research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of bis­­[trans-di­aqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)] trans-(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)bis­­[4,4′,4′′-(1,3,5-tri­methyl­benzene-2,4,6-tri­yl)tris­­(hydrogen phenyl­phospho­nato-κO)]nickel(II) deca­hydrate

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of, Sciences of Ukraine, Prospekt Nauki, 31, Kiev 03028, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Department of, Inorganic, Polymers, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 June 2022; accepted 26 June 2022; online 30 June 2022)

The components of the title compound, [Ni(C10H24N4)(H2O)2]2[Ni(C10H24N4)(C27H24O9P3)2]·10H2O are two centrosymmetric [Ni(C10H24N4)(H2O)2]2+ dications, a centrosymmetric [Ni(C10H24N4)(C27H24O9P3)2]4− tetra-anion and five crystallographically unique water mol­ecules of crystallization. All of the nickel ions are coordinated by the four secondary N atoms of the macrocyclic cyclam ligands, which adopt the most energetically stable trans-III conformation, and the mutually trans O atoms of either water mol­ecules in the cations or the phospho­nate groups in the anion in a tetra­gonally distorted NiN4O2 octa­hedral coordination geometry. Strong O—H⋯O hydrogen bonds between the protonated and the non-protonated phospho­nate O atoms of neighboring anions result in the formation of layers oriented parallel to the bc plane, which are linked into a three-dimensional network by virtue of numerous N—H⋯O and O—H⋯O hydrogen bonds arising from the sec-NH groups of the macrocycles, phospho­nate O atoms and coordinated and non-coordinated water mol­ecules.

1. Chemical context

First-row transition-metal complexes of 14-membered cyclam-like tetra­aza macrocyles (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane; C10H24N4; L) are characterized by high thermodynamic stability and kinetic inertness (Yatsimirskii & Lampeka, 1985[Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka (in Russian).]) and are popular metal-containing building units for the construction of MOFs (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]). These crystalline coordination polymers, in which oligo­carboxyl­ates are the most common bridging ligands (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]), possess permanent porosity and demonstrate many promising applications in different areas (MacGillivray & Lukehart, 2014[MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal-Organic Framework Materials. Hoboken: John Wiley and Sons.]; Kaskel, 2016[Kaskel, S. (2016). Editor. The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.]).

The rigid trigonal aromatic linker 1,3,5-benzene­tri­carboxyl­ate, C9H3O63–, is widely used for the assembly of MOFs based on aza­macrocyclic cations (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]). Its tris-monodentate coordination in the trans-axial coordination positions of the metal ions leads predominantly to the formation of two-dimensional coordination polymers with hexa­gonal nets of 63 topology (Alexandrov et al., 2017[Alexandrov, E. V., Blatov, V. A. & Proserpio, D. M. (2017). CrystEngComm, 19, 1993-2006.]). Usually, the modification of this bridge through the substitution of the carb­oxy­lic groups by para-carb­oxy­benzyl fragments (the ligand H3BTB, 4,4′,4′′-benzene-1,3,5-triyltri­benzoic acid) does not affect the coordination properties of the carboxyl­ate groups or the topological characteristics of polymeric nets but results in the enlargement of the hexa­gonal structural unit of the coordination polymers allowing inter­penetration of the subnets (Lampeka et al., 2012[Lampeka, Ya. D., Tsymbal, L. V., Barna, A. V., Shuĺga, Y. L., Shova, S. & Arion, V. B. (2012). Dalton Trans. 41, 4118-4125.]; Gong et al., 2016[Gong, Y.-N., Zhong, D.-C. & Lu, T.-B. (2016). CrystEngComm, 18, 2596-2606.]). Compared to carboxyl­ates, linkers with other coordinating functions, in particular oligo­phospho­nates, have been studied to a much lesser extent (Gagnon et al., 2012[Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034-1054.]; Firmino et al., 2018[Firmino, A. D. G., Figueira, F., Tomé, J. P. C., Paz, F. A. A. & Rocha, J. (2018). Coord. Chem. Rev. 355, 133-149.]; Yücesan et al., 2018[Yücesan, G., Zorlu, Y., Stricker, M. & Beckmann, J. (2018). Coord. Chem. Rev. 369, 105-122.]), though one can expect that the substitution of a mono-anionic carb­oxy­lic group by a di-anionic phospho­nate group with distinct acidity, number of donor atoms and spatial directivity of coordination bonds will strongly influence the composition and topology of the coordination nets. However, except for a very recent publication (Tsymbal et al., 2022[Tsymbal, L. V., Andriichuk, I. L., Lozan, V., Shova, S. & Lampeka, Y. D. (2022). Acta Cryst. E78, 625-628.]), no papers dealing with structural characterization of the complexes formed by metal aza­macrocyclic cations and phospho­nate ligands have been published to date.

[Scheme 1]

We report here the synthesis and crystal structure of the product of the reaction of [Ni(L)](ClO4)2 with 4,4′,4′′-(1,3,5-tri­methyl­benzene-2,4,6-tri­yl)tri­phospho­nic acid, H6Me3BTP) – the structural analogue of H3BTB, namely, bis­[trans-di­aqua-(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)-nickel(II)] trans-{bis-[4,4′,4′′-(1,3,5-tri­methyl­benzene-2,4,6-tri­yl)tris­(hydrogen phenyl­phospho­nato-κO)-(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)-nickel(II)]} deca­hydrate, [Ni(L)(H2O)2]2[Ni(L)(H3Me3BTP)2]·10H2O, I.

2. Structural commentary

The mol­ecular structure of I is shown in Fig. 1[link]. It represents a non-polymeric compound in which atom Ni1 is coordinated by two monodentate H3Me3BTP3– ligands via their phospho­nate O atoms, resulting in the formation of an [Ni(L)(H3Me3BTP)2]4– complex anion, which is charge-balanced by two structurally non-equivalent [Ni(L)(H2O)2]2+ divalent cations formed by atoms Ni2 and Ni3. The coordination geometries of all the nickel ions in I have much in common: the Ni2+ ions (all with site symmetry [\overline{1}]) are coordinated by the four secondary N atoms of the macrocyclic ligands L, which adopt the most energetically stable trans-III (R,R,S,S) conformation (Bosnich et al., 1965a[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965a). Inorg. Chem. 4, 1102-1108.]; Barefield et al., 1986[Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197-4202.]) with the five-membered (N—Ni—N bite angles ≃ 85°) and six-membered (N—Ni—N bite angles ≃ 95°) chelate rings in gauche and chair conformations, respectively (Table 1[link]). The coordination polyhedra of the metal ions can be described as tetra­gonally elongated trans-NiN4O2 octa­hedra with the Ni—N bond lengths [average value 2.068 (3) Å] slightly shorter than the Ni—O bonds which, in turn, do not display any dependence on the nature of the donor oxygen atoms. The location of the metal ions on crystallographic inversion centers enforces strict planarity of the Ni(N4) coordination moieties and the axial Ni—O bonds are nearly orthogonal to the NiN4 planes (deviations of the angles N—Ni—O from 90° do not exceed 2°).

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 2.067 (4) Ni2—O1W 2.105 (4)
Ni1—N2 2.064 (4) Ni3—N5 2.070 (4)
Ni1—O1 2.134 (3) Ni3—N6 2.056 (5)
Ni2—N3 2.072 (4) Ni3—O2W 2.136 (3)
Ni2—N4 2.076 (4)    
       
N1—Ni1—N2i 85.31 (16) N3—Ni2—N4 95.34 (16)
N1—Ni1—N2 94.69 (16) N5—Ni3—N6iii 85.2 (2)
N3—Ni2—N4ii 84.66 (16) N5—Ni3—N6 94.8 (2)
Symmetry codes: (i) [-x+2, -y+1, -z+2]; (ii) [-x+2, -y+2, -z+1]; (iii) [-x+1, -y+3, -z+1].
[Figure 1]
Figure 1
The extended asymmetric unit in I showing the coordination environment of the Ni atoms and the atom-labeling scheme (displacement ellipsoids are drawn at the 30% probability level). C-bound H atoms and uncoordinated water molecules are omitted for clarity. Symmetry codes: (i) −x + 2, −y + 1, −z + 2; (ii) −x + 2, −y + 2, −z + 1; (iii) −x + 1, −y + 3, −z + 1.

The pendant benzene rings of the H3Me3BTP3– tri-anion in I are substanti­ally tilted relative to the central aromatic core [average angle between the mean planes = 76 (5)°] and this feature is caused by repulsive inter­actions between the hydrogen atoms of the pendant rings and those of the methyl substituents of the central ring. The P—OH bond lengths [average value 1.57 (3) Å] are larger than the other P—O bonds [average value 1.501 (5) Å], thus indicating the partially delocalized character of the phospho­nate groups.

3. Supra­molecular features

In the crystal of I, the [Ni1(L)(H3Me3BTP)2]4– anions, [Ni2/Ni3(L)(H2O)2]2+ cations and water mol­ecules of crystallization are linked by numerous hydrogen bonds with participation of the phospho­nate groups, the secondary amino groups of the macrocycles and both the coordinated and crystalline water mol­ecules (Table 2[link]). A distinct lamellar structure is inherent for this compound. In particular, strong hydrogen-bonding inter­actions between the protonated fragments of the P1 and P3 phospho­nate groups of one mol­ecule as the donors with the non-protonated O4 and O5 atoms of the P2 group of another mol­ecule as the acceptors [P1—O3—H3C⋯O5(x, y − 1, z), P3—O9—H9C⋯O49(x, y − 1, z + 1)], together with a weak N1—H1⋯O6 (x, y − 1, z) hydrogen bond between the secondary amino group of the macrocyclic cation [Ni1(L)] and protonated P2—O6 phospho­nate fragment result in the formation of anionic layers oriented parallel to the bc plane. The distance between the parallel mean planes of the staggered by 60° tri­methyl­benzene rings of neighboring H3Me3BTP3– anions is 5.248 (3) Å, thus allowing us to exclude the possibility of aromatic ππ stacking inter­actions between them. Additionally, the negative charge of the layers are partially compensated by the incorporation within the layers of the [Ni2(L)(H2O)2]2+ cations via hydrogen bonding between the coordinated water mol­ecules and the phos­phon­ate O7 atom [O1W—H1WB⋯O7(x, y, z − 1)] (Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6iv 1.00 2.32 3.196 (5) 146
N2—H2⋯O6W 1.00 2.18 3.039 (6) 143
N3—H3⋯O7v 1.00 2.13 3.102 (6) 162
N4—H4⋯O4W 1.00 2.06 3.056 (6) 173
N5—H5⋯O9vi 1.00 2.07 3.003 (6) 155
N6—H6⋯O7Wii 1.00 1.98 2.956 (6) 166
O3—H3C⋯O5iv 0.84 1.84 2.654 (5) 162
O6—H6C⋯O3Wvii 0.84 1.75 2.550 (5) 159
O9—H9C⋯O4viii 0.84 1.74 2.517 (5) 154
O1W—H1WB⋯O7v 0.87 1.81 2.679 (5) 173
O1W—H1WA⋯O4W 0.87 2.45 3.256 (6) 155
O2W—H2WB⋯O4 0.86 1.90 2.729 (5) 164
O2W—H2WA⋯O7Wix 0.86 1.81 2.675 (6) 174
O3W—H3WB⋯O2 0.87 1.81 2.676 (4) 177
O3W—H3WA⋯O7v 0.85 1.84 2.689 (5) 174
O4W—H4WB⋯O3 0.87 2.26 3.115 (6) 167
O4W—H4WA⋯O8v 0.87 1.93 2.796 (6) 172
O5W—H5WB⋯O5x 0.87 1.98 2.813 (5) 159
O5W—H5WA⋯O8xi 0.87 1.87 2.725 (5) 168
O6W—H6WB⋯O2 0.87 2.02 2.799 (6) 149
O6W—H6WA⋯O5W 0.87 2.00 2.842 (5) 164
O7W—H7WB⋯O3W 0.85 2.02 2.731 (5) 140
O7W—H7WA⋯O5W 0.86 1.83 2.688 (5) 173
Symmetry codes: (ii) [-x+2, -y+2, -z+1]; (iv) [x, y-1, z]; (v) [x, y, z-1]; (vi) [-x+1, -y+2, -z+2]; (vii) x, y+1, z; (viii) [x, y-1, z+1]; (ix) [x-1, y+1, z]; (x) [x+1, y-1, z]; (xi) [x+1, y, z-1].
[Figure 2]
Figure 2
The hydrogen-bonded (dashed lines) layers in I viewed down the a axis. C-bound H atoms and macrocyclic cations formed by Ni3 have been omitted; C and N atoms of the macrocyclic cations formed by Ni2 are shown in green.

The second macrocyclic aqua cation [Ni3(L)(H2O)2]2+, due to hydrogen bonding of the coordinated water mol­ecule with the phospho­nate O4 atom (O2W—H2WB⋯O4), serves as the bridge between the layers, arranging them into a three-dimensional network (Fig. 3[link]), which is further stabilized by numerous O—H⋯O hydrogen bonds involving the water mol­ecules of crystallization, O3W–O7W (Table 2[link]).

[Figure 3]
Figure 3
The structure of I viewed down the b axis. C-bound H atoms have been omitted; C and N atoms of the macrocyclic cation formed by Ni2 and Ni3 are shown in green and violet, respectively. Water mol­ecules of crystallization are not shown; hydrogen bonds are depicted as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, last update March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave no hits related to H6Me3BTP or its complexes with metal ions, so the present work is the first structural characterization of a complex of this ligand. At the same time, several works dealing with the structures of the non-methyl­ated analogue of the phospho­nate under consideration, namely, 4,4′,4′′-benzene-1,3,5-triyl-tri­phospho­nic acid (H6BTP), have been published. They include a methanol solvate of the free acid (CSD refcode AKEPEO; Vilela et al., 2021[Vilela, S. M. F., Navarro, J. A. R., Barbosa, P., Mendes, R. F., Pérez-Sánchez, G., Nowell, H., Ananias, D., Figueiredo, F., Gomes, J. R. B., Tomé, J. P. C. & Paz, F. A. A. (2021). J. Am. Chem. Soc. 143, 1365-1376.]) and its pyridinium salt (YOLGEM; Beckmann et al., 2008[Beckmann, J., Rüttinger, R. & Schwich, T. (2008). Cryst. Growth Des. 8, 3271-3276.]), mol­ecular complexes with solvated CoII and NiII ions (OQIZAR and OQIZEV; Pili et al., 2016[Pili, S., Argent, S. P., Morris, C. G., Rought, P., García-Sakai, V., Silverwood, I. P., Easun, T. L., Li, M., Warren, M. R., Murray, C. A., Tang, C. C., Yang, S. & Schröder, M. (2016). J. Am. Chem. Soc. 138, 6352-6355.]) and coordination polymers formed by SrII (SOTZOR; Vaidhyanathan et al., 2009[Vaidhyanathan, R., Mahmoudkhani, A. H. & Shimizu, G. K. H. (2009). Can. J. Chem. 87, 247-253.]), ZnII (ISELAV02; Hermer et al., 2016[Hermer, N., Reinsch, H., Mayer, P. & Stock, N. (2016). CrystEngComm, 18, 8147-8150.]), YIII (AKEPOY; Vilela et al., 2021[Vilela, S. M. F., Navarro, J. A. R., Barbosa, P., Mendes, R. F., Pérez-Sánchez, G., Nowell, H., Ananias, D., Figueiredo, F., Gomes, J. R. B., Tomé, J. P. C. & Paz, F. A. A. (2021). J. Am. Chem. Soc. 143, 1365-1376.]), ZrIV (COCLIR; Taddei et al., 2014[Taddei, M., Costantino, F., Vivani, R., Sabatini, S., Lim, S.-H. & Cohen, S. M. (2014). Chem. Commun. 50, 5737-5740.]) and VIV/V (COQNAY; Ouellette et al., 2009[Ouellette, W., Wang, G., Liu, H., Yee, G. T., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 953-963.]). Inter­estingly, as in I, in all the metal complexes except COCLIR and ISELAV02, the ligand acts as a H3BTP3– tri-anion with three monodeprotonated phos­phon­ate groups. On the other hand, because of the absence of methyl substituents, the mol­ecules of the anions HnBTP(6–n)– as a whole are flatter than H3Me3BTP3– in I with a maximal tilting angle of pendant versus central benzene rings of ca 49° observed in ISELAV02. In addition, in the majority of complexes formed by HnBTP(6–n)– ligands (except AKEPOY and ISELAV02), aromatic ππ stacking inter­actions of different strengths are observed with centroid-to-centroid distances between the central aromatic rings ranging from 3.4 to 3.9 Å.

The Cambridge Structural Database contains also 18 hits describing the structure of the [Ni(L)(H2O)2]2+ complex cation in salts of different inorganic and organic anions as well as the charge-compensating part in anionic coordination polymers. In general, the structure of this cation in I is similar to other compounds, both from the point of view of the conformation of the macrocycle and the bond distances and angles characterizing the coordination polyhedron of the metal.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The acid H6Me3BTP was synthesized according to a procedure described previously for the preparation of H6BTP (Vaidhyanathan et al., 2009[Vaidhyanathan, R., Mahmoudkhani, A. H. & Shimizu, G. K. H. (2009). Can. J. Chem. 87, 247-253.]), starting from 1,3,5-trimethyl-2,4,6-tris­(4′-bromo­phen­yl)benzene instead of 1,3,5-tris­(4′-bromo­phen­yl)benzene. The complex [Ni(L)](ClO4)2 was prepared from ethanol solutions as described in the literature (Bosnich et al., 1965b[Bosnich, B., Tobe, M. L. & Webb, G. A. (1965b). Inorg. Chem. 4, 1109-1112.]).

The title compound [Ni(L)(H2O)2]2[Ni(L)(H3Me3BTP)2]·10H2O, I, was prepared as follows. A solution of [Ni(L)](ClO4)2 (46 mg, 0.1 mmol) in 5 ml of water was added to 5 ml of an aqueous solution of H6Me3BTP (18 mg, 0.03 mmol) containing 2 ml of pyridine. The pink precipitate, which formed in a week, was filtered off, washed with small amounts of water, methanol and diethyl ether, and dried in air. Yield: 7 mg (10% based on acid). Analysis calculated for C84H148N12Ni3O32P6: C 45.85, H 6.78, N 7.64%. Found: C 45.73, H 6.87, N 7.51%. Single crystals of I suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Caution! Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 Å (ring H atoms), 0.98 Å (methyl H atoms), 0.99 Å (methyl­ene H atoms), N—H distances of 1.00 Å, O—H distances of 0.84 Å (protonated phospho­nate groups) and 0.87 Å (water mol­ecules) with Uiso(H) values of 1.2Ueq or 1.5Ueq times those of the corresponding parent atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C10H24N4)(H2O)2]2[Ni(C10H24N4)(C27H24O9P3)2]·10H2O
Mr 2200.09
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 160
a, b, c (Å) 9.8779 (5), 17.2467 (11), 17.6707 (11)
α, β, γ (°) 61.409 (6), 77.515 (5), 77.713 (5)
V3) 2559.7 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.40 × 0.10 × 0.10
 
Data collection
Diffractometer Rigaku Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.701, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23737, 9657, 6598
Rint 0.063
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.161, 1.02
No. of reflections 9657
No. of parameters 629
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.46
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

\ Bis[trans-diaqua(1,4,8,11-tetraazacyclotetradecane-κ4N1,\ N4,N8,N11)nickel(II)] trans-(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,\ N8,N11)bis[4,4',4''-(1,3,5-trimethylbenzene-2,4,6-triyl)\ tris(hydrogen phenylphosphonato-κO)]nickel(II) decahydrate top
Crystal data top
[Ni(C10H24N4)(H2O)2]2[Ni(C10H24N4)(C27H24O9P3)2]·10H2OZ = 1
Mr = 2200.09F(000) = 1166
Triclinic, P1Dx = 1.427 Mg m3
a = 9.8779 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 17.2467 (11) ÅCell parameters from 5403 reflections
c = 17.6707 (11) Åθ = 2.1–26.3°
α = 61.409 (6)°µ = 0.72 mm1
β = 77.515 (5)°T = 160 K
γ = 77.713 (5)°Prism, clear light colourless
V = 2559.7 (3) Å30.40 × 0.10 × 0.10 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
9657 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source6598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 16.1593 pixels mm-1θmax = 25.7°, θmin = 2.1°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 2120
Tmin = 0.701, Tmax = 1.000l = 2121
23737 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0527P)2 + 4.2781P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
9657 reflectionsΔρmax = 0.67 e Å3
629 parametersΔρmin = 0.46 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.0000000.5000001.0000000.0228 (2)
P20.77348 (14)1.51832 (8)0.73137 (8)0.0273 (3)
P10.86291 (13)0.70402 (8)0.82874 (8)0.0243 (3)
P30.75955 (15)0.78200 (9)1.49060 (8)0.0332 (3)
O50.6838 (4)1.5710 (2)0.7750 (2)0.0380 (9)
C290.7561 (5)1.4015 (3)0.7965 (3)0.0241 (10)
O40.7456 (4)1.5452 (2)0.6413 (2)0.0333 (8)
O3W1.0380 (3)0.6623 (2)0.6411 (2)0.0311 (8)
H3WA0.9987030.7036010.5981320.047*
H3WB1.0160630.6870310.6757520.047*
O4W0.6258 (4)0.8895 (3)0.6511 (3)0.0607 (12)
H4WA0.6227020.8690180.6151930.091*
H4WB0.6555620.8430180.6963930.091*
C220.7292 (4)0.9758 (3)0.9717 (3)0.0193 (10)
C380.7501 (5)0.8505 (3)1.3753 (3)0.0274 (11)
C260.7310 (5)1.2190 (3)0.9041 (3)0.0230 (10)
N10.9914 (4)0.4354 (3)0.9286 (2)0.0275 (9)
H10.9562710.4816400.8730640.033*
O30.7242 (4)0.7049 (2)0.7985 (2)0.0387 (9)
H3C0.7247110.6560890.7985100.058*
C340.7272 (4)0.9926 (3)1.1008 (3)0.0211 (10)
N21.1919 (4)0.5419 (3)0.9365 (3)0.0330 (10)
H21.1736560.5966790.8812330.040*
C31.2935 (5)0.4794 (4)0.9119 (4)0.0421 (14)
H3A1.3201070.4258750.9652480.051*
H3B1.3788300.5077090.8788840.051*
O20.9773 (4)0.7334 (2)0.7517 (2)0.0349 (8)
O90.7490 (5)0.6880 (2)1.5017 (2)0.0490 (11)
H9C0.7576130.6497771.5531730.074*
C350.7357 (5)0.9486 (3)1.1963 (3)0.0245 (10)
C410.7258 (5)0.9377 (3)1.0620 (3)0.0229 (10)
C230.7243 (5)1.0683 (3)0.9212 (3)0.0229 (10)
C300.6330 (5)1.3737 (3)0.8509 (3)0.0335 (12)
H300.5559071.4169740.8521580.040*
C250.7243 (5)1.1221 (3)0.9602 (3)0.0216 (10)
C50.8806 (6)0.3769 (4)0.9791 (3)0.0381 (13)
H5A0.9164440.3241121.0299940.046*
H5B0.8511800.3562620.9423720.046*
C330.7319 (5)1.1422 (3)1.0923 (3)0.0280 (11)
H33A0.7696821.1053691.1476020.042*
H33B0.6372311.1700791.1029960.042*
H33C0.7918651.1885331.0535840.042*
C390.6285 (5)0.9036 (3)1.3453 (3)0.0321 (12)
H390.5495410.9069861.3857770.039*
C420.7241 (6)0.8387 (3)1.1158 (3)0.0333 (12)
H42A0.8188870.8079741.1113790.050*
H42B0.6617130.8186651.0943990.050*
H42C0.6906780.8251591.1767390.050*
O70.9019 (4)0.7838 (2)1.5071 (2)0.0399 (9)
C360.8576 (5)0.8993 (3)1.2269 (3)0.0283 (11)
H360.9384190.8988401.1864770.034*
C190.7533 (4)0.9154 (3)0.9299 (3)0.0194 (10)
C210.6772 (5)0.8176 (3)0.8889 (3)0.0282 (11)
H210.6032520.7932410.8844800.034*
O80.6378 (4)0.8126 (3)1.5414 (2)0.0476 (10)
C200.6477 (5)0.8787 (3)0.9222 (3)0.0287 (11)
H200.5531870.8956770.9401870.034*
C21.2358 (6)0.4512 (4)0.8569 (3)0.0407 (14)
H2A1.1962170.5053790.8086600.049*
H2B1.3144020.4214150.8309040.049*
C370.8665 (5)0.8500 (3)1.3151 (3)0.0306 (12)
H370.9523380.8157681.3344000.037*
C320.7271 (4)1.0848 (3)1.0504 (3)0.0211 (10)
C240.7140 (6)1.1079 (3)0.8254 (3)0.0314 (12)
H24A0.6609851.0720810.8158970.047*
H24B0.8081411.1084410.7930500.047*
H24C0.6662781.1689890.8051390.047*
Ni21.0000001.0000000.5000000.0233 (2)
O1W0.9604 (4)0.8687 (2)0.5872 (2)0.0452 (10)
H1WA0.8810400.8723840.6189730.068*
H1WB0.9444500.8442640.5574140.068*
N30.9605 (4)0.9803 (3)0.4004 (2)0.0297 (10)
H30.9247170.9213880.4276380.036*
C101.0986 (5)0.9720 (4)0.3496 (3)0.0380 (13)
H10A1.1288921.0316390.3118970.046*
H10B1.0919060.9453140.3121160.046*
N40.7940 (5)1.0447 (3)0.5321 (3)0.0377 (11)
H40.7447400.9907790.5687160.045*
C90.7973 (6)1.0856 (4)0.5889 (3)0.0408 (14)
H9A0.7036651.0901380.6217800.049*
H9B0.8247231.1462790.5531750.049*
C70.7183 (6)1.0577 (4)0.4022 (3)0.0418 (14)
H7A0.6897580.9976770.4403800.050*
H7B0.6464351.0923490.3627860.050*
C60.8543 (5)1.0479 (3)0.3477 (3)0.0350 (12)
H6A0.8372431.0309700.3047330.042*
H6B0.8910901.1060250.3152900.042*
C80.7168 (6)1.1019 (4)0.4586 (4)0.0434 (14)
H8A0.7586441.1580690.4230210.052*
H8B0.6188301.1168990.4804650.052*
Ni30.5000001.5000000.5000000.0280 (2)
O2W0.5104 (4)1.5055 (2)0.6168 (2)0.0374 (9)
H2WA0.4514051.5486470.6207710.056*
H2WB0.5893471.5202910.6139280.056*
N50.3476 (5)1.4161 (3)0.5683 (3)0.0436 (12)
H50.3337821.3921390.5293400.052*
O7W1.3235 (4)0.6425 (3)0.6174 (3)0.0660 (14)
H7WA1.3666820.6656390.6375360.099*
H7WB1.2442320.6710690.6248960.099*
N60.6644 (5)1.3992 (3)0.5280 (3)0.0464 (12)
H60.6713661.3746590.4861000.056*
C140.7918 (6)1.4389 (5)0.5068 (4)0.0558 (18)
H14A0.8735571.3975690.4991260.067*
H14B0.8028631.4502470.5548990.067*
O6W1.2369 (4)0.7283 (3)0.7946 (2)0.0541 (11)
H6WA1.3179210.7262180.7636610.081*
H6WB1.1774610.7292580.7642710.081*
O5W1.4763 (3)0.7022 (2)0.6828 (2)0.0395 (9)
H5WA1.5383410.7322370.6415170.059*
H5WB1.5248010.6607580.7228170.059*
O10.9002 (4)0.6178 (2)0.9039 (2)0.0326 (8)
O60.9335 (4)1.5164 (2)0.7321 (2)0.0402 (9)
H6C0.9608531.5641110.6920960.060*
C170.9212 (5)0.8304 (3)0.8664 (3)0.0229 (10)
H171.0153340.8153230.8461930.027*
C160.8155 (5)0.7918 (3)0.8618 (3)0.0216 (10)
C180.8904 (5)0.8913 (3)0.9005 (3)0.0238 (10)
H180.9641130.9166140.9038150.029*
C400.6201 (5)0.9525 (3)1.2561 (3)0.0302 (12)
H400.5354650.9883281.2363260.036*
C11.1247 (6)0.3895 (3)0.9048 (3)0.0375 (13)
H1A1.1089990.3647270.8675540.045*
H1B1.1579580.3391820.9582050.045*
C280.8659 (5)1.3371 (3)0.7957 (3)0.0323 (12)
H280.9507121.3539740.7583850.039*
C310.6206 (5)1.2844 (3)0.9032 (3)0.0319 (12)
H310.5348221.2674240.9391450.038*
C130.6486 (8)1.3227 (4)0.6163 (4)0.0614 (19)
H13A0.6510431.3424830.6601430.074*
H13B0.7282111.2755710.6207450.074*
C150.2154 (6)1.4748 (5)0.5758 (4)0.0502 (16)
H15A0.2122311.4872280.6253940.060*
H15B0.1339401.4441820.5868100.060*
C110.3777 (8)1.3401 (5)0.6484 (4)0.0606 (19)
H11A0.3006741.3028900.6716240.073*
H11B0.3833581.3602120.6914240.073*
C270.8528 (5)1.2485 (3)0.8489 (3)0.0315 (12)
H270.9303421.2055520.8478680.038*
C120.5140 (8)1.2849 (4)0.6361 (4)0.065 (2)
H12A0.5190871.2275240.6896420.078*
H12B0.5095411.2713110.5882690.078*
C41.2423 (5)0.5705 (4)0.9910 (3)0.0360 (13)
H4A1.3181320.6079960.9568610.043*
H4B1.2791370.5179941.0416930.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0278 (5)0.0183 (4)0.0225 (4)0.0031 (4)0.0059 (3)0.0108 (4)
P20.0380 (8)0.0178 (6)0.0273 (7)0.0020 (6)0.0117 (6)0.0089 (5)
P10.0314 (7)0.0195 (6)0.0258 (6)0.0026 (6)0.0079 (5)0.0139 (5)
P30.0495 (9)0.0290 (7)0.0222 (7)0.0109 (7)0.0112 (6)0.0074 (6)
O50.056 (2)0.0220 (18)0.042 (2)0.0005 (18)0.0129 (18)0.0184 (17)
C290.031 (3)0.023 (2)0.019 (2)0.000 (2)0.0063 (19)0.010 (2)
O40.051 (2)0.0229 (18)0.0265 (18)0.0077 (17)0.0132 (16)0.0072 (15)
O3W0.0317 (19)0.0298 (19)0.0354 (19)0.0021 (16)0.0082 (15)0.0185 (16)
O4W0.064 (3)0.059 (3)0.060 (3)0.013 (2)0.008 (2)0.026 (2)
C220.017 (2)0.022 (2)0.020 (2)0.002 (2)0.0003 (18)0.012 (2)
C380.040 (3)0.022 (2)0.025 (3)0.007 (2)0.011 (2)0.010 (2)
C260.030 (3)0.019 (2)0.022 (2)0.002 (2)0.005 (2)0.011 (2)
N10.036 (2)0.021 (2)0.026 (2)0.0064 (19)0.0090 (18)0.0131 (18)
O30.049 (2)0.027 (2)0.054 (2)0.0082 (18)0.0240 (18)0.0272 (19)
C340.019 (2)0.025 (2)0.021 (2)0.006 (2)0.0042 (18)0.014 (2)
N20.039 (3)0.031 (2)0.030 (2)0.003 (2)0.0034 (19)0.016 (2)
C30.033 (3)0.052 (4)0.046 (3)0.004 (3)0.006 (2)0.032 (3)
O20.047 (2)0.031 (2)0.0312 (19)0.0057 (17)0.0045 (16)0.0216 (17)
O90.090 (3)0.034 (2)0.028 (2)0.021 (2)0.022 (2)0.0065 (17)
C350.028 (3)0.023 (2)0.024 (2)0.004 (2)0.004 (2)0.012 (2)
C410.023 (2)0.019 (2)0.027 (2)0.000 (2)0.0026 (19)0.012 (2)
C230.026 (3)0.022 (2)0.019 (2)0.004 (2)0.0033 (19)0.010 (2)
C300.028 (3)0.022 (3)0.046 (3)0.003 (2)0.006 (2)0.014 (2)
C250.021 (2)0.018 (2)0.025 (2)0.001 (2)0.0017 (19)0.010 (2)
C50.053 (4)0.030 (3)0.034 (3)0.007 (3)0.010 (3)0.014 (2)
C330.035 (3)0.022 (2)0.031 (3)0.000 (2)0.008 (2)0.016 (2)
C390.033 (3)0.040 (3)0.023 (3)0.007 (3)0.003 (2)0.013 (2)
C420.052 (3)0.021 (3)0.027 (3)0.004 (2)0.009 (2)0.010 (2)
O70.053 (2)0.038 (2)0.0282 (19)0.0107 (19)0.0119 (17)0.0096 (17)
C360.038 (3)0.025 (3)0.024 (3)0.001 (2)0.006 (2)0.014 (2)
C190.023 (2)0.018 (2)0.015 (2)0.001 (2)0.0015 (18)0.0077 (19)
C210.026 (3)0.032 (3)0.036 (3)0.002 (2)0.006 (2)0.023 (2)
O80.054 (2)0.053 (3)0.0258 (19)0.001 (2)0.0044 (17)0.0116 (19)
C200.023 (3)0.033 (3)0.036 (3)0.004 (2)0.001 (2)0.024 (2)
C20.036 (3)0.048 (4)0.041 (3)0.010 (3)0.005 (2)0.029 (3)
C370.038 (3)0.025 (3)0.030 (3)0.007 (2)0.015 (2)0.013 (2)
C320.020 (2)0.023 (2)0.022 (2)0.004 (2)0.0025 (18)0.013 (2)
C240.050 (3)0.021 (2)0.025 (3)0.003 (2)0.007 (2)0.012 (2)
Ni20.0292 (5)0.0196 (4)0.0220 (4)0.0031 (4)0.0055 (4)0.0117 (4)
O1W0.073 (3)0.036 (2)0.033 (2)0.014 (2)0.0077 (19)0.0169 (18)
N30.042 (3)0.027 (2)0.023 (2)0.007 (2)0.0027 (18)0.0130 (18)
C100.049 (3)0.044 (3)0.031 (3)0.007 (3)0.005 (2)0.024 (3)
N40.046 (3)0.031 (2)0.040 (3)0.002 (2)0.009 (2)0.019 (2)
C90.041 (3)0.047 (3)0.037 (3)0.002 (3)0.001 (2)0.025 (3)
C70.046 (3)0.041 (3)0.037 (3)0.001 (3)0.014 (3)0.016 (3)
C60.050 (3)0.029 (3)0.031 (3)0.001 (3)0.015 (2)0.016 (2)
C80.047 (4)0.039 (3)0.043 (3)0.002 (3)0.009 (3)0.020 (3)
Ni30.0357 (5)0.0258 (5)0.0275 (5)0.0032 (4)0.0080 (4)0.0148 (4)
O2W0.046 (2)0.043 (2)0.034 (2)0.0071 (19)0.0093 (17)0.0240 (18)
N50.058 (3)0.045 (3)0.039 (3)0.017 (3)0.008 (2)0.023 (2)
O7W0.037 (2)0.102 (4)0.104 (4)0.006 (2)0.008 (2)0.089 (3)
N60.050 (3)0.050 (3)0.056 (3)0.008 (3)0.023 (2)0.037 (3)
C140.042 (4)0.071 (5)0.079 (5)0.013 (3)0.014 (3)0.059 (4)
O6W0.052 (3)0.059 (3)0.042 (2)0.004 (2)0.0005 (19)0.023 (2)
O5W0.035 (2)0.041 (2)0.041 (2)0.0007 (18)0.0030 (16)0.0199 (18)
O10.045 (2)0.0221 (18)0.0296 (19)0.0041 (16)0.0121 (16)0.0115 (15)
O60.042 (2)0.026 (2)0.044 (2)0.0058 (18)0.0156 (17)0.0044 (17)
C170.023 (2)0.022 (2)0.021 (2)0.000 (2)0.0004 (19)0.010 (2)
C160.028 (3)0.020 (2)0.019 (2)0.000 (2)0.0066 (19)0.010 (2)
C180.025 (3)0.022 (2)0.028 (3)0.004 (2)0.005 (2)0.014 (2)
C400.025 (3)0.034 (3)0.031 (3)0.001 (2)0.007 (2)0.015 (2)
C10.048 (3)0.030 (3)0.043 (3)0.010 (3)0.016 (3)0.025 (3)
C280.036 (3)0.027 (3)0.032 (3)0.007 (2)0.009 (2)0.017 (2)
C310.021 (3)0.024 (3)0.041 (3)0.000 (2)0.004 (2)0.011 (2)
C130.090 (5)0.038 (4)0.060 (4)0.013 (4)0.044 (4)0.020 (3)
C150.041 (4)0.070 (5)0.058 (4)0.014 (3)0.006 (3)0.046 (4)
C110.087 (5)0.057 (4)0.042 (4)0.035 (4)0.005 (3)0.017 (3)
C270.035 (3)0.023 (3)0.031 (3)0.000 (2)0.006 (2)0.013 (2)
C120.106 (6)0.034 (4)0.048 (4)0.015 (4)0.034 (4)0.002 (3)
C40.039 (3)0.035 (3)0.034 (3)0.003 (3)0.011 (2)0.014 (3)
Geometric parameters (Å, º) top
Ni1—N1i2.067 (4)C24—H24A0.9800
Ni1—N12.067 (4)C24—H24B0.9800
Ni1—N22.064 (4)C24—H24C0.9800
Ni1—N2i2.064 (4)Ni2—N3ii2.072 (4)
Ni1—O1i2.134 (3)Ni2—N32.072 (4)
Ni1—O12.134 (3)Ni2—N42.076 (4)
P2—O51.495 (4)Ni2—N4ii2.076 (4)
P2—C291.804 (5)Ni2—O1Wii2.105 (4)
P2—O41.502 (3)Ni2—O1W2.105 (4)
P2—O61.576 (4)O1W—H1WA0.8701
P1—O31.570 (4)O1W—H1WB0.8691
P1—O21.518 (3)N3—H31.0000
P1—O11.483 (3)N3—C101.481 (6)
P1—C161.811 (5)N3—C61.479 (6)
P3—C381.813 (5)C10—H10A0.9900
P3—O91.562 (4)C10—H10B0.9900
P3—O71.506 (4)C10—C9ii1.496 (7)
P3—O81.499 (4)N4—H41.0000
C29—C301.391 (7)N4—C91.486 (6)
C29—C281.381 (7)N4—C81.457 (7)
O3W—H3WA0.8523C9—H9A0.9900
O3W—H3WB0.8700C9—H9B0.9900
O4W—H4WA0.8687C7—H7A0.9900
O4W—H4WB0.8702C7—H7B0.9900
C22—C411.400 (6)C7—C61.504 (7)
C22—C231.402 (6)C7—C81.513 (7)
C22—C191.497 (6)C6—H6A0.9900
C38—C391.380 (7)C6—H6B0.9900
C38—C371.390 (7)C8—H8A0.9900
C26—C251.488 (6)C8—H8B0.9900
C26—C311.388 (6)Ni3—N52.070 (4)
C26—C271.392 (6)Ni3—N5iii2.070 (5)
N1—H11.0000Ni3—N62.056 (5)
N1—C51.482 (6)Ni3—N6iii2.056 (5)
N1—C11.474 (6)Ni3—O2Wiii2.137 (3)
O3—H3C0.8400Ni3—O2W2.136 (3)
C34—C351.497 (6)O2W—H2WA0.8638
C34—C411.414 (6)O2W—H2WB0.8553
C34—C321.401 (6)N5—H51.0000
N2—H21.0000N5—C151.497 (7)
N2—C31.469 (6)N5—C111.431 (8)
N2—C41.477 (6)O7W—H7WA0.8613
C3—H3A0.9900O7W—H7WB0.8521
C3—H3B0.9900N6—H61.0000
C3—C21.521 (7)N6—C141.452 (7)
O9—H9C0.8400N6—C131.487 (8)
C35—C361.368 (7)C14—H14A0.9900
C35—C401.392 (6)C14—H14B0.9900
C41—C421.507 (6)C14—C15iii1.507 (9)
C23—C251.396 (6)O6W—H6WA0.8706
C23—C241.510 (6)O6W—H6WB0.8688
C30—H300.9500O5W—H5WA0.8696
C30—C311.382 (7)O5W—H5WB0.8704
C25—C321.409 (6)O6—H6C0.8400
C5—H5A0.9900C17—H170.9500
C5—H5B0.9900C17—C161.387 (6)
C5—C4i1.513 (7)C17—C181.396 (6)
C33—H33A0.9800C18—H180.9500
C33—H33B0.9800C40—H400.9500
C33—H33C0.9800C1—H1A0.9900
C33—C321.506 (6)C1—H1B0.9900
C39—H390.9500C28—H280.9500
C39—C401.399 (6)C28—C271.375 (7)
C42—H42A0.9800C31—H310.9500
C42—H42B0.9800C13—H13A0.9900
C42—H42C0.9800C13—H13B0.9900
C36—H360.9500C13—C121.506 (9)
C36—C371.385 (6)C15—H15A0.9900
C19—C201.391 (6)C15—H15B0.9900
C19—C181.393 (6)C11—H11A0.9900
C21—H210.9500C11—H11B0.9900
C21—C201.389 (6)C11—C121.514 (10)
C21—C161.398 (6)C27—H270.9500
C20—H200.9500C12—H12A0.9900
C2—H2A0.9900C12—H12B0.9900
C2—H2B0.9900C4—H4A0.9900
C2—C11.513 (7)C4—H4B0.9900
C37—H370.9500
N1—Ni1—N1i180.0N4—Ni2—O1W89.10 (17)
N1—Ni1—O1i91.79 (14)N4ii—Ni2—O1W90.90 (17)
N1i—Ni1—O1i88.21 (14)N4ii—Ni2—O1Wii89.10 (17)
N1i—Ni1—O191.79 (14)N4—Ni2—N4ii180.00 (13)
N1—Ni1—O188.21 (14)Ni2—O1W—H1WA106.8
N1—Ni1—N2i85.31 (16)Ni2—O1W—H1WB108.1
N1i—Ni1—N285.31 (16)H1WA—O1W—H1WB104.5
N1i—Ni1—N2i94.69 (16)Ni2—N3—H3107.3
N1—Ni1—N294.69 (16)C10—N3—Ni2105.7 (3)
N2i—Ni1—N2180.0C10—N3—H3107.3
N2i—Ni1—O190.47 (15)C6—N3—Ni2114.6 (3)
N2—Ni1—O189.53 (15)C6—N3—H3107.3
N2i—Ni1—O1i89.53 (15)C6—N3—C10114.3 (4)
N2—Ni1—O1i90.47 (15)N3—C10—H10A109.9
O1i—Ni1—O1180.0N3—C10—H10B109.9
O5—P2—C29110.3 (2)N3—C10—C9ii109.1 (4)
O5—P2—O4115.4 (2)H10A—C10—H10B108.3
O5—P2—O6111.3 (2)C9ii—C10—H10A109.9
O4—P2—C29108.0 (2)C9ii—C10—H10B109.9
O4—P2—O6110.5 (2)Ni2—N4—H4106.9
O6—P2—C29100.2 (2)C9—N4—Ni2106.4 (3)
O3—P1—C16102.1 (2)C9—N4—H4106.9
O2—P1—O3110.2 (2)C8—N4—Ni2115.2 (3)
O2—P1—C16107.1 (2)C8—N4—H4106.9
O1—P1—O3111.4 (2)C8—N4—C9114.0 (4)
O1—P1—O2115.2 (2)C10ii—C9—H9A110.1
O1—P1—C16110.06 (19)C10ii—C9—H9B110.1
O9—P3—C38101.5 (2)N4—C9—C10ii108.1 (4)
O7—P3—C38107.6 (2)N4—C9—H9A110.1
O7—P3—O9109.8 (2)N4—C9—H9B110.1
O8—P3—C38109.4 (2)H9A—C9—H9B108.4
O8—P3—O9111.8 (2)H7A—C7—H7B107.3
O8—P3—O7115.7 (2)C6—C7—H7A108.1
C30—C29—P2120.9 (4)C6—C7—H7B108.1
C28—C29—P2121.0 (4)C6—C7—C8116.9 (5)
C28—C29—C30118.0 (4)C8—C7—H7A108.1
H3WA—O3W—H3WB98.3C8—C7—H7B108.1
H4WA—O4W—H4WB104.4N3—C6—C7112.6 (4)
C41—C22—C23120.1 (4)N3—C6—H6A109.1
C41—C22—C19118.6 (4)N3—C6—H6B109.1
C23—C22—C19120.9 (4)C7—C6—H6A109.1
C39—C38—P3121.3 (4)C7—C6—H6B109.1
C39—C38—C37118.6 (4)H6A—C6—H6B107.8
C37—C38—P3120.1 (4)N4—C8—C7111.9 (5)
C31—C26—C25123.6 (4)N4—C8—H8A109.2
C31—C26—C27116.3 (4)N4—C8—H8B109.2
C27—C26—C25120.1 (4)C7—C8—H8A109.2
Ni1—N1—H1106.9C7—C8—H8B109.2
C5—N1—Ni1104.8 (3)H8A—C8—H8B107.9
C5—N1—H1106.9O2W—Ni3—O2Wiii180.0
C1—N1—Ni1116.4 (3)N5iii—Ni3—O2W91.54 (15)
C1—N1—H1106.9N5—Ni3—O2W88.46 (15)
C1—N1—C5114.2 (4)N5iii—Ni3—O2Wiii88.46 (15)
P1—O3—H3C109.5N5—Ni3—O2Wiii91.54 (15)
C41—C34—C35117.8 (4)N5—Ni3—N5iii180.0
C32—C34—C35121.4 (4)N6—Ni3—O2W89.19 (16)
C32—C34—C41120.8 (4)N6iii—Ni3—O2W90.81 (16)
Ni1—N2—H2106.6N6iii—Ni3—O2Wiii89.19 (16)
C3—N2—Ni1116.1 (3)N6—Ni3—O2Wiii90.81 (16)
C3—N2—H2106.6N5—Ni3—N6iii85.2 (2)
C3—N2—C4114.4 (4)N5—Ni3—N694.8 (2)
C4—N2—Ni1106.0 (3)N5iii—Ni3—N685.2 (2)
C4—N2—H2106.6N5iii—Ni3—N6iii94.8 (2)
N2—C3—H3A109.1N6iii—Ni3—N6180.0
N2—C3—H3B109.1Ni3—O2W—H2WA110.2
N2—C3—C2112.3 (4)Ni3—O2W—H2WB109.7
H3A—C3—H3B107.9H2WA—O2W—H2WB103.1
C2—C3—H3A109.1Ni3—N5—H5106.1
C2—C3—H3B109.1C15—N5—Ni3105.8 (4)
P3—O9—H9C109.5C15—N5—H5106.1
C36—C35—C34119.7 (4)C11—N5—Ni3117.4 (4)
C36—C35—C40118.5 (4)C11—N5—H5106.1
C40—C35—C34121.7 (4)C11—N5—C15114.5 (5)
C22—C41—C34119.4 (4)H7WA—O7W—H7WB94.0
C22—C41—C42119.5 (4)Ni3—N6—H6106.1
C34—C41—C42121.1 (4)C14—N6—Ni3107.9 (4)
C22—C23—C24118.7 (4)C14—N6—H6106.1
C25—C23—C22120.0 (4)C14—N6—C13114.0 (5)
C25—C23—C24121.2 (4)C13—N6—Ni3115.9 (4)
C29—C30—H30119.4C13—N6—H6106.1
C31—C30—C29121.2 (5)N6—C14—H14A109.8
C31—C30—H30119.4N6—C14—H14B109.8
C23—C25—C26118.9 (4)N6—C14—C15iii109.4 (5)
C23—C25—C32120.8 (4)H14A—C14—H14B108.2
C32—C25—C26120.2 (4)C15iii—C14—H14A109.8
N1—C5—H5A110.0C15iii—C14—H14B109.8
N1—C5—H5B110.0H6WA—O6W—H6WB104.5
N1—C5—C4i108.4 (4)H5WA—O5W—H5WB104.5
H5A—C5—H5B108.4P1—O1—Ni1167.3 (2)
C4i—C5—H5A110.0P2—O6—H6C109.5
C4i—C5—H5B110.0C16—C17—H17119.7
H33A—C33—H33B109.5C16—C17—C18120.5 (4)
H33A—C33—H33C109.5C18—C17—H17119.7
H33B—C33—H33C109.5C21—C16—P1122.4 (4)
C32—C33—H33A109.5C17—C16—P1118.7 (3)
C32—C33—H33B109.5C17—C16—C21118.7 (4)
C32—C33—H33C109.5C19—C18—C17121.1 (4)
C38—C39—H39119.6C19—C18—H18119.5
C38—C39—C40120.8 (5)C17—C18—H18119.5
C40—C39—H39119.6C35—C40—C39120.0 (5)
C41—C42—H42A109.5C35—C40—H40120.0
C41—C42—H42B109.5C39—C40—H40120.0
C41—C42—H42C109.5N1—C1—C2112.0 (4)
H42A—C42—H42B109.5N1—C1—H1A109.2
H42A—C42—H42C109.5N1—C1—H1B109.2
H42B—C42—H42C109.5C2—C1—H1A109.2
C35—C36—H36119.1C2—C1—H1B109.2
C35—C36—C37121.8 (5)H1A—C1—H1B107.9
C37—C36—H36119.1C29—C28—H28120.0
C20—C19—C22124.0 (4)C27—C28—C29120.1 (5)
C20—C19—C18117.9 (4)C27—C28—H28120.0
C18—C19—C22118.0 (4)C26—C31—H31119.3
C20—C21—H21119.9C30—C31—C26121.4 (4)
C20—C21—C16120.2 (4)C30—C31—H31119.3
C16—C21—H21119.9N6—C13—H13A109.2
C19—C20—H20119.3N6—C13—H13B109.2
C21—C20—C19121.5 (4)N6—C13—C12112.1 (5)
C21—C20—H20119.3H13A—C13—H13B107.9
C3—C2—H2A108.4C12—C13—H13A109.2
C3—C2—H2B108.4C12—C13—H13B109.2
H2A—C2—H2B107.5N5—C15—C14iii110.1 (5)
C1—C2—C3115.4 (4)N5—C15—H15A109.6
C1—C2—H2A108.4N5—C15—H15B109.6
C1—C2—H2B108.4C14iii—C15—H15A109.6
C38—C37—H37120.0C14iii—C15—H15B109.6
C36—C37—C38120.1 (5)H15A—C15—H15B108.2
C36—C37—H37120.0N5—C11—H11A109.3
C34—C32—C25118.8 (4)N5—C11—H11B109.3
C34—C32—C33120.2 (4)N5—C11—C12111.5 (5)
C25—C32—C33121.0 (4)H11A—C11—H11B108.0
C23—C24—H24A109.5C12—C11—H11A109.3
C23—C24—H24B109.5C12—C11—H11B109.3
C23—C24—H24C109.5C26—C27—H27118.5
H24A—C24—H24B109.5C28—C27—C26123.0 (5)
H24A—C24—H24C109.5C28—C27—H27118.5
H24B—C24—H24C109.5C13—C12—C11118.5 (6)
O1Wii—Ni2—O1W180.0C13—C12—H12A107.7
N3—Ni2—O1W88.65 (15)C13—C12—H12B107.7
N3ii—Ni2—O1Wii88.65 (15)C11—C12—H12A107.7
N3—Ni2—O1Wii91.35 (15)C11—C12—H12B107.7
N3ii—Ni2—O1W91.35 (15)H12A—C12—H12B107.1
N3—Ni2—N3ii180.0N2—C4—C5i107.4 (4)
N3—Ni2—N4ii84.66 (16)N2—C4—H4A110.2
N3ii—Ni2—N4ii95.34 (16)N2—C4—H4B110.2
N3ii—Ni2—N484.66 (16)C5i—C4—H4A110.2
N3—Ni2—N495.34 (16)C5i—C4—H4B110.2
N4—Ni2—O1Wii90.90 (17)H4A—C4—H4B108.5
Ni1—N1—C5—C4i44.0 (4)O7—P3—C38—C3738.0 (5)
Ni1—N1—C1—C255.0 (5)C36—C35—C40—C392.7 (7)
Ni1—N2—C3—C255.3 (5)C19—C22—C41—C34169.3 (4)
Ni1—N2—C4—C5i42.6 (4)C19—C22—C41—C429.3 (6)
P2—C29—C30—C31177.8 (4)C19—C22—C23—C25169.7 (4)
P2—C29—C28—C27177.0 (4)C19—C22—C23—C2412.3 (6)
P3—C38—C39—C40176.5 (4)O8—P3—C38—C3915.9 (5)
P3—C38—C37—C36177.2 (4)O8—P3—C38—C37164.4 (4)
O5—P2—C29—C3029.0 (5)C20—C19—C18—C171.5 (7)
O5—P2—C29—C28149.2 (4)C20—C21—C16—P1173.3 (4)
C29—C30—C31—C260.7 (8)C20—C21—C16—C172.0 (7)
C29—C28—C27—C261.1 (8)C37—C38—C39—C403.2 (7)
O4—P2—C29—C3098.0 (4)C32—C34—C35—C36105.9 (5)
O4—P2—C29—C2883.8 (4)C32—C34—C35—C4077.4 (6)
C22—C23—C25—C26175.0 (4)C32—C34—C41—C222.2 (7)
C22—C23—C25—C321.0 (7)C32—C34—C41—C42179.2 (4)
C22—C19—C20—C21174.9 (4)C24—C23—C25—C267.1 (7)
C22—C19—C18—C17175.5 (4)C24—C23—C25—C32176.9 (4)
C38—C39—C40—C350.6 (8)Ni2—N3—C10—C9ii43.0 (5)
C26—C25—C32—C34177.1 (4)Ni2—N3—C6—C754.7 (5)
C26—C25—C32—C332.1 (7)Ni2—N4—C9—C10ii41.1 (5)
O3—P1—O1—Ni1149.1 (9)Ni2—N4—C8—C755.8 (5)
O3—P1—C16—C2125.1 (4)C10—N3—C6—C7176.9 (4)
O3—P1—C16—C17159.6 (3)C9—N4—C8—C7179.2 (5)
C34—C35—C36—C37173.4 (4)C6—N3—C10—C9ii170.0 (4)
C34—C35—C40—C39174.0 (4)C6—C7—C8—N471.7 (6)
N2—C3—C2—C171.6 (6)C8—N4—C9—C10ii169.2 (4)
C3—N2—C4—C5i171.9 (4)C8—C7—C6—N371.3 (6)
C3—C2—C1—N171.1 (6)Ni3—N5—C15—C14iii37.7 (5)
O2—P1—O1—Ni122.6 (10)Ni3—N5—C11—C1253.9 (6)
O2—P1—C16—C21141.0 (4)Ni3—N6—C14—C15iii39.2 (5)
O2—P1—C16—C1743.8 (4)Ni3—N6—C13—C1252.9 (6)
O9—P3—C38—C39102.4 (4)N5—C11—C12—C1369.6 (7)
O9—P3—C38—C3777.3 (4)N6—C13—C12—C1169.2 (7)
C35—C34—C41—C22175.0 (4)C14—N6—C13—C12178.9 (5)
C35—C34—C41—C423.6 (7)O1—P1—C16—C2193.2 (4)
C35—C34—C32—C25177.6 (4)O1—P1—C16—C1782.0 (4)
C35—C34—C32—C331.6 (7)O6—P2—C29—C30146.4 (4)
C35—C36—C37—C380.8 (8)O6—P2—C29—C2831.8 (4)
C41—C22—C23—C253.8 (7)C16—P1—O1—Ni198.5 (10)
C41—C22—C23—C24174.2 (4)C16—C21—C20—C190.2 (7)
C41—C22—C19—C2085.7 (6)C16—C17—C18—C190.7 (7)
C41—C22—C19—C1891.1 (5)C18—C19—C20—C211.9 (7)
C41—C34—C35—C3671.2 (6)C18—C17—C16—P1173.0 (3)
C41—C34—C35—C40105.5 (5)C18—C17—C16—C212.4 (7)
C41—C34—C32—C250.6 (7)C40—C35—C36—C373.4 (7)
C41—C34—C32—C33178.6 (4)C1—N1—C5—C4i172.6 (4)
C23—C22—C41—C344.4 (7)C28—C29—C30—C310.4 (8)
C23—C22—C41—C42177.0 (4)C31—C26—C25—C23110.8 (5)
C23—C22—C19—C20100.7 (5)C31—C26—C25—C3273.2 (6)
C23—C22—C19—C1882.5 (5)C31—C26—C27—C280.1 (7)
C23—C25—C32—C341.2 (7)C13—N6—C14—C15iii169.4 (5)
C23—C25—C32—C33178.0 (4)C15—N5—C11—C12179.0 (5)
C30—C29—C28—C271.3 (7)C11—N5—C15—C14iii168.7 (5)
C25—C26—C31—C30178.9 (5)C27—C26—C25—C2369.4 (6)
C25—C26—C27—C28179.7 (5)C27—C26—C25—C32106.6 (5)
C5—N1—C1—C2177.5 (4)C27—C26—C31—C300.9 (7)
C39—C38—C37—C362.5 (7)C4—N2—C3—C2179.3 (5)
O7—P3—C38—C39142.3 (4)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y+2, z+1; (iii) x+1, y+3, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6iv1.002.323.196 (5)146
N2—H2···O6W1.002.183.039 (6)143
N3—H3···07v1.002.133.102 (6)162
N4—H4···O4W1.002.063.056 (6)173
N5—H5···O9vi1.002.073.003 (6)155
N6—H6···O7Wii1.001.982.956 (6)166
O3—H3C···O5iv0.841.842.654 (5)162
O6—H6C···O3Wvii0.841.752.550 (5)159
O9—H9C···O4viii0.841.742.517 (5)154
O1W—H1WB···O7v0.871.812.679 (5)173
O1W—H1WA···O4W0.872.453.256 (6)155
O2W—H2WB···O40.861.902.729 (5)164
O2W—H2WA···O7Wix0.861.812.675 (6)174
O3W—H3WB···O20.871.812.676 (4)177
O3W—H3WA···O7v0.851.842.689 (5)174
O4W—H4WB···O30.872.263.115 (6)167
O4W—H4WA···O8v0.871.932.796 (6)172
O5W—H5WB···O5x0.871.982.813 (5)159
O5W—H5WA···O8xi0.871.872.725 (5)168
O6W—H6WB···O20.872.022.799 (6)149
O6W—H6WA···O5W0.872.002.842 (5)164
O7W—H7WB···O3W0.852.022.731 (5)140
O7W—H7WA···O5W0.861.832.688 (5)173
Symmetry codes: (ii) x+2, y+2, z+1; (iv) x, y1, z; (v) x, y, z1; (vi) x+1, y+2, z+2; (vii) x, y+1, z; (viii) x, y1, z+1; (ix) x1, y+1, z; (x) x+1, y1, z; (xi) x+1, y, z1.
Selected geometric parameters (Å, °). top
Ni1—N12.067 (4)Ni2—N32.072 (4)Ni3—N52.070 (4)
Ni1—N22.064 (4)Ni2—N42.076 (4)Ni3—N62.056 (4)
Ni1—O12.134 (3)Ni2—O1W2.105 (4)Ni3—O2W2.136 (3)
N1—Ni1—N2i85.31 (16)N3—Ni2—N4ii84.66 (16)N5—Ni3—N6iii85.2 (2)
N1—Ni1—N294.69 (16)N3—Ni2—N495.34 (16)N5—Ni3—N694.8 (2)
Symmetry codes: (i) –x+2, –y+1, –z+2; (ii) –x+2, –y+2, –z+1; (iii) –x+1, –y+3, –z+1.
 

References

First citationAlexandrov, E. V., Blatov, V. A. & Proserpio, D. M. (2017). CrystEngComm, 19, 1993–2006.  Web of Science CrossRef CAS Google Scholar
First citationBarefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197–4202.  CSD CrossRef CAS Web of Science Google Scholar
First citationBeckmann, J., Rüttinger, R. & Schwich, T. (2008). Cryst. Growth Des. 8, 3271–3276.  Web of Science CSD CrossRef CAS Google Scholar
First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965a). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Google Scholar
First citationBosnich, B., Tobe, M. L. & Webb, G. A. (1965b). Inorg. Chem. 4, 1109–1112.  CrossRef CAS Google Scholar
First citationFirmino, A. D. G., Figueira, F., Tomé, J. P. C., Paz, F. A. A. & Rocha, J. (2018). Coord. Chem. Rev. 355, 133–149.  CrossRef CAS Google Scholar
First citationGagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034–1054.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGong, Y.-N., Zhong, D.-C. & Lu, T.-B. (2016). CrystEngComm, 18, 2596–2606.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHermer, N., Reinsch, H., Mayer, P. & Stock, N. (2016). CrystEngComm, 18, 8147–8150.  CrossRef CAS Google Scholar
First citationKaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.  Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLampeka, Ya. D., Tsymbal, L. V., Barna, A. V., Shuĺga, Y. L., Shova, S. & Arion, V. B. (2012). Dalton Trans. 41, 4118–4125.  CrossRef CAS PubMed Google Scholar
First citationMacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials. Hoboken: John Wiley and Sons.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuellette, W., Wang, G., Liu, H., Yee, G. T., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 953–963.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPili, S., Argent, S. P., Morris, C. G., Rought, P., García-Sakai, V., Silverwood, I. P., Easun, T. L., Li, M., Warren, M. R., Murray, C. A., Tang, C. C., Yang, S. & Schröder, M. (2016). J. Am. Chem. Soc. 138, 6352–6355.  CrossRef CAS PubMed Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTaddei, M., Costantino, F., Vivani, R., Sabatini, S., Lim, S.-H. & Cohen, S. M. (2014). Chem. Commun. 50, 5737–5740.  CrossRef CAS Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Lozan, V., Shova, S. & Lampeka, Y. D. (2022). Acta Cryst. E78, 625–628.  CrossRef IUCr Journals Google Scholar
First citationVaidhyanathan, R., Mahmoudkhani, A. H. & Shimizu, G. K. H. (2009). Can. J. Chem. 87, 247–253.  Web of Science CSD CrossRef CAS Google Scholar
First citationVilela, S. M. F., Navarro, J. A. R., Barbosa, P., Mendes, R. F., Pérez-Sánchez, G., Nowell, H., Ananias, D., Figueiredo, F., Gomes, J. R. B., Tomé, J. P. C. & Paz, F. A. A. (2021). J. Am. Chem. Soc. 143, 1365–1376.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka (in Russian).  Google Scholar
First citationYücesan, G., Zorlu, Y., Stricker, M. & Beckmann, J. (2018). Coord. Chem. Rev. 369, 105–122.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds