research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [3,10-bis­­(4-fluoro­pheneth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne]nickel(II) diperchlorate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry Education, Sunchon National University, 255 Jungang-ro, Sunchon, 57922, South Korea, and bPolymerization Manufacturing Technology Research Team, Lotte Chemicals, 334-27 Yeosu Sandan-ro, Yeosu, 59616, South Korea
*Correspondence e-mail: chkwak@sunchon.ac.kr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 21 December 2020; accepted 30 December 2020; online 22 January 2021)

The square-planar nickel(II) title complex, [Ni(C24H36F2N6)](ClO4)2 or [NiL](ClO4)2 (L = 3,10-bis­(4-fluoro­pheneth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne) was synthesized by a one-pot reaction of template condensation and its X-ray crystal structure was determined. The nickel(II) ion lies close by a twofold axis and the complex displays whole-mol­ecule disorder. Ligand L, a hexa­aza­cyclo­tetra­decane ring having 4-fluoro­phenethyl side chains attached to uncoordinated nitro­gen atoms, adopts a trans III (R,R,S,S) configuration. The average Ni—N bond distance is 1.934 (9) Å, which is quite similar to those of other nickel(II) complexes with similar ligands. The nickel(II) ion is located 0.051 (7) Å above the least-squares plane through the four coordinated N atoms. The average C—N bond distance and C—N—C angle involving uncoordinated nitro­gen atoms are 1.425 (12) Å and 118.0 (9)°, respectively, indicating a significant contribution of sp2 hybridization for these N atoms. The inter­molecular N—H⋯O, C—H⋯O/F hydrogen bonds of the complex form a network structure, which looks like a seamless floral lace pattern.

1. Chemical context

A metal template condensation reaction with formaldehyde and appropriate amines is a useful method for the synthesis of saturated polyaza­macrocyclic complexes. It often produces new macrocyclic complexes in one-pot reactions with high yield via selective routes (Salavati-Niasari & Davar, 2006[Salavati-Niasari, M. & Davar, F. (2006). Inorg. Chem. Commun. 9, 175-179.]; Salavati-Niasari & Najafian, 2003[Salavati-Niasari, M. & Najafian, H. (2003). Polyhedron, 22, 2633-2638.]; Suh, 1996[Suh, M. P. (1996). Adv. Inorg. Chem. 44, 93-146.]). The introduction of pendant arms into polyaza­macrocyclic ligands has, sometimes, changed the structural and chemical properties of the complexes considerably (Hermann et al., 2008[Hermann, P., Kotek, J., Kubíček, V. & Lukeš, I. (2008). Dalton Trans. pp. 3027-3047.]; Jee et al., 2003[Jee, J. E., Kim, Y. M., Lee, S. S., Park, K. M. & Kwak, C. H. (2003). Inorg. Chem. Commun. 6, 946-949.]; Alexander, 1995[Alexander, V. (1995). Chem. Rev. 95, 273-342.]; Kang et al., 1995[Kang, S. G., Kim, M.-S., Choi, J. S., Whang, D. & Kim, K. (1995). J. Chem. Soc. Dalton Trans. pp. 363-366.]). The information derived from polyaza­macrocyclic complexes containing pendant arms helps in the understanding of apical effects in the biological behavior of tetra­aza­macrocyclic metalloenzymes having a square-planar geometry (Liang & Sadler, 2004[Liang, X. & Sadler, P. J. (2004). Chem. Soc. Rev. 33, 246-266.]; Costamagna et al., 2000[Costamagna, J., Ferraudi, G., Matsuhiro, B., Campos-Vallette, M., Canales, J., Villagrán, M., Vargas, J. & Aguirre, M. J. (2000). Coord. Chem. Rev. 196, 125-164.]). Furthermore, the donor atoms in the pendant arms of these macrocyclic complexes can be coordinated to another metal ion or participate in hydrogen bonding. Consequently, these complexes can be applied in the field of supra­molecular chemistry or metal–organic frameworks. In the nickel(II) complex 8-(pyridin-4-ylmeth­yl)-1,3,6,8,10,13,15-hepta­aza­tri­cyclo[13.1.1.113,15]octa­decane, inter­molecular hydrogen bonding between the nitro­gen of the pendant pyridine and coordinated water produces a one-dimensional chain structure (Jee et al., 2003[Jee, J. E., Kim, Y. M., Lee, S. S., Park, K. M. & Kwak, C. H. (2003). Inorg. Chem. Commun. 6, 946-949.]). In particular, many supra­molecular studies including metal–organic frameworks using complexes of 3,10-bis­(alk­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane-type ligands are available because they can be obtained by easy synthetic routes using metal template reactions (Min & Suh, 2001[Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303-313.]; Kang et al., 1999[Kang, S. G., Ryu, K., Jung, S. K. & Kim, J. (1999). Inorg. Chim. Acta, 293, 140-146.]; Suh et al., 1994[Suh, M. P., Shim, B. Y. & Yoon, T.-S. (1994). Inorg. Chem. 33, 5509-5514.]). The nickel(II) complex of 3,10-bis­(2-cyano­eth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane produces a coordination polymer with each nickel(II) ion in the macrocycle units coordinating to two nitrile pendant groups of neighboring macrocycles (Suh et al., 1994[Suh, M. P., Shim, B. Y. & Yoon, T.-S. (1994). Inorg. Chem. 33, 5509-5514.]). In the nickel(II) complex of 3,10-bis­(pyridin-4-ylmeth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane, hydrogen-bonding inter­actions between nitro­gen atoms in pendant pyridine rings, structural water mol­ecules and hydrogen atoms of the secondary amine of the macrocycle link the macrocyclic complexes, resulting in a two-dimensional network (Min & Suh, 2001[Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303-313.]). In addition, many studies on metal–organic frameworks have been performed using complexes of 3,10-bis­(alk­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane-type ligands (Jeoung et al., 2019[Jeoung, S., Lee, S., Lee, J. H., Lee, S., Choe, W., Moon, D. & Moon, H. R. (2019). Chem. Commun. 55, 8832-8835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]; Lee & Moon, 2018[Lee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237-249.]; Lin et al., 2014[Lin, Z. J., Lü, J., Hong, M. & Cao, R. (2014). Chem. Soc. Rev. 43, 5867-5895.]). In this communication, we report the preparation of a new nickel(II) complex [NiL](ClO4)2, where L is a 3,10-bis­(alk­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane ligand having 4-fluoro­phenethyl pendant arms at positions 3 and 10, and its structural characterization by single-crystal X-ray crystallography.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. Both the complex and perchlorate anion display disorder. The NiII ion lies close by a special position (twofold axis) and the [NiL]2+ complex occurs in two orientations with fixed occupancies of 0.50. The refinement of this whole-mol­ecule disorder needed additional restraints (see Refinement section). The occupancies of the disordered perchlorate ion are 0.795 (7) and 0.205 (7). The nickel(II) ion is coordinated to the four nitro­gens N2, N3, N2′ and N3′, and the complex has a square-planar coordination geometry. The 14-membered ring skeleton adopts the thermodynamically most stable trans-III configuration with R,R,S,S chirality of the four coordinated nitro­gen atoms (Barefield, 2010[Barefield, E. K. (2010). Coord. Chem. Rev. 254, 1607-1627.]). The ligand L of the complex has two 4-fluoro­phenethyl pendant arms attached to the two uncoordinated nitro­gens (N1 and N1′) of the 14-membered 1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane ring skeleton. The 4-fluoro­phenethyl pendants are positioned above and below the square coordination plane. The six-membered chelate rings adopt a chair conformation and the five-membered chelate rings assume a gauche conformation.

[Figure 1]
Figure 1
Mol­ecular structure of one of the whole-mol­ecule disorder component mol­ecules of [NiL]2+ with displacement ellipsoids at 50% probability level. The second disorder component, generated by (1 − x, y, [{1\over 2}] − z) is omitted for clarity.

Selected bond distances and angles are listed in Table 1[link]. The average Ni—N bond distance of 1.934 (9) Å is quite similar to those in square-planar nickel(II) complexes of various other related 14-membered polyaza macrocycles (Kang et al., 1999[Kang, S. G., Ryu, K., Jung, S. K. & Kim, J. (1999). Inorg. Chim. Acta, 293, 140-146.]; Suh et al., 1998[Suh, M. P., Han, M. Y., Lee, J. H., Min, K. S. & Hyeon, C. (1998). J. Am. Chem. Soc. 120, 3819-3820.]; Suh et al., 1996[Suh, M. P., Kim, I. S., Shim, B. Y., Hong, D. & Yoon, T.-S. (1996). Inorg. Chem. 35, 3595-3598.]). The bite angles of five-membered chelates are 86.5 (2)° for N2—Ni1—N2′ and 86.6 (3)° for N3—Ni1—N3′, respectively and those of six-membered chelates are 93.7 (4)° for N2—Ni1—N3 and 93.0 (4)° for N2′—Ni1—N3′, respectively. The four coordinating nitro­gen atoms (N2, N3, N2′ and N3′) are almost co-planar (r.m.s. deviation 0.010 Å). The nickel(II) ion is located 0.051 (7) Å above this least-squares plane showing a slightly square-pyramidal distortion. The N—C bond distances involv­ing the uncoordinated bridgehead nitro­gens (N1 and N1′) range from 1.398 (11) Å (N1—C1) to 1.481 (10) Å (N1′—C5′) and the average N—C bond distance is 1.425 (12) Å, which is significantly shorter than the other N—C single bond distances. Furthermore, the C—N—C bond angles involving these bridgehead nitro­gens range from 115.5 (7)° (C1—N1—C2) to 120.1 (8)° (C1′—N1′—C5′) and the average bond angle is 118.0 (9)°, which is distinctly larger than the ideal tetra­hedral angle. These results indicate a significant contribution of sp2 hybridization of the bridgehead nitro­gen atoms (N1 and N1′) (Min & Suh, 2001[Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303-313.]; Kang et al., 1999[Kang, S. G., Ryu, K., Jung, S. K. & Kim, J. (1999). Inorg. Chim. Acta, 293, 140-146.]).

Table 1
Selected geometric parameters (Å, °)

Ni1—N3 1.925 (7) N1—C2 1.401 (11)
Ni1—N2 1.933 (9) N1—C5 1.469 (10)
Ni1—N3′ 1.934 (7) N1′—C1′ 1.400 (11)
Ni1—N2′ 1.943 (9) N1′—C2′ 1.408 (12)
N1—C1 1.398 (11) N1′—C5′ 1.481 (10)
       
N2—Ni1—N3 93.7 (4) C1—N1—C5 118.9 (9)
N3—Ni1—N3′ 86.6 (3) C2—N1—C5 119.1 (8)
N2—Ni1—N3′ 176.4 (4) C1′—N1′—C2′ 115.6 (7)
N2—Ni1—N2′ 86.5 (2) C1′—N1′—C5′ 120.1 (8)
C1—N1—C2 115.5 (7) C2′—N1′—C5′ 118.5 (9)

3. Supra­molecular features

There are several N—H⋯A (A = O) as well as C—H⋯A (A = O or F) hydrogen bonds in the crystal packing of [NiL](ClO4)2. Hydrogen-bonding inter­actions between N—H or C—H groups of the ligand L and perchlorate oxygen atoms are summarized in Table 2[link] and illustrated in Fig. 2[link]. In addition, fluorine atom F1 in one of the pendant phenyl groups of the macrocycle is involved in an inter­molecular inter­action with hydrogen H4A of a neighboring mol­ecule (Table 2[link] and Fig. 3[link]). The other fluorine atom, F1′, takes part in a weaker hydrogen-bonding inter­action with H4′A of a neighboring mol­ecule [H4A⋯F1′ = 2.62 Å, C4′⋯F1′ = 3.312 (17) Å and C4′—H4′A⋯F1′ = 128.4 (8)°]. These inter­actions form a chain structure extending in the [[\overline{1}]01] direction (Fig. 3[link]). All of these inter­molecular hydrogen-bonding inter­actions lead to a network structure resembling a seamless floral lace pattern (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.98 2.51 3.355 (17) 144
N2—H2⋯O4i 0.98 2.44 3.260 (16) 141
N2′—H2′⋯O4ii 0.98 2.43 3.332 (18) 152
N2′—H2′⋯O4iii 0.98 2.36 3.089 (17) 131
N3—H3⋯O2 0.98 1.97 2.819 (11) 144
N3′—H3′⋯O2ii 0.98 2.40 3.186 (11) 137
C1′—H1′A⋯O1iii 0.97 2.31 3.198 (13) 151
C1—H1B⋯O3ii 0.97 2.35 3.156 (16) 140
C1′—H1′B⋯O3 0.97 2.56 3.309 (15) 134
C2—H2B⋯O1iv 0.97 2.50 3.394 (16) 154
C3—H3B⋯O1i 0.97 2.48 3.35 (2) 149
C2′—H2′B⋯O1v 0.97 2.58 3.551 (16) 175
C4—H4A⋯F1vi 0.97 2.54 3.341 (19) 140
C3′—H3′A⋯O4iii 0.97 2.54 3.136 (17) 119
C4′—H4′B⋯O2 0.97 2.54 3.239 (14) 129
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Hydrogen-bonding inter­actions involving the perchlorate anions in the crystal packing [NiL](ClO4)2. Light-green dashed lines indicate N—H⋯O and C—H⋯O hydrogen-bonding inter­actions. Symmetry codes: (i) 1 − x, y, [{1\over 2}] − z; (ii) 1 − x, 1 − y, 1 − z; (iii) x, −[{1\over 2}] + y, 1 − z; (v) [{3\over 2}] − x, [{1\over 2}] − y, 1 − z; (vi) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z. Only one of the whole-mol­ecule disorder [NiL]2+ components and the major component of the perchlorate anion are shown.
[Figure 3]
Figure 3
A view showing the one-dimensional chain propagation of rings formed by the inter­molecular hydrogen bonding between F1⋯ H4A and F1′⋯H4′A in [NiL]2+. Symmetry codes: (i) 1 − x, y, [{1\over 2}] − z; (iv) [{1\over 2}] − x, [{1\over 2}] − y, 1 − z; (v) [{3\over 2}] − x, [{1\over 2}] − y, −z; (vii) −1 + x, y, 1 + z. Only one of the whole-mol­ecule disorder [NiL]2+ components is shown.
[Figure 4]
Figure 4
A view of the crystal packing of [NiL](ClO4)2, which resembles a seamless floral lace pattern. Light-green dashed lines indicate hydrogen-bonding inter­actions.

4. Database survey

An Access Structures search of the Cambridge Structural Database (CSD, via CCDC Access Structures, December 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in 97 structures of complexes of 3,10-bis­(alk­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane derivatives and 13 structures of complexes of 1,8-bis­(alk­yl)-1,3,6,8,10,13-hexa­aza­cyclo­tetra­decane (different systematic name of the ligand). However, no results were found for the 3,10-bis­(4-fluoro­pheneth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane structure.

In addition, 92 structures containing the 1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane skeleton were found during a SciFinder search, but again no results were found containing the title complex. Most are classified as octa­hedral complexes, while only a few cases are square-planar nickel(II) complexes. The Ni—N bond distances are 1.931 (2)–1.934 (3) Å in the nickel(II) complex of 3,10-bis­(2-amino­eth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (Kang et al., 1999[Kang, S. G., Ryu, K., Jung, S. K. & Kim, J. (1999). Inorg. Chim. Acta, 293, 140-146.]), 1.934 Å in the nickel(II) complex of 3,10-dibenzyl-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (Min & Suh, 2001[Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303-313.]), and 1.933 (3)–1.936 (3) Å in 1,8-dimethyl-1,3,6,8,10,13-hexa­aza­cyclo­tetra­decane (Benkada et al., 2020[Benkada, A., Näther, C. & Bensch, W. (2020). Z. Anorg. Allg. Chem. 646, 1352-1358.]), similar to those of the square-planar nickel(II) complexes of various other related 14-membered polyaza macrocycles. The Ni—N distances of 1.933 (4)–1.944 (4) Å in the nickel(II) complex of 1,8-dipentyl-1,3,6,8,10,13-hexa­aza­cyclo­tetra­decane (Park et al., 2015[Park, J. H., Jeong, A. R., Hastuti, D. K. A. K., Jeong, M. J. & Min, K. S. (2015). J. Incl Phenom. Macrocycl Chem. 82, 153-162.]) and the average Ni—N bond distance of 1.941 (6) Å in the nickel(II) complex of 3,10-bis­(α-methyl­naphth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (Min et al., 2013[Min, K. S., Park, M. J. & Ryoo, J. J. (2013). Chirality, 25, 54-58.]) are a little longer than those of analogous complexes. However, the Ni—N distances of 1.927 (4)–1.932 (4) Å in the nickel(II) complex of 3,10-bis­(2-thio­phene­meth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (Su et al., 2007[Su, Y. H., Liu, J., Li, J. & Si, X. Z. (2007). J. Mol. Struct. 837, 257-262.]) and 1.926 (1)–1.928 (1) Å in that of 3,10-bis­(2-hy­droxy­eth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (Kim et al., 2002[Kim, J. C., Lough, A. J. & Kim, H. (2002). Inorg. Chem. Commun. 5, 771-776.]) are somewhat shorter than those of analogous complexes. In all these nickel(II) complexes of 3,10-bis­(alk­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane analogues, the nickel(II) ion is situated on an inversion center, except for the nickel(II) complex of 3,10-bis­(α-methyl­naphth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane, which does not have an inversion center due to the chiral pendants of the macrocyclic ligand (Min et al., 2013[Min, K. S., Park, M. J. & Ryoo, J. J. (2013). Chirality, 25, 54-58.]). The nickel (II) ion is exactly in the least-squares plane through the four coordinating nitro­gen atoms.

5. Synthesis and crystallization

A well-known one-pot reaction of template condensation was used for the preparation of the title complex (Salavati-Niasari & Rezai-Adaryani, 2004[Salavati-Niasari, M. & Rezai-Adaryani, M. (2004). Polyhedron, 23, 1325-1331.]; Min & Suh, 2001[Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303-313.]; Kang et al., 1999[Kang, S. G., Ryu, K., Jung, S. K. & Kim, J. (1999). Inorg. Chim. Acta, 293, 140-146.]). 98% Ethyl­enedi­amine (1.1 ml, 16mmol), 99% 4-fluoro­phenethyl­amine (2.1 ml, 16 mmol), and 95% paraformaldehyde (1.44 g, 48 mmol) were slowly added to a stirred solution of 98% nickel(II) acetate tetra­hydrate (2.0 g, 8.0 mmol) in 50 ml of methanol. The solution was heated under reflux for 24 h and then cooled to room temperature. The solution was filtered, concentrated HClO4 was added to the filtrate, adjusting pH of the solution to 4, and it was kept in a refrigerator until a yellow-colored precipitate was formed. The product was filtered, washed with methanol, and dried in air. Single crystals for X-ray crystallography were obtained by recrystallization from hot water.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å (CH, aromatic), 0.97 Å (CH2) and N—H = 0.98 Å (NH2), and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.2Ueq(N)].

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C24H36F2N6)](ClO4)2
Mr 704.20
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 16.9910 (12), 15.5187 (11), 13.8864 (9)
β (°) 126.189 (1)
V3) 2955.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.40 × 0.35 × 0.20
 
Data collection
Diffractometer Bruker SMART CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 9357, 3400, 2737
Rint 0.083
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.159, 1.13
No. of reflections 3400
No. of parameters 282
No. of restraints 492
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.63
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

The refinement of the whole-mol­ecule disorder employed the following constraints and restraints in SHELXL: (1) occupancy factors were set at 0.50, (2) the two chemically equivalent halves of the complex were restrained to be similar using the `SAME' command, (3) the fluorinated benzene rings were given a weak `FLAT' restraint, (4) Ni1 required a strong `ISOR' restraint and (5) displacement factors for atom pairs related about the special position were constrained to be equal (EADP).

The perchlorate anion is disordered over two sets of atomic sites with occupancy ratios of 0.795 (7):0.205 (7).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

[3,10-Bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane]nickel(II) bis(perchlorate) top
Crystal data top
[Ni(C24H36F2N6)](ClO4)2F(000) = 1464
Mr = 704.20Dx = 1.583 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.9910 (12) ÅCell parameters from 3600 reflections
b = 15.5187 (11) Åθ = 1.8–28.3°
c = 13.8864 (9) ŵ = 0.91 mm1
β = 126.189 (1)°T = 173 K
V = 2955.1 (4) Å3Block, yellow
Z = 40.40 × 0.35 × 0.20 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
Rint = 0.083
phi and ω scansθmax = 28.3°, θmin = 2.0°
9357 measured reflectionsh = 2119
3400 independent reflectionsk = 1918
2737 reflections with I > 2σ(I)l = 1815
Refinement top
Refinement on F2492 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0449P)2 + 12.0119P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3400 reflectionsΔρmax = 0.88 e Å3
282 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50831 (10)0.37625 (4)0.25924 (13)0.0174 (2)*0.5
F10.0633 (8)0.3851 (12)0.5651 (8)0.071 (3)0.5
N10.2930 (6)0.3576 (6)0.2078 (8)0.0457 (18)0.5
N20.4195 (8)0.4599 (6)0.2494 (14)0.0285 (16)0.5
H20.4402740.4710360.3308220.034*0.5
N30.4422 (6)0.2796 (5)0.2689 (8)0.0315 (17)0.5
H30.4649130.2759120.3520380.038*0.5
C10.3129 (7)0.4353 (7)0.1751 (11)0.0438 (19)0.5
H1A0.2768980.4810230.1808460.053*0.5
H1B0.2890420.4313700.0922540.053*0.5
C20.3322 (7)0.2838 (6)0.1930 (9)0.0407 (18)0.5
H2A0.3075380.2800240.1098210.049*0.5
H2B0.3086480.2336870.2106250.049*0.5
C30.4317 (10)0.5416 (7)0.2027 (12)0.043 (2)0.5
H3A0.3988390.5376290.1172780.052*0.5
H3B0.4046200.5898370.2186210.052*0.5
C40.4734 (8)0.1987 (5)0.2428 (11)0.042 (2)0.5
H4A0.4627760.1495760.2770680.050*0.5
H4B0.4365220.1900690.1573560.050*0.5
C50.2772 (7)0.3584 (7)0.3011 (9)0.043 (2)0.5
H5A0.3247640.3960710.3654910.051*0.5
H5B0.2866680.3007820.3332870.051*0.5
C60.1754 (10)0.3892 (15)0.2521 (13)0.0436 (17)0.5
H6A0.1691160.4485760.2264760.052*0.5
H6B0.1290790.3552940.1818700.052*0.5
C70.1472 (8)0.3846 (10)0.3366 (10)0.0368 (12)0.5
C80.1429 (10)0.3083 (10)0.3863 (11)0.048 (3)0.5
H80.1573930.2562970.3666110.057*0.5
C90.1173 (10)0.3085 (10)0.4650 (11)0.054 (3)0.5
H90.1192230.2576170.5016390.065*0.5
C100.0891 (15)0.3847 (12)0.4885 (15)0.0519 (18)0.5
C110.0973 (19)0.4610 (12)0.447 (2)0.046 (2)0.5
H110.0842660.5126870.4692610.055*0.5
C120.126 (2)0.4599 (11)0.371 (2)0.039 (2)0.5
H120.1303490.5121860.3422900.047*0.5
F1'0.9281 (8)0.3557 (11)0.0646 (8)0.071 (3)0.5
N1'0.7183 (6)0.3953 (6)0.3006 (8)0.0457 (18)0.5
N2'0.5718 (8)0.4730 (6)0.2422 (15)0.0315 (17)0.5
H2'0.5488370.4746050.1588050.038*0.5
N3'0.5922 (6)0.2927 (5)0.2582 (8)0.0285 (16)0.5
H3'0.5707870.2865570.1757100.034*0.5
C1'0.6818 (7)0.4693 (6)0.3192 (10)0.0407 (18)0.5
H1'A0.7061140.5196920.3030500.049*0.5
H1'B0.7063490.4715490.4023880.049*0.5
C2'0.6995 (7)0.3171 (7)0.3348 (10)0.0438 (19)0.5
H2'A0.7224350.3215280.4172750.053*0.5
H2'B0.7362040.2714710.3301800.053*0.5
C3'0.5385 (10)0.5534 (7)0.2658 (12)0.042 (2)0.5
H3'A0.5515260.6030980.2348040.050*0.5
H3'B0.5711980.5612280.3507150.050*0.5
C4'0.5786 (8)0.2082 (5)0.2969 (10)0.043 (2)0.5
H4'A0.6000780.1618110.2705420.052*0.5
H4'B0.6165590.2060270.3831730.052*0.5
C5'0.7323 (7)0.3938 (7)0.2050 (9)0.043 (2)0.5
H5'A0.6956370.4403310.1491000.051*0.5
H5'B0.7084060.3397320.1617730.051*0.5
C6'0.8384 (11)0.4037 (15)0.2587 (14)0.0436 (17)0.5
H6'A0.8748190.3604400.3204030.052*0.5
H6'B0.8600330.4597950.2965000.052*0.5
C7'0.8622 (8)0.3952 (10)0.1701 (10)0.0368 (12)0.5
C8'0.8807 (9)0.3129 (9)0.1490 (10)0.039 (2)0.5
H8'0.8759620.2661120.1871450.047*0.5
C9'0.9059 (10)0.2994 (10)0.0724 (11)0.046 (2)0.5
H9'0.9235530.2450740.0628040.055*0.5
C10'0.9039 (15)0.3693 (11)0.0113 (15)0.0519 (18)0.5
C11'0.893 (2)0.4515 (12)0.034 (2)0.054 (3)0.5
H11'0.9029000.4977800.0006500.065*0.5
C12'0.868 (2)0.4641 (12)0.112 (2)0.048 (3)0.5
H12'0.8544880.5194270.1243430.057*0.5
Cl10.6115 (4)0.3604 (3)0.5699 (5)0.0469 (4)0.795 (7)
O10.6801 (6)0.3549 (5)0.6978 (5)0.082 (3)0.795 (7)
O20.5813 (5)0.2776 (4)0.5188 (5)0.102 (2)0.795 (7)
O30.6555 (5)0.3981 (6)0.5233 (6)0.113 (3)0.795 (7)
O40.5284 (5)0.4091 (5)0.5368 (6)0.089 (2)0.795 (7)
Cl1'0.6086 (16)0.3675 (13)0.5680 (19)0.0469 (4)0.205 (7)
O1'0.6497 (18)0.3241 (14)0.6781 (19)0.049 (4)0.205 (7)
O2'0.6325 (17)0.3288 (16)0.4980 (16)0.074 (4)0.205 (7)
O3'0.6267 (19)0.4551 (13)0.574 (2)0.097 (6)0.205 (7)
O4'0.5058 (15)0.3669 (16)0.5057 (19)0.067 (4)0.205 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.074 (3)0.112 (11)0.060 (2)0.010 (4)0.0571 (19)0.004 (3)
N10.035 (2)0.063 (6)0.054 (3)0.001 (2)0.034 (2)0.005 (3)
N20.034 (3)0.030 (3)0.034 (3)0.007 (2)0.028 (3)0.006 (3)
N30.037 (3)0.031 (3)0.039 (4)0.003 (3)0.029 (3)0.002 (3)
C10.031 (3)0.057 (5)0.049 (4)0.012 (3)0.026 (3)0.011 (4)
C20.038 (3)0.050 (4)0.043 (4)0.014 (3)0.029 (3)0.007 (3)
C30.067 (6)0.031 (3)0.060 (6)0.013 (3)0.054 (5)0.010 (3)
C40.073 (7)0.022 (3)0.062 (6)0.003 (3)0.057 (6)0.001 (3)
C50.033 (3)0.061 (8)0.045 (3)0.001 (3)0.028 (2)0.002 (3)
C60.032 (4)0.066 (6)0.040 (3)0.003 (4)0.025 (3)0.003 (5)
C70.029 (2)0.052 (3)0.033 (2)0.003 (5)0.020 (2)0.002 (4)
C80.045 (6)0.053 (4)0.046 (7)0.009 (4)0.027 (6)0.010 (4)
C90.051 (7)0.073 (5)0.041 (7)0.000 (5)0.029 (6)0.011 (5)
C100.041 (3)0.086 (6)0.041 (2)0.010 (6)0.031 (2)0.008 (5)
C110.036 (5)0.068 (4)0.032 (5)0.007 (4)0.020 (5)0.003 (4)
C120.036 (5)0.052 (4)0.028 (5)0.003 (4)0.019 (4)0.003 (4)
F1'0.074 (3)0.112 (11)0.060 (2)0.010 (4)0.0571 (19)0.004 (3)
N1'0.035 (2)0.063 (6)0.054 (3)0.001 (2)0.034 (2)0.005 (3)
N2'0.037 (3)0.031 (3)0.039 (4)0.003 (3)0.029 (3)0.002 (3)
N3'0.034 (3)0.030 (3)0.034 (3)0.007 (2)0.028 (3)0.006 (3)
C1'0.038 (3)0.050 (4)0.043 (4)0.014 (3)0.029 (3)0.007 (3)
C2'0.031 (3)0.057 (5)0.049 (4)0.012 (3)0.026 (3)0.011 (4)
C3'0.073 (7)0.022 (3)0.062 (6)0.003 (3)0.057 (6)0.001 (3)
C4'0.067 (6)0.031 (3)0.060 (6)0.013 (3)0.054 (5)0.010 (3)
C5'0.033 (3)0.061 (8)0.045 (3)0.001 (3)0.028 (2)0.002 (3)
C6'0.032 (4)0.066 (6)0.040 (3)0.003 (4)0.025 (3)0.003 (5)
C7'0.029 (2)0.052 (3)0.033 (2)0.003 (5)0.020 (2)0.002 (4)
C8'0.036 (5)0.052 (4)0.028 (5)0.003 (4)0.019 (4)0.003 (4)
C9'0.036 (5)0.068 (4)0.032 (5)0.007 (4)0.020 (5)0.003 (4)
C10'0.041 (3)0.086 (6)0.041 (2)0.010 (6)0.031 (2)0.008 (5)
C11'0.051 (7)0.073 (5)0.041 (7)0.000 (5)0.029 (6)0.011 (5)
C12'0.045 (6)0.053 (4)0.046 (7)0.009 (4)0.027 (6)0.010 (4)
Cl10.0583 (8)0.0582 (11)0.0380 (6)0.0229 (7)0.0361 (6)0.0149 (7)
O10.089 (5)0.116 (6)0.038 (3)0.058 (4)0.035 (3)0.014 (3)
O20.119 (5)0.063 (3)0.077 (4)0.015 (3)0.032 (3)0.012 (3)
O30.113 (5)0.162 (6)0.094 (4)0.035 (4)0.077 (4)0.015 (4)
O40.081 (4)0.108 (5)0.062 (4)0.056 (4)0.033 (3)0.010 (3)
Cl1'0.0583 (8)0.0582 (11)0.0380 (6)0.0229 (7)0.0361 (6)0.0149 (7)
O1'0.068 (8)0.052 (8)0.050 (7)0.028 (6)0.047 (6)0.017 (6)
O2'0.093 (8)0.095 (9)0.039 (6)0.040 (8)0.042 (6)0.016 (7)
O3'0.108 (9)0.081 (8)0.084 (8)0.002 (7)0.046 (7)0.013 (6)
O4'0.073 (7)0.093 (9)0.050 (7)0.007 (7)0.044 (5)0.008 (7)
Geometric parameters (Å, º) top
Ni1—N31.925 (7)N1'—C1'1.400 (11)
Ni1—N21.933 (9)N1'—C2'1.408 (12)
Ni1—N3'1.934 (7)N1'—C5'1.481 (10)
Ni1—N2'1.943 (9)N2'—C3'1.484 (10)
F1—C101.370 (10)N2'—C1'1.510 (11)
N1—C11.398 (11)N2'—H2'0.9800
N1—C21.401 (11)N3'—C4'1.486 (10)
N1—C51.469 (10)N3'—C2'1.519 (12)
N2—C31.495 (11)N3'—H3'0.9800
N2—C11.511 (11)C1'—H1'A0.9700
N2—H20.9800C1'—H1'B0.9700
N3—C41.488 (9)C2'—H2'A0.9700
N3—C21.511 (12)C2'—H2'B0.9700
N3—H30.9800C3'—H3'A0.9700
C1—H1A0.9700C3'—H3'B0.9700
C1—H1B0.9700C4'—H4'A0.9700
C2—H2A0.9700C4'—H4'B0.9700
C2—H2B0.9700C5'—C6'1.498 (12)
C3—C3'1.489 (13)C5'—H5'A0.9700
C3—H3A0.9700C5'—H5'B0.9700
C3—H3B0.9700C6'—C7'1.510 (10)
C4—C4'1.482 (17)C6'—H6'A0.9700
C4—H4A0.9700C6'—H6'B0.9700
C4—H4B0.9700C7'—C12'1.380 (11)
C5—C61.515 (11)C7'—C8'1.387 (11)
C5—H5A0.9700C8'—C9'1.377 (11)
C5—H5B0.9700C8'—H8'0.9300
C6—C71.509 (10)C9'—C10'1.366 (12)
C6—H6A0.9700C9'—H9'0.9300
C6—H6B0.9700C10'—C11'1.351 (12)
C7—C81.393 (11)C11'—C12'1.395 (12)
C7—C121.394 (11)C11'—H11'0.9300
C8—C91.394 (12)C12'—H12'0.9300
C8—H80.9300Cl1—O31.376 (7)
C9—C101.385 (12)Cl1—O21.410 (7)
C9—H90.9300Cl1—O41.418 (6)
C10—C111.357 (12)Cl1—O11.440 (6)
C11—C121.396 (11)Cl1'—O3'1.386 (17)
C11—H110.9300Cl1'—O2'1.392 (17)
C12—H120.9300Cl1'—O4'1.420 (17)
F1'—C10'1.356 (10)Cl1'—O1'1.421 (16)
N2—Ni1—N393.7 (4)C3'—N2'—C1'110.4 (9)
N3—Ni1—N3'86.6 (3)C3'—N2'—Ni1108.1 (8)
N2—Ni1—N3'176.4 (4)C1'—N2'—Ni1115.4 (8)
N3—Ni1—N2'177.5 (5)C3'—N2'—H2'107.5
N2—Ni1—N2'86.5 (2)C1'—N2'—H2'107.5
N3'—Ni1—N2'93.0 (4)Ni1—N2'—H2'107.5
C1—N1—C2115.5 (7)C4'—N3'—C2'110.2 (8)
C1—N1—C5118.9 (9)C4'—N3'—Ni1108.5 (6)
C2—N1—C5119.1 (8)C2'—N3'—Ni1114.4 (6)
C3—N2—C1109.6 (9)C4'—N3'—H3'107.9
C3—N2—Ni1107.3 (7)C2'—N3'—H3'107.9
C1—N2—Ni1116.7 (7)Ni1—N3'—H3'107.9
C3—N2—H2107.6N1'—C1'—N2'113.4 (8)
C1—N2—H2107.6N1'—C1'—H1'A108.9
Ni1—N2—H2107.6N2'—C1'—H1'A108.9
C4—N3—C2109.7 (7)N1'—C1'—H1'B108.9
C4—N3—Ni1109.6 (5)N2'—C1'—H1'B108.9
C2—N3—Ni1116.8 (6)H1'A—C1'—H1'B107.7
C4—N3—H3106.7N1'—C2'—N3'113.3 (7)
C2—N3—H3106.7N1'—C2'—H2'A108.9
Ni1—N3—H3106.7N3'—C2'—H2'A108.9
N1—C1—N2114.7 (8)N1'—C2'—H2'B108.9
N1—C1—H1A108.6N3'—C2'—H2'B108.9
N2—C1—H1A108.6H2'A—C2'—H2'B107.7
N1—C1—H1B108.6N2'—C3'—C3105.0 (11)
N2—C1—H1B108.6N2'—C3'—H3'A110.8
H1A—C1—H1B107.6C3—C3'—H3'A110.8
N1—C2—N3115.7 (7)N2'—C3'—H3'B110.8
N1—C2—H2A108.4C3—C3'—H3'B110.8
N3—C2—H2A108.4H3'A—C3'—H3'B108.8
N1—C2—H2B108.4C4—C4'—N3'107.6 (8)
N3—C2—H2B108.4C4—C4'—H4'A110.2
H2A—C2—H2B107.4N3'—C4'—H4'A110.2
C3'—C3—N2106.4 (10)C4—C4'—H4'B110.2
C3'—C3—H3A110.4N3'—C4'—H4'B110.2
N2—C3—H3A110.4H4'A—C4'—H4'B108.5
C3'—C3—H3B110.4N1'—C5'—C6'109.6 (8)
N2—C3—H3B110.4N1'—C5'—H5'A109.8
H3A—C3—H3B108.6C6'—C5'—H5'A109.8
C4'—C4—N3106.8 (8)N1'—C5'—H5'B109.8
C4'—C4—H4A110.4C6'—C5'—H5'B109.8
N3—C4—H4A110.4H5'A—C5'—H5'B108.2
C4'—C4—H4B110.4C5'—C6'—C7'114.0 (8)
N3—C4—H4B110.4C5'—C6'—H6'A108.7
H4A—C4—H4B108.6C7'—C6'—H6'A108.7
N1—C5—C6111.1 (8)C5'—C6'—H6'B108.7
N1—C5—H5A109.4C7'—C6'—H6'B108.7
C6—C5—H5A109.4H6'A—C6'—H6'B107.6
N1—C5—H5B109.4C12'—C7'—C8'119.1 (9)
C6—C5—H5B109.4C12'—C7'—C6'123.8 (11)
H5A—C5—H5B108.0C8'—C7'—C6'117.1 (11)
C7—C6—C5116.0 (8)C9'—C8'—C7'121.1 (10)
C7—C6—H6A108.3C9'—C8'—H8'119.4
C5—C6—H6A108.3C7'—C8'—H8'119.4
C7—C6—H6B108.3C10'—C9'—C8'117.0 (10)
C5—C6—H6B108.3C10'—C9'—H9'121.5
H6A—C6—H6B107.4C8'—C9'—H9'121.5
C8—C7—C12116.1 (9)C11'—C10'—F1'118.1 (11)
C8—C7—C6124.0 (11)C11'—C10'—C9'124.3 (10)
C12—C7—C6119.9 (11)F1'—C10'—C9'116.8 (12)
C7—C8—C9121.1 (11)C10'—C11'—C12'117.2 (13)
C7—C8—H8119.4C10'—C11'—H11'121.4
C9—C8—H8119.4C12'—C11'—H11'121.4
C10—C9—C8119.9 (11)C7'—C12'—C11'120.5 (13)
C10—C9—H9120.0C7'—C12'—H12'119.8
C8—C9—H9120.0C11'—C12'—H12'119.8
C11—C10—F1118.8 (12)O3—Cl1—O2106.7 (6)
C11—C10—C9120.7 (10)O3—Cl1—O4109.5 (6)
F1—C10—C9120.1 (11)O2—Cl1—O4109.0 (6)
C10—C11—C12118.4 (12)O3—Cl1—O1109.6 (6)
C10—C11—H11120.8O2—Cl1—O1110.9 (5)
C12—C11—H11120.8O4—Cl1—O1110.9 (5)
C7—C12—C11123.4 (12)O3'—Cl1'—O2'108.4 (19)
C7—C12—H12118.3O3'—Cl1'—O4'101.1 (17)
C11—C12—H12118.3O2'—Cl1'—O4'109.5 (18)
C1'—N1'—C2'115.6 (7)O3'—Cl1'—O1'116.9 (18)
C1'—N1'—C5'120.1 (8)O2'—Cl1'—O1'112.8 (18)
C2'—N1'—C5'118.5 (9)O4'—Cl1'—O1'107.4 (18)
C2—N1—C1—N264.3 (13)C5'—N1'—C1'—N2'86.6 (11)
C5—N1—C1—N287.3 (12)C3'—N2'—C1'—N1'179.4 (10)
C3—N2—C1—N1177.6 (10)Ni1—N2'—C1'—N1'57.6 (13)
Ni1—N2—C1—N155.4 (13)C1'—N1'—C2'—N3'67.6 (12)
C1—N1—C2—N363.7 (12)C5'—N1'—C2'—N3'85.8 (10)
C5—N1—C2—N387.7 (11)C4'—N3'—C2'—N1'178.0 (8)
C4—N3—C2—N1179.3 (8)Ni1—N3'—C2'—N1'59.5 (10)
Ni1—N3—C2—N153.9 (10)C1'—N2'—C3'—C3169.8 (8)
C1—N2—C3—C3'170.4 (8)Ni1—N2'—C3'—C342.7 (11)
Ni1—N2—C3—C3'42.7 (11)N2—C3—C3'—N2'55.7 (7)
C2—N3—C4—C4'166.7 (7)N3—C4—C4'—N3'49.6 (8)
Ni1—N3—C4—C4'37.3 (9)C2'—N3'—C4'—C4165.1 (7)
C1—N1—C5—C678.6 (14)Ni1—N3'—C4'—C439.3 (9)
C2—N1—C5—C6130.9 (14)C1'—N1'—C5'—C6'103.5 (13)
N1—C5—C6—C7174.2 (12)C2'—N1'—C5'—C6'104.4 (13)
C5—C6—C7—C861.5 (16)N1'—C5'—C6'—C7'174.9 (12)
C5—C6—C7—C12117 (2)C5'—C6'—C7'—C12'93 (2)
C12—C7—C8—C90.7 (16)C5'—C6'—C7'—C8'88.0 (15)
C6—C7—C8—C9179.3 (10)C12'—C7'—C8'—C9'1.0 (16)
C7—C8—C9—C104 (2)C6'—C7'—C8'—C9'178.0 (10)
C8—C9—C10—C118 (2)C7'—C8'—C9'—C10'5.3 (19)
C8—C9—C10—F1179.6 (14)C8'—C9'—C10'—C11'10 (3)
F1—C10—C11—C12179 (2)C8'—C9'—C10'—F1'179.6 (13)
C9—C10—C11—C126 (3)F1'—C10'—C11'—C12'180 (2)
C8—C7—C12—C113 (3)C9'—C10'—C11'—C12'11 (3)
C6—C7—C12—C11178.8 (18)C8'—C7'—C12'—C11'1 (3)
C10—C11—C12—C71 (4)C6'—C7'—C12'—C11'177.8 (18)
C2'—N1'—C1'—N2'66.3 (12)C10'—C11'—C12'—C7'6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.982.513.355 (17)144
N2—H2···O4i0.982.443.260 (16)141
N2—H2···O4ii0.982.433.332 (18)152
N2—H2···O4iii0.982.363.089 (17)131
N3—H3···O20.981.972.819 (11)144
N3—H3···O2ii0.982.403.186 (11)137
C1—H1A···O1iii0.972.313.198 (13)151
C1—H1B···O3ii0.972.353.156 (16)140
C1—H1B···O30.972.563.309 (15)134
C2—H2B···O1iv0.972.503.394 (16)154
C3—H3B···O1i0.972.483.35 (2)149
C2—H2B···O1v0.972.583.551 (16)175
C4—H4A···F1vi0.972.543.341 (19)140
C3—H3A···O4iii0.972.543.136 (17)119
C4—H4B···O20.972.543.239 (14)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2; (iii) x, y+1, z1/2; (iv) x1/2, y+1/2, z1/2; (v) x+3/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Center for Research Faculties, Kyungsang National University, Jinju, South Korea, for the X-ray crystallographic data collection.

References

First citationAlexander, V. (1995). Chem. Rev. 95, 273–342.  CrossRef CAS Web of Science Google Scholar
First citationBarefield, E. K. (2010). Coord. Chem. Rev. 254, 1607–1627.  CAS Google Scholar
First citationBenkada, A., Näther, C. & Bensch, W. (2020). Z. Anorg. Allg. Chem. 646, 1352–1358.  CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostamagna, J., Ferraudi, G., Matsuhiro, B., Campos-Vallette, M., Canales, J., Villagrán, M., Vargas, J. & Aguirre, M. J. (2000). Coord. Chem. Rev. 196, 125–164.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHermann, P., Kotek, J., Kubíček, V. & Lukeš, I. (2008). Dalton Trans. pp. 3027–3047.  Web of Science CrossRef Google Scholar
First citationJee, J. E., Kim, Y. M., Lee, S. S., Park, K. M. & Kwak, C. H. (2003). Inorg. Chem. Commun. 6, 946–949.  CSD CrossRef CAS Google Scholar
First citationJeoung, S., Lee, S., Lee, J. H., Lee, S., Choe, W., Moon, D. & Moon, H. R. (2019). Chem. Commun. 55, 8832–8835.  CSD CrossRef CAS Google Scholar
First citationKang, S. G., Kim, M.-S., Choi, J. S., Whang, D. & Kim, K. (1995). J. Chem. Soc. Dalton Trans. pp. 363–366.  CSD CrossRef Google Scholar
First citationKang, S. G., Ryu, K., Jung, S. K. & Kim, J. (1999). Inorg. Chim. Acta, 293, 140–146.  CSD CrossRef CAS Google Scholar
First citationKim, J. C., Lough, A. J. & Kim, H. (2002). Inorg. Chem. Commun. 5, 771–776.  CSD CrossRef CAS Google Scholar
First citationLee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237–249.  CrossRef CAS Google Scholar
First citationLiang, X. & Sadler, P. J. (2004). Chem. Soc. Rev. 33, 246–266.  CrossRef PubMed CAS Google Scholar
First citationLin, Z. J., Lü, J., Hong, M. & Cao, R. (2014). Chem. Soc. Rev. 43, 5867–5895.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMin, K. S., Park, M. J. & Ryoo, J. J. (2013). Chirality, 25, 54–58.  CSD CrossRef CAS PubMed Google Scholar
First citationMin, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303–313.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPark, J. H., Jeong, A. R., Hastuti, D. K. A. K., Jeong, M. J. & Min, K. S. (2015). J. Incl Phenom. Macrocycl Chem. 82, 153–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalavati-Niasari, M. & Davar, F. (2006). Inorg. Chem. Commun. 9, 175–179.  CAS Google Scholar
First citationSalavati-Niasari, M. & Najafian, H. (2003). Polyhedron, 22, 2633–2638.  CAS Google Scholar
First citationSalavati-Niasari, M. & Rezai-Adaryani, M. (2004). Polyhedron, 23, 1325–1331.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSu, Y. H., Liu, J., Li, J. & Si, X. Z. (2007). J. Mol. Struct. 837, 257–262.  CSD CrossRef CAS Google Scholar
First citationSuh, M. P. (1996). Adv. Inorg. Chem. 44, 93–146.  CrossRef Google Scholar
First citationSuh, M. P., Han, M. Y., Lee, J. H., Min, K. S. & Hyeon, C. (1998). J. Am. Chem. Soc. 120, 3819–3820.  CSD CrossRef CAS Google Scholar
First citationSuh, M. P., Kim, I. S., Shim, B. Y., Hong, D. & Yoon, T.-S. (1996). Inorg. Chem. 35, 3595–3598.  CSD CrossRef CAS Google Scholar
First citationSuh, M. P., Shim, B. Y. & Yoon, T.-S. (1994). Inorg. Chem. 33, 5509–5514.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds