021 (8)
C200.0710 (15)0.0297 (9)0.0589 (13)0.0028 (9)0.0322 (11)0.0033 (9)
C210.0626 (15)0.0408 (11)0.0793 (16)0.0178 (10)0.0088 (13)0.0120 (11)
C220.0490 (12)0.0379 (10)0.0505 (11)0.0070 (9)0.0047 (9)0.0055 (9)
C230.111 (2)0.0359 (12)0.097 (2)0.0088 (13)0.0446 (19)0.0047 (13)
Geometric parameters (Å, º) top
Ni1—O1i1.8363 (10)C10—C151.389 (2)
Ni1—O11.8363 (10)C10—C111.403 (2)
Ni1—N11.8677 (12)C11—C121.378 (2)
Ni1—N1i1.8678 (12)C11—H110.9500
O1—C91.3009 (18)C12—C131.390 (2)
O2—C131.3736 (17)C12—H120.9500
O2—C161.4383 (18)C13—C141.392 (2)
N1—C81.2977 (19)C14—C151.389 (2)
N1—N21.4030 (16)C14—H140.9500
N2—C91.3145 (18)C15—H150.9500
C1—C21.389 (2)C16—C171.506 (2)
C1—C61.391 (2)C16—H16A0.9900
C1—C71.504 (2)C16—H16B0.9900
C2—C31.382 (2)C17—C181.376 (3)
C2—H20.9500C17—C221.378 (3)
C3—C41.402 (2)C18—C191.396 (3)
C3—H30.9500C18—H180.9500
C4—C51.393 (2)C19—C201.360 (3)
C4—C81.460 (2)C19—H190.9500
C5—C61.385 (2)C20—C211.393 (3)
C5—H50.9500C20—C231.518 (3)
C6—H60.9500C21—C221.386 (3)
C7—H7A0.9800C21—H210.9500
C7—H7B0.9800C22—H220.9500
C7—H7C0.9800C23—H23A0.9800
C8—H80.9500C23—H23B0.9800
C9—C101.479 (2)C23—H23C0.9800
O1i—Ni1—O1180.0C12—C11—C10120.54 (14)
O1i—Ni1—N196.53 (5)C12—C11—H11119.7
O1—Ni1—N183.47 (5)C10—C11—H11119.7
O1i—Ni1—N1i83.47 (5)C11—C12—C13120.22 (14)
O1—Ni1—N1i96.53 (5)C11—C12—H12119.9
N1—Ni1—N1i180.00 (5)C13—C12—H12119.9
C9—O1—Ni1111.02 (9)O2—C13—C12114.99 (13)
C13—O2—C16117.77 (12)O2—C13—C14124.86 (14)
C8—N1—N2119.42 (12)C12—C13—C14120.15 (14)
C8—N1—Ni1125.97 (11)C15—C14—C13119.15 (14)
N2—N1—Ni1114.52 (9)C15—C14—H14120.4
C9—N2—N1107.12 (12)C13—C14—H14120.4
C2—C1—C6117.53 (15)C14—C15—C10121.40 (14)
C2—C1—C7121.02 (16)C14—C15—H15119.3
C6—C1—C7121.45 (15)C10—C15—H15119.3
C3—C2—C1122.41 (16)O2—C16—C17107.78 (13)
C3—C2—H2118.8O2—C16—H16A110.2
C1—C2—H2118.8C17—C16—H16A110.2
C2—C3—C4119.88 (15)O2—C16—H16B110.2
C2—C3—H3120.1C17—C16—H16B110.2
C4—C3—H3120.1H16A—C16—H16B108.5
C5—C4—C3117.81 (14)C18—C17—C22118.55 (17)
C5—C4—C8116.21 (13)C18—C17—C16120.82 (17)
C3—C4—C8125.97 (14)C22—C17—C16120.61 (16)
C6—C5—C4121.58 (15)C17—C18—C19120.5 (2)
C6—C5—H5119.2C17—C18—H18119.7
C4—C5—H5119.2C19—C18—H18119.7
C5—C6—C1120.75 (15)C20—C19—C18121.3 (2)
C5—C6—H6119.6C20—C19—H19119.3
C1—C6—H6119.6C18—C19—H19119.3
C1—C7—H7A109.5C19—C20—C21118.14 (18)
C1—C7—H7B109.5C19—C20—C23121.1 (2)
H7A—C7—H7B109.5C21—C20—C23120.7 (2)
C1—C7—H7C109.5C22—C21—C20120.8 (2)
H7A—C7—H7C109.5C22—C21—H21119.6
H7B—C7—H7C109.5C20—C21—H21119.6
N1—C8—C4130.93 (14)C17—C22—C21120.6 (2)
N1—C8—H8114.5C17—C22—H22119.7
C4—C8—H8114.5C21—C22—H22119.7
O1—C9—N2123.84 (13)C20—C23—H23A109.5
O1—C9—C10117.23 (12)C20—C23—H23B109.5
N2—C9—C10118.93 (13)H23A—C23—H23B109.5
C15—C10—C11118.51 (14)C20—C23—H23C109.5
C15—C10—C9122.35 (13)H23A—C23—H23C109.5
C11—C10—C9119.15 (13)H23B—C23—H23C109.5
N1—Ni1—O1—C91.22 (10)O1—C9—C10—C111.6 (2)
N1i—Ni1—O1—C9178.78 (10)N2—C9—C10—C11179.24 (15)
O1i—Ni1—N1—C85.45 (14)C15—C10—C11—C120.3 (2)
O1—Ni1—N1—C8174.55 (14)C9—C10—C11—C12179.90 (14)
O1i—Ni1—N1—N2178.16 (10)C10—C11—C12—C131.1 (3)
O1—Ni1—N1—N21.84 (10)C16—O2—C13—C12172.90 (15)
C8—N1—N2—C9174.67 (14)C16—O2—C13—C146.6 (2)
Ni1—N1—N2—C91.98 (15)C11—C12—C13—O2178.27 (15)
C6—C1—C2—C31.5 (3)C11—C12—C13—C141.3 (3)
C7—C1—C2—C3178.71 (17)O2—C13—C14—C15179.45 (15)
C1—C2—C3—C42.2 (3)C12—C13—C14—C150.0 (3)
C2—C3—C4—C50.9 (3)C13—C14—C15—C101.4 (3)
C2—C3—C4—C8178.31 (16)C11—C10—C15—C141.5 (2)
C3—C4—C5—C61.0 (3)C9—C10—C15—C14178.65 (15)
C8—C4—C5—C6179.76 (15)C13—O2—C16—C17177.34 (14)
C4—C5—C6—C11.6 (3)O2—C16—C17—C18103.66 (19)
C2—C1—C6—C50.4 (3)O2—C16—C17—C2277.6 (2)
C7—C1—C6—C5179.40 (16)C22—C17—C18—C190.6 (3)
N2—N1—C8—C40.3 (3)C16—C17—C18—C19178.15 (17)
Ni1—N1—C8—C4176.52 (13)C17—C18—C19—C200.6 (3)
C5—C4—C8—N1164.03 (17)C18—C19—C20—C210.1 (3)
C3—C4—C8—N116.8 (3)C18—C19—C20—C23178.8 (2)
Ni1—O1—C9—N20.40 (19)C19—C20—C21—C220.9 (4)
Ni1—O1—C9—C10179.52 (10)C23—C20—C21—C22178.1 (2)
N1—N2—C9—O11.0 (2)C18—C17—C22—C210.2 (3)
N1—N2—C9—C10178.07 (12)C16—C17—C22—C21178.91 (19)
O1—C9—C10—C15178.23 (14)C20—C21—C22—C170.9 (4)
N2—C9—C10—C150.9 (2)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.382.9455 (18)118
C3—H3···N20.952.372.945 (2)118
C11—H11···O10.952.432.7590 (19)100
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, University of Rajshahi for laboratory facilities. MCS thanks the Department of Applied Chemistry, Faculty of Engineering, University of Toyama, for the use of analytical facilities.

Funding information

Funding for this research was provided by: Faculty of Science, University of Rajshahi .

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Robin Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–S19.  Google Scholar
First citationAl-Qadsy, I., Al-Odayni, A.-B., Saeed, W. S., Alrabie, A., Al-Adhreai, A., Al-Faqeeh, L. A. S., Lama, P., Alghamdi, A. A. & Farooqui, M. (2021). Crystals, 11, 110.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423–4436.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationMondal, S., Das, C., Ghosh, B., Pakhira, B., Blake, A. J., Drew, M. G. B. & Chattopadhyay, S. K. (2014). Polyhedron, 80, 272–281.  CrossRef CAS Google Scholar
First citationNeethu, K. S., Sivaselvam, S., Theetharappan, M., Ranjitha, J., Bhuvanesh, N. S. P., Ponpandian, N., Neelakantan, M. A. & Kaveri, M. V. (2021). Inorg. Chim. Acta, 524, 120419.  CrossRef Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds