research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of trans-di­aqua­(3-R-1,3,5,8,12-penta­aza­cyclo­tetra­deca­ne)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl)

CROSSMARK_Color_square_no_text.svg

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028 Kiev, Ukraine, and bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str., 42, 1090 Vienna, Austria
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 May 2019; accepted 12 June 2019; online 21 June 2019)

The asymmetric units of the title compounds, trans-di­aqua­(3-benzyl-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-di­aqua­[3-(pyridin-3-ylmeth­yl)-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12]copper(II) iso­phthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one di­aqua macrocyclic cation, one di­carboxyl­ate anion and uncoordinated water mol­ecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water mol­ecules in a tetra­gonally distorted octa­hedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding inter­actions between the N—H groups of the macrocycles and the O—H groups of coordinated water mol­ecules as the proton donors and the O atoms of the carboxyl­ate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water mol­ecules of crystallization, the isophthalate dianions form layers lying parallel to the ([\overline{1}]01) and (100) planes in (I) and (II), respectively.

1. Chemical context

Transition-metal complexes of the versatile macrocyclic 14-membered tetra­amine ligand cyclam (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) are popular metal-containing building units for the construction of metal–organic frameworks (MOFs) possessing many promising applications (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]; Lee & Moon, 2018[Lee, J. H. & Moon, H. R. (2018). J. Incl. Phenom. Macrocycl. Chem. 92, 237-249.]). Such an inter­est is explained by the exceptionally high thermodynamic stability and kinetic inertness of these species (Melson, 1979[Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.]; Yatsimirskii & Lampeka, 1985[Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. [In Russian.]]), implying a preservation of their structural features (equatorial arrangement of the macrocycle in the coordination sphere of the metal ion, availability of two trans vacant sites in the axial positions suitable for coordination of bridging ligands), thus making the architecture of MOFs more predictable. The complexes of N3,N10-disubstituted di­aza­cyclam (di­aza­cyclam = 1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne), readily obtainable via template-directed Mannich condensation of bis­(ethyl­enedi­amine) complexes with formaldehyde and primary amines (Costisor & Linert, 2000[Costisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 1, 63-126.]), also represent widespread systems in this kind of investigations. At the same time, the complexes of N3-substituted aza­cyclam (aza­cyclam = 1,3,5,8,12-penta­aza­cyclo­tetra­deca­ne) – a middle member of this series of ligands – have attracted considerably less attention, presumably because of the necessity of using a more sophisticated non-cyclic precursor, i.e. 3,7-di­aza­nonane-1,9-di­amine, in the Mannich condensation (Rosokha et al., 1993[Rosokha, S. V., Lampeka, Ya. D. & Maloshtan, I. M. (1993). J. Chem. Soc. Dalton Trans. pp. 631-636.]).

[Scheme 1]

Though the isophthalate (1,3-benzene­dicarboxyl­ate) dianion is often used as bridging ligand in the construction of MOFs, a very limited number of its compounds with aza­macrocyclic cations have been described to date and all they are complexes of the NiII ion.

Herein, we describe the syntheses and crystal structures of the title CuII complexes with aza­cyclam ligands and an iso­ph­thalate dianion, namely, trans-di­aqua­(3-benzyl-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12)copper(II) iso­ph­thal­ate hydrate, [Cu(L1)(H2O)2](ip)·H2O, (I)[link], and trans-di­aqua­[3-(pyridin-3-ylmeth­yl)-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12]copper(II) isophthalate 0.9-hydrate, [Cu(L2)(H2O)2](ip)·0.9(H2O), (II)[link].

2. Structural commentary

Each CuII ion in the complex cations in the title compounds (I)[link] and (II)[link] is coordinated in the equatorial plane by four secondary amine N atoms of the aza­macrocyclic ligand in a square-planar fashion, and by two O atoms from the water mol­ecules in the axial positions, resulting in a tetra­gonally distorted octa­hedral geometry (Table 1[link], Fig. 1[link] and Fig. 2[link]).

Table 1
Selected bond lengths (Å)

  (I) (II)
Cu1—N1 2.0146 (17) 2.011 (3)
Cu1—N2 2.0290 (17) 2.019 (3)
Cu1—N4 2.0119 (17) 2.019 (3)
Cu1—N5 2.0206 (17) 2.009 (3)
Cu1—O1W 2.5071 (16) 2.514 (2)
Cu1—O2W 2.4832 (15) 2.499 (2)
[Figure 1]
Figure 1
View of the asymmetric unit of (I)[link], showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level. H atoms attached to carbon atoms have been omitted for clarity.
[Figure 2]
Figure 2
View of the asymmetric unit of (II)[link], showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level. H atoms attached to carbon atoms have been omitted for clarity.

The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å for (I)[link] and 2.015 (4) versus 2.507 (7) Å for (II)], which can be attributed to a large Jahn–Teller distortion. The CuII ions are displaced from the nearly planar (r.m.s. deviations less than 0.01 Å) mean planes of the N4 donor atoms towards the O1W water mol­ecule by 0.024 and 0.033 Å in (I)[link] and (II)[link], respectively. Both coordinated macrocyclic ligands adopt the most energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102-1108.]) with the five-membered chelate rings in gauche [bite angles 86.28 (1) for (I)[link] and 86.30 (7)° for (II)] and six-membered chelate rings in chair [bite angles 93.7 (2) for (I) and 93.7 (9)° for (II)] conformations. The methyl­ene group of the substituent at the non-coordinated nitro­gen atoms N3 in the six-membered chelate rings is axially oriented and the sum of the C—N—C angles around these atoms [345.6 and 348.1° for (I)[link] and (II)[link], respectively] indicates their partial sp2 character (Tsymbal et al., 2019[Tsymbal, L. V., Andriichuk, I. L., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 533-536.]).

The isophthalate dianions in the title compounds counterbalance the charge of the complex cations. One carb­oxy­lic group of the isophthalate (O1/O2/C) is nearly coplanar with the mean plane of the aromatic fragment [dihedral angles being 2.4 (3) and 3.6 (4)° in (I)[link] and (II)[link], respectively], while the second (O3/O4/C) is tilted by 11.6 (3) and 21.1 (4)° in (I)[link] and (II)[link], respectively. The C—O bond lengths in the carb­oxy­lic groups are nearly equal, thus indicating essential electron delocalization.

Among the water mol­ecules of crystallization, O3W in (I)[link] is fully occupied, while that in (II)[link] has a site occupancy of 50%. Additionally, two positions for disordered water mol­ecules (O4W and O5W), each with 20% population, were found in (II)[link]. Because of their low partial population, these were not considered further in the analysis of the hydrogen-bonding network.

3. Supra­molecular features

Three secondary amino groups of the coordinated macrocycle in (I)[link] act as proton donors by the formation of N—H⋯O hydrogen bonds with the carb­oxy­lic groups of three different adjacent anions, while the fourth group forms hydrogen bond with the water mol­ecule of crystallization O3W (Fig. 3[link], Table 2[link]). In turn, the coordinated water mol­ecules donate protons to the carb­oxy­lic group of the anion {bifurcated hydrogen bonding O1W—H1WB⋯[O3,O4(x, y + 1, z)] and O2W—H2WA⋯O2(−x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]) and O2W—H2WB⋯O3(x − 1, y + 1, z)}, as well as to the O3W mol­ecule [O1W—H1WA⋯O3W(−x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}])]. Additionally, the uncoordinated water mol­ecule O3W acts as a proton donor by the formation of bifurcated O3W—H3WB⋯(O1,O2) and O3W—H3WA⋯O1(−x + 1, −y + 1, −z + 1) hydrogen bonds.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.98 2.04 2.950 (2) 154
N2—H2⋯O3ii 0.98 2.15 3.118 (2) 170
N4—H4⋯O2iii 0.98 2.00 2.949 (2) 161
N5—H5⋯O3Wiv 0.98 2.35 3.230 (3) 149
O1W—H1WB⋯O4ii 0.87 2.01 2.884 (2) 176
O1W—H1WB⋯O3ii 0.87 2.60 3.213 (2) 128
O1W—H1WA⋯O3Wiii 0.85 1.97 2.813 (2) 173
O2W—H2WA⋯O2iv 0.84 1.96 2.795 (2) 174
O2W—H2WB⋯O3i 0.85 1.95 2.798 (2) 178
O3W—H3WA⋯O1v 0.88 1.92 2.779 (2) 163
O3W—H3WB⋯O1 0.87 1.85 2.720 (2) 176
O3W—H3WB⋯O2 0.87 2.66 3.248 (2) 126
Symmetry codes: (i) x-1, y+1, z; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
Nearest surrounding of the macrocyclic cation in (I)[link] formed by hydrogen bonding (dashed lines). [Symmetry codes: (i) x – 1, y + 1, z; (ii) x, y + 1, z; (iii) –x + [{3\over 2}], y + [{1\over 2}], –z + [{3\over 2}]; (iv) –x + [{1\over 2}], y + [{1\over 2}], –z + [{3\over 2}].]

The hydrogen-bonded network in (II)[link], though slightly different, has much in common with that in (I)[link]. In particular, all secondary amino groups of the macrocycle form N—H⋯O hydrogen bonds acting as proton donors with the carb­oxy­lic groups of four different adjacent anions (Fig. 4[link], Table 3[link]). Each coordinated water mol­ecule, as well as the water mol­ecule of crystallization O3W, donates protons to two carb­oxy­lic groups of different isophthalate anions. Additionally, in the crystal of (II)[link] there are a number of C—H⋯O and C—H⋯N contacts between the methyl­ene and methine groups of the macrocyclic ligand and oxygen atoms of carb­oxy­lic groups, the water mol­ecule O3W and atom N6 of the substituent in the neighbouring macrocycle (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.79 (4) 2.37 (4) 3.115 (4) 157 (4)
N2—H2⋯O3i 0.81 (3) 2.25 (4) 3.044 (4) 167 (3)
N4—H4⋯O1ii 0.78 (3) 2.31 (3) 3.037 (4) 157 (3)
N5—H5⋯O2iii 0.83 (4) 2.10 (4) 2.910 (4) 163 (3)
O1W—H1WA⋯O4i 0.85 2.00 2.849 (3) 174
O1W—H1WB⋯O2ii 0.76 2.07 2.831 (3) 176
O2W—H2WA⋯O1iii 0.71 2.15 2.859 (3) 178
O2W—H2WB⋯O3 0.82 1.90 2.722 (3) 180
O3W—H3WA⋯O1ii 0.85 1.88 2.731 (6) 179
O3W—H3WB⋯O1iv 0.85 2.18 2.760 (6) 126
C1—H1A⋯O4i 1.05 (4) 2.64 (4) 3.662 (5) 164 (3)
C4—H4B⋯O3Wv 0.98 (4) 2.60 (4) 3.274 (7) 125 (3)
C5—H5B⋯O3Wv 0.94 (4) 2.62 (4) 3.415 (7) 142 (3)
C10—H10A⋯O3W 0.92 (4) 2.49 (4) 3.367 (8) 161 (3)
C13—H13⋯O2i 1.03 (4) 2.53 (4) 3.446 (6) 147 (3)
C1—H1B⋯N6vi 0.84 (4) 2.66 (4) 3.474 (5) 165 (4)
Symmetry codes: (i) x+1, y, z; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y, -z+1; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Nearest surrounding of the macrocyclic cation in (II)[link] formed by hydrogen bonding (dashed lines). [Symmetry codes: (i) x + 1, y, z; (ii) x + 1, −y + [{1\over 2}], z + [{1\over 2}]; (iii) x, −y + [{1\over 2}], z + [{1\over 2}]; (iv) –x + 2, –y, –z + 1.] The contact C1—H1B⋯N6 (−x + 1, y + [{1\over 2}], −z + [{1\over 2}]) is not shown.

As can be seen from Figs. 3[link] and 4[link], because of the hydrogen bonding, two pairs of isophthalate anions are situated above and below the imaginary plane of the macrocyclic ligand. Each pair is further bound with symmetry-related partners via hydrogen bonding with the water mol­ecule of crystallization, O3W, thus forming layers of anions lying parallel to the ([\overline{1}]01) and (100) planes in (I)[link] and (II)[link], respectively (Figs. 5[link] and 6[link]), which thus are pillared with macrocyclic cations.

[Figure 5]
Figure 5
Sheets of isophthalate dianions parallel to the ([\overline{1}]01) plane in (I)[link]. Macrocyclic ligands and H atoms at carbon atoms of the carboxyl­ate anions are omitted, only water mol­ecules coordinated to CuII (balls) participating in the formation of a carboxyl­ate layer are shown (O1W – green, O2W – dark blue, O3W – violet). Hydrogen bonds are shown as dashed lines.
[Figure 6]
Figure 6
Sheets of isophthalate dianions parallel to the (100) plane in (II)[link]. Macrocyclic ligands and H atoms at carbon atoms of the carboxyl­ate anions are omitted, only water mol­ecules coordinated to CuII (balls) participating in the formation of a carboxyl­ate layer are shown (O1W – green, O2W – dark blue, O3W – violet). Hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that only three CuII–perchlorate complexes of aza­cyclam macrocycles bearing N-alkyl groups decorated with aromatic rings have been reported (Tsymbal et al., 2010[Tsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572-1581.]). In addition, four related dicopper(II) complexes with a p-xylylene-bridged bis­(aza­cyclam) ligand and terephthalate anion have been described, none of which includes the di­aqua CuII aza­cyclam cation (Park & Suh, 2012[Park, H. J. & Suh, M. P. (2012). CrystEngComm, 14, 2748-2755.]). At the same time, four complexes containing macrocyclic cations and an isophthalate dianion have been reported, all of them being formed by an NiII ion coordinated to a C-methyl-substituted cyclam. Thus, the title compounds (I)[link] and (II)[link] are the first examples of di­aqua CuII aza­cyclam cations described so far.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The starting complexes, [Cu(L1)](ClO4)2 and [Cu(L2)](ClO4)2, were prepared by a method reported in the literature (Tsymbal et al., 2010[Tsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572-1581.]) using benzyl­amine or 3-picolyl­amine, respectively, as locking reagents.

Compound (I)[link] was prepared as follows: To a hot solution of [Cu(L1)](ClO4)2 (138 mg, 0.25 mmol) in 8 ml of DMF were added 3 ml of an aqueous solution of Na2ip (84 mg, 40 mmol). A violet precipitate formed in 24 h; this was filtered off, washed with diethyl ether and dried in air. Yield: 27 mg (19%). Analysis calculated for C24H39N5CuO7: C 50.29, H 6.86, N 12.22%. Found: C 50.42, H 6.96, N 12.02%.

Compound (II)[link] was prepared analogously starting from [Cu(L2)](ClO4)2. Yield: 30 mg (21%). Analysis calculated for C23H37.8N6CuO6.9: C 48.12, H 6.67, N 14.64%. Found: C 48.31, H 6.84, N 14.32%. Violet plates of (I)[link] and violet needles of (II)[link] suitable for X-ray diffraction analysis were selected from the samples resulting from the syntheses.

Safety note: perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms in (I)[link] were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (ring H atoms) or 0.97 Å (open-chain H atoms), an N—H distance of 0.98 Å, and aqua O—H distances of 0.84–0.87 Å with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms. Water H atoms in (II)[link] were positioned geometrically (O—H = 0.71–0.85 Å) and refined as riding with Uiso(H) = 1.5Ueq(O). All other H atoms were freely refined.

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O
Mr 573.14 572.33
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 7.2625 (3), 17.8132 (7), 21.1511 (9) 7.1955 (3), 19.0463 (8), 19.4426 (8)
β (°) 92.159 (3) 94.276 (2)
V3) 2734.34 (19) 2657.15 (19)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.85 0.88
Crystal size (mm) 0.30 × 0.25 × 0.04 0.16 × 0.04 × 0.04
 
Data cocollection
Diffractometer Bruker X8 APEXII CCD Bruker X8 APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.785, 0.967 0.873, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 137978, 5555, 4193 76082, 4532, 2834
Rint 0.070 0.106
(sin θ/λ)max−1) 0.624 0.589
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.02 0.040, 0.097, 1.00
No. of reflections 5555 4532
No. of parameters 334 439
No. of restraints 9 0
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.24 0.29, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diaqua(3-benzyl-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate (I) top
Crystal data top
[Cu(C16H29N5)(H2O)2](C8H4O4)·H2OF(000) = 1212
Mr = 573.14Dx = 1.392 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2625 (3) ÅCell parameters from 6434 reflections
b = 17.8132 (7) Åθ = 2.9–24.8°
c = 21.1511 (9) ŵ = 0.85 mm1
β = 92.159 (3)°T = 296 K
V = 2734.34 (19) Å3Plate, violet
Z = 40.30 × 0.25 × 0.04 mm
Data collection top
Bruker X8 APEXII CCD
diffractometer
4193 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
φ and ω scansθmax = 26.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.785, Tmax = 0.967k = 2222
137978 measured reflectionsl = 2626
5555 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0366P)2 + 1.2028P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5555 reflectionsΔρmax = 0.25 e Å3
334 parametersΔρmin = 0.24 e Å3
9 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37585 (3)1.01815 (2)0.78932 (2)0.03694 (9)
O10.5450 (3)0.40229 (9)0.54740 (8)0.0648 (5)
O20.6548 (2)0.39430 (8)0.64621 (7)0.0487 (4)
O30.8446 (2)0.05140 (8)0.67653 (8)0.0532 (4)
O40.9001 (2)0.15648 (9)0.73008 (7)0.0498 (4)
O3W0.5996 (3)0.55120 (10)0.56962 (8)0.0648 (5)
H3WA0.56280.57510.53490.097*
H3WB0.57870.50370.56390.097*
N10.2874 (2)1.12200 (10)0.76576 (8)0.0401 (4)
H10.15261.11990.76210.048*
N20.4363 (2)1.00637 (9)0.69696 (8)0.0375 (4)
H20.56871.01540.69360.045*
N30.4758 (2)0.86889 (10)0.70197 (9)0.0429 (4)
N40.4561 (2)0.91310 (9)0.81190 (8)0.0374 (4)
H40.59060.91320.81750.045*
N50.3123 (2)1.02892 (11)0.88106 (8)0.0432 (4)
H50.17871.02220.88280.052*
C10.3531 (3)1.13819 (13)0.70214 (11)0.0502 (6)
H1A0.48031.15480.70510.060*
H1B0.27941.17780.68250.060*
C20.3377 (3)1.06781 (13)0.66276 (10)0.0478 (6)
H2A0.20911.05450.65550.057*
H2B0.39161.07600.62210.057*
C30.3946 (3)0.93131 (12)0.66827 (10)0.0441 (5)
H3A0.26200.92450.66580.053*
H3B0.43740.93090.62540.053*
C40.4046 (3)0.85523 (12)0.76317 (11)0.0446 (5)
H4A0.44870.80670.77810.054*
H4B0.27130.85250.75900.054*
C50.3781 (3)0.89603 (13)0.87395 (10)0.0473 (6)
H5A0.44320.85410.89360.057*
H5B0.24910.88260.86840.057*
C60.3982 (3)0.96466 (14)0.91516 (10)0.0478 (6)
H6A0.33820.95650.95480.057*
H6B0.52760.97490.92450.057*
C70.3557 (4)1.10175 (14)0.91163 (11)0.0547 (6)
H7A0.48821.10910.91330.066*
H7B0.31461.10090.95470.066*
C80.2646 (4)1.16677 (15)0.87651 (12)0.0619 (7)
H8A0.13341.15690.87220.074*
H8B0.28071.21170.90200.074*
C90.3361 (3)1.18222 (13)0.81163 (12)0.0533 (6)
H9A0.28541.22940.79610.064*
H9B0.46911.18730.81490.064*
C100.6775 (3)0.86203 (15)0.69872 (11)0.0517 (6)
H10A0.72070.82440.72900.062*
H10B0.73370.90950.71090.062*
C110.7397 (3)0.84076 (13)0.63423 (12)0.0471 (6)
C120.7251 (3)0.76725 (14)0.61308 (14)0.0579 (7)
H120.67350.73100.63870.069*
C130.7863 (4)0.74730 (17)0.55453 (16)0.0745 (9)
H130.77730.69770.54120.089*
C140.8599 (5)0.7999 (2)0.51605 (17)0.0875 (10)
H140.90000.78640.47640.105*
C150.8740 (5)0.8718 (2)0.53593 (17)0.0938 (11)
H150.92380.90770.50970.113*
C160.8155 (4)0.89255 (16)0.59478 (14)0.0696 (8)
H160.82760.94220.60790.084*
C170.6606 (3)0.28470 (11)0.58309 (9)0.0336 (4)
C180.6232 (3)0.25013 (13)0.52558 (10)0.0467 (6)
H180.57360.27790.49180.056*
C190.6587 (4)0.17463 (14)0.51781 (11)0.0573 (7)
H190.63320.15190.47890.069*
C200.7320 (3)0.13288 (12)0.56760 (10)0.0473 (5)
H200.75420.08190.56230.057*
C210.7726 (3)0.16653 (11)0.62556 (9)0.0333 (4)
C220.7357 (3)0.24223 (11)0.63274 (9)0.0321 (4)
H220.76170.26510.67160.039*
C230.6174 (3)0.36688 (12)0.59299 (10)0.0391 (5)
C240.8464 (3)0.12152 (12)0.68160 (10)0.0372 (5)
O2W0.05598 (19)0.97303 (9)0.76801 (8)0.0524 (4)
H2WA0.00200.95070.79570.079*
H2WB0.00900.99580.74010.079*
O1W0.6919 (2)1.06796 (10)0.81644 (7)0.0537 (4)
H1WA0.75191.05910.85080.081*
H1WB0.75111.09390.78870.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03746 (15)0.03986 (14)0.03343 (14)0.00188 (11)0.00046 (10)0.00340 (11)
O10.0916 (14)0.0464 (9)0.0544 (10)0.0095 (9)0.0229 (10)0.0123 (8)
O20.0523 (10)0.0434 (8)0.0498 (9)0.0096 (7)0.0069 (8)0.0060 (7)
O30.0622 (11)0.0351 (8)0.0616 (10)0.0028 (7)0.0075 (8)0.0095 (8)
O40.0569 (10)0.0465 (9)0.0449 (9)0.0043 (7)0.0150 (8)0.0056 (7)
O3W0.0889 (14)0.0498 (10)0.0538 (10)0.0027 (9)0.0241 (10)0.0014 (8)
N10.0305 (9)0.0447 (10)0.0450 (10)0.0021 (8)0.0004 (8)0.0029 (8)
N20.0298 (9)0.0452 (10)0.0374 (9)0.0005 (7)0.0000 (7)0.0046 (8)
N30.0361 (10)0.0463 (10)0.0461 (10)0.0027 (8)0.0019 (8)0.0040 (8)
N40.0302 (9)0.0430 (10)0.0388 (9)0.0005 (7)0.0001 (7)0.0053 (8)
N50.0323 (10)0.0586 (12)0.0386 (10)0.0044 (8)0.0018 (8)0.0006 (9)
C10.0470 (14)0.0473 (13)0.0569 (15)0.0057 (11)0.0096 (11)0.0173 (11)
C20.0450 (13)0.0606 (15)0.0380 (12)0.0058 (11)0.0027 (10)0.0151 (11)
C30.0384 (12)0.0541 (13)0.0394 (12)0.0003 (10)0.0054 (10)0.0062 (10)
C40.0380 (12)0.0415 (12)0.0542 (14)0.0048 (10)0.0008 (10)0.0006 (10)
C50.0426 (13)0.0539 (14)0.0455 (13)0.0003 (11)0.0051 (10)0.0159 (11)
C60.0404 (13)0.0688 (16)0.0343 (11)0.0036 (11)0.0019 (10)0.0103 (11)
C70.0524 (15)0.0682 (16)0.0436 (13)0.0079 (12)0.0010 (11)0.0132 (12)
C80.0598 (17)0.0633 (16)0.0624 (16)0.0155 (13)0.0003 (13)0.0174 (13)
C90.0513 (15)0.0437 (13)0.0643 (16)0.0066 (11)0.0051 (12)0.0030 (12)
C100.0400 (13)0.0639 (15)0.0507 (14)0.0025 (11)0.0046 (11)0.0016 (12)
C110.0353 (12)0.0454 (13)0.0602 (15)0.0056 (10)0.0024 (11)0.0046 (11)
C120.0420 (14)0.0463 (13)0.0846 (19)0.0036 (11)0.0067 (13)0.0028 (13)
C130.0559 (18)0.0638 (18)0.103 (2)0.0145 (14)0.0066 (17)0.0377 (18)
C140.077 (2)0.103 (3)0.083 (2)0.005 (2)0.0206 (18)0.037 (2)
C150.108 (3)0.088 (2)0.088 (2)0.008 (2)0.044 (2)0.007 (2)
C160.079 (2)0.0523 (15)0.079 (2)0.0034 (14)0.0246 (16)0.0112 (14)
C170.0288 (10)0.0382 (11)0.0336 (10)0.0040 (8)0.0005 (8)0.0051 (8)
C180.0556 (15)0.0505 (13)0.0333 (11)0.0019 (11)0.0086 (10)0.0068 (10)
C190.0835 (19)0.0545 (14)0.0330 (12)0.0011 (13)0.0084 (12)0.0083 (11)
C200.0591 (15)0.0392 (12)0.0437 (13)0.0008 (11)0.0013 (11)0.0041 (10)
C210.0292 (11)0.0360 (10)0.0349 (10)0.0020 (8)0.0025 (8)0.0041 (8)
C220.0288 (10)0.0375 (10)0.0299 (10)0.0036 (8)0.0005 (8)0.0007 (8)
C230.0341 (12)0.0401 (11)0.0430 (12)0.0015 (9)0.0011 (9)0.0060 (10)
C240.0277 (11)0.0413 (12)0.0428 (12)0.0004 (9)0.0026 (9)0.0069 (10)
O2W0.0305 (8)0.0620 (10)0.0642 (10)0.0010 (7)0.0034 (7)0.0196 (8)
O1W0.0393 (9)0.0735 (11)0.0481 (9)0.0017 (8)0.0029 (7)0.0129 (8)
Geometric parameters (Å, º) top
Cu1—N42.0119 (17)C7—C81.515 (3)
Cu1—N12.0146 (17)C7—H7A0.9700
Cu1—N52.0206 (17)C7—H7B0.9700
Cu1—N22.0290 (17)C8—C91.511 (4)
O1—C231.251 (2)C8—H8A0.9700
O2—C231.247 (2)C8—H8B0.9700
O3—C241.254 (3)C9—H9A0.9700
O4—C241.249 (3)C9—H9B0.9700
O3W—H3WA0.8814C10—C111.502 (3)
O3W—H3WB0.8671C10—H10A0.9700
N1—C11.473 (3)C10—H10B0.9700
N1—C91.480 (3)C11—C161.373 (4)
N1—H10.9800C11—C121.386 (3)
N2—C21.481 (3)C12—C131.378 (4)
N2—C31.495 (3)C12—H120.9300
N2—H20.9800C13—C141.364 (5)
N3—C41.433 (3)C13—H130.9300
N3—C31.435 (3)C14—C151.350 (5)
N3—C101.474 (3)C14—H140.9300
N4—C51.480 (3)C15—C161.381 (4)
N4—C41.495 (3)C15—H150.9300
N4—H40.9800C16—H160.9300
N5—C61.478 (3)C17—C181.381 (3)
N5—C71.478 (3)C17—C221.389 (3)
N5—H50.9800C17—C231.513 (3)
C1—C21.507 (3)C18—C191.380 (3)
C1—H1A0.9700C18—H180.9300
C1—H1B0.9700C19—C201.380 (3)
C2—H2A0.9700C19—H190.9300
C2—H2B0.9700C20—C211.386 (3)
C3—H3A0.9700C20—H200.9300
C3—H3B0.9700C21—C221.384 (3)
C4—H4A0.9700C21—C241.513 (3)
C4—H4B0.9700C22—H220.9300
C5—C61.505 (3)O2W—H2WA0.8360
C5—H5A0.9700O2W—H2WB0.8450
C5—H5B0.9700O1W—H1WA0.8473
C6—H6A0.9700O1W—H1WB0.8730
C6—H6B0.9700
N4—Cu1—N1178.13 (7)H6A—C6—H6B108.4
N4—Cu1—N586.27 (7)N5—C7—C8112.00 (19)
N1—Cu1—N593.91 (7)N5—C7—H7A109.2
N4—Cu1—N293.51 (7)C8—C7—H7A109.2
N1—Cu1—N286.29 (7)N5—C7—H7B109.2
N5—Cu1—N2179.15 (8)C8—C7—H7B109.2
H3WA—O3W—H3WB108.0H7A—C7—H7B107.9
C1—N1—C9112.30 (18)C9—C8—C7115.2 (2)
C1—N1—Cu1107.13 (13)C9—C8—H8A108.5
C9—N1—Cu1115.94 (13)C7—C8—H8A108.5
C1—N1—H1107.0C9—C8—H8B108.5
C9—N1—H1107.0C7—C8—H8B108.5
Cu1—N1—H1107.0H8A—C8—H8B107.5
C2—N2—C3112.08 (17)N1—C9—C8112.4 (2)
C2—N2—Cu1106.01 (13)N1—C9—H9A109.1
C3—N2—Cu1115.82 (13)C8—C9—H9A109.1
C2—N2—H2107.5N1—C9—H9B109.1
C3—N2—H2107.5C8—C9—H9B109.1
Cu1—N2—H2107.5H9A—C9—H9B107.8
C4—N3—C3115.14 (18)N3—C10—C11113.38 (18)
C4—N3—C10114.89 (18)N3—C10—H10A108.9
C3—N3—C10115.56 (19)C11—C10—H10A108.9
C5—N4—C4112.06 (17)N3—C10—H10B108.9
C5—N4—Cu1106.53 (13)C11—C10—H10B108.9
C4—N4—Cu1114.52 (13)H10A—C10—H10B107.7
C5—N4—H4107.8C16—C11—C12117.8 (2)
C4—N4—H4107.8C16—C11—C10121.6 (2)
Cu1—N4—H4107.8C12—C11—C10120.6 (2)
C6—N5—C7112.77 (18)C13—C12—C11120.7 (3)
C6—N5—Cu1106.72 (13)C13—C12—H12119.7
C7—N5—Cu1116.79 (15)C11—C12—H12119.7
C6—N5—H5106.7C14—C13—C12120.4 (3)
C7—N5—H5106.7C14—C13—H13119.8
Cu1—N5—H5106.7C12—C13—H13119.8
N1—C1—C2108.80 (18)C15—C14—C13119.5 (3)
N1—C1—H1A109.9C15—C14—H14120.2
C2—C1—H1A109.9C13—C14—H14120.2
N1—C1—H1B109.9C14—C15—C16120.8 (3)
C2—C1—H1B109.9C14—C15—H15119.6
H1A—C1—H1B108.3C16—C15—H15119.6
N2—C2—C1108.68 (18)C11—C16—C15120.8 (3)
N2—C2—H2A110.0C11—C16—H16119.6
C1—C2—H2A110.0C15—C16—H16119.6
N2—C2—H2B110.0C18—C17—C22118.79 (19)
C1—C2—H2B110.0C18—C17—C23121.21 (18)
H2A—C2—H2B108.3C22—C17—C23119.98 (18)
N3—C3—N2114.72 (17)C19—C18—C17120.5 (2)
N3—C3—H3A108.6C19—C18—H18119.7
N2—C3—H3A108.6C17—C18—H18119.7
N3—C3—H3B108.6C20—C19—C18120.2 (2)
N2—C3—H3B108.6C20—C19—H19119.9
H3A—C3—H3B107.6C18—C19—H19119.9
N3—C4—N4114.61 (17)C19—C20—C21120.3 (2)
N3—C4—H4A108.6C19—C20—H20119.8
N4—C4—H4A108.6C21—C20—H20119.8
N3—C4—H4B108.6C22—C21—C20118.86 (19)
N4—C4—H4B108.6C22—C21—C24119.66 (18)
H4A—C4—H4B107.6C20—C21—C24121.41 (18)
N4—C5—C6108.34 (18)C21—C22—C17121.31 (18)
N4—C5—H5A110.0C21—C22—H22119.3
C6—C5—H5A110.0C17—C22—H22119.3
N4—C5—H5B110.0O2—C23—O1124.7 (2)
C6—C5—H5B110.0O2—C23—C17117.66 (18)
H5A—C5—H5B108.4O1—C23—C17117.66 (19)
N5—C6—C5108.45 (17)O4—C24—O3124.7 (2)
N5—C6—H6A110.0O4—C24—C21118.00 (18)
C5—C6—H6A110.0O3—C24—C21117.30 (19)
N5—C6—H6B110.0H2WA—O2W—H2WB115.8
C5—C6—H6B110.0H1WA—O1W—H1WB115.1
C9—N1—C1—C2167.12 (18)N3—C10—C11—C1277.4 (3)
Cu1—N1—C1—C238.7 (2)C16—C11—C12—C130.4 (4)
C3—N2—C2—C1167.77 (18)C10—C11—C12—C13178.4 (2)
Cu1—N2—C2—C140.5 (2)C11—C12—C13—C140.9 (4)
N1—C1—C2—N254.0 (2)C12—C13—C14—C150.6 (5)
C4—N3—C3—N267.2 (2)C13—C14—C15—C160.2 (6)
C10—N3—C3—N270.5 (2)C12—C11—C16—C150.3 (4)
C2—N2—C3—N3175.81 (18)C10—C11—C16—C15179.2 (3)
Cu1—N2—C3—N354.0 (2)C14—C15—C16—C110.7 (6)
C3—N3—C4—N470.0 (2)C22—C17—C18—C190.4 (3)
C10—N3—C4—N468.0 (2)C23—C17—C18—C19178.2 (2)
C5—N4—C4—N3179.82 (18)C17—C18—C19—C200.1 (4)
Cu1—N4—C4—N358.3 (2)C18—C19—C20—C210.8 (4)
C4—N4—C5—C6166.99 (17)C19—C20—C21—C221.0 (3)
Cu1—N4—C5—C641.01 (19)C19—C20—C21—C24177.7 (2)
C7—N5—C6—C5168.77 (19)C20—C21—C22—C170.5 (3)
Cu1—N5—C6—C539.2 (2)C24—C21—C22—C17177.30 (18)
N4—C5—C6—N554.5 (2)C18—C17—C22—C210.2 (3)
C6—N5—C7—C8179.3 (2)C23—C17—C22—C21178.41 (18)
Cu1—N5—C7—C856.6 (2)C18—C17—C23—O2179.9 (2)
N5—C7—C8—C967.4 (3)C22—C17—C23—O21.3 (3)
C1—N1—C9—C8178.50 (19)C18—C17—C23—O10.6 (3)
Cu1—N1—C9—C857.9 (2)C22—C17—C23—O1178.0 (2)
C7—C8—C9—N168.5 (3)C22—C21—C24—O411.4 (3)
C4—N3—C10—C11153.0 (2)C20—C21—C24—O4171.9 (2)
C3—N3—C10—C1169.1 (3)C22—C21—C24—O3166.69 (19)
N3—C10—C11—C16103.8 (3)C20—C21—C24—O310.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.982.042.950 (2)154
N2—H2···O3ii0.982.153.118 (2)170
N4—H4···O2iii0.982.002.949 (2)161
N5—H5···O3Wiv0.982.353.230 (3)149
O1W—H1WB···O4ii0.872.012.884 (2)176
O1W—H1WB···O3ii0.872.603.213 (2)128
O1W—H1WA···O3Wiii0.851.972.813 (2)173
O2W—H2WA···O2iv0.841.962.795 (2)174
O2W—H2WB···O3i0.851.952.798 (2)178
O3W—H3WA···O1v0.881.922.779 (2)163
O3W—H3WB···O10.871.852.720 (2)176
O3W—H3WB···O20.872.663.248 (2)126
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+3/2; (v) x+1, y+1, z+1.
trans-Diaqua[3-(pyridin-3-ylmethyl)-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12]copper(II) isophthalate 0.9-hydrate (II) top
Crystal data top
[Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2OF(000) = 1208
Mr = 572.33Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1955 (3) ÅCell parameters from 6756 reflections
b = 19.0463 (8) Åθ = 3.5–24.1°
c = 19.4426 (8) ŵ = 0.88 mm1
β = 94.276 (2)°T = 296 K
V = 2657.15 (19) Å3Needle, violet
Z = 40.16 × 0.04 × 0.04 mm
Data collection top
Bruker X8 APEXII CCD
diffractometer
2834 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.106
φ and ω scansθmax = 24.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.873, Tmax = 0.966k = 2222
76082 measured reflectionsl = 2222
4532 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0305P)2 + 2.3396P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4532 reflectionsΔρmax = 0.29 e Å3
439 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.43303 (5)0.24763 (2)0.48049 (2)0.03543 (14)
O1W0.7535 (3)0.29360 (13)0.51575 (12)0.0526 (7)
H1WA0.81350.31740.48790.079*
H1WB0.82070.27320.54050.079*
O2W0.1108 (3)0.20190 (13)0.45250 (12)0.0489 (7)
H2WA0.06080.18260.47620.073*
H2WB0.04480.22500.42440.073*
O20.0118 (3)0.28246 (13)0.11247 (12)0.0458 (6)
O10.0810 (4)0.37745 (13)0.05000 (12)0.0514 (7)
O30.1053 (3)0.27854 (13)0.35932 (12)0.0477 (6)
O40.0716 (4)0.37804 (13)0.41829 (12)0.0520 (7)
O3W0.8843 (8)0.0087 (3)0.4939 (3)0.090 (2)0.5
H3WA0.89400.03230.51120.135*0.5
H3WB0.99610.02170.49030.135*0.5
N50.3655 (4)0.25100 (17)0.57886 (14)0.0422 (7)
H50.252 (5)0.2428 (18)0.5797 (17)0.051*
N40.5142 (4)0.14778 (15)0.50045 (15)0.0380 (7)
H40.622 (5)0.1491 (18)0.5042 (18)0.046*
N30.5197 (4)0.11268 (15)0.37866 (14)0.0422 (7)
N20.4917 (4)0.24119 (15)0.38076 (14)0.0375 (7)
H20.604 (5)0.2455 (18)0.3789 (17)0.045*
N10.3470 (4)0.34611 (16)0.45862 (17)0.0459 (8)
H10.237 (5)0.342 (2)0.4524 (19)0.055*
N60.7057 (5)0.0207 (2)0.1924 (2)0.0773 (12)
C60.4550 (6)0.1900 (2)0.6144 (2)0.0517 (11)
H6A0.400 (5)0.1804 (19)0.658 (2)0.062*
H6B0.579 (6)0.2040 (19)0.6278 (19)0.062*
C50.4414 (6)0.1282 (2)0.56692 (19)0.0472 (10)
H5A0.511 (5)0.0884 (19)0.5869 (18)0.057*
H5B0.317 (5)0.1139 (18)0.5564 (17)0.057*
C40.4585 (6)0.0962 (2)0.4450 (2)0.0475 (10)
H4A0.504 (5)0.052 (2)0.4583 (18)0.057*
H4B0.322 (5)0.0956 (18)0.4417 (17)0.057*
C30.4360 (5)0.1735 (2)0.34625 (19)0.0454 (10)
H3A0.305 (5)0.1701 (18)0.3498 (17)0.055*
H3B0.475 (5)0.1762 (17)0.2977 (18)0.055*
C20.4032 (6)0.3025 (2)0.3452 (2)0.0558 (12)
H2A0.275 (6)0.291 (2)0.3319 (19)0.067*
H2B0.461 (5)0.3108 (19)0.303 (2)0.067*
C10.4203 (6)0.3651 (2)0.3917 (2)0.0594 (12)
H1A0.561 (6)0.379 (2)0.4029 (19)0.071*
H1B0.370 (6)0.402 (2)0.375 (2)0.071*
C90.3921 (7)0.3989 (2)0.5132 (3)0.0637 (13)
H9A0.349 (6)0.441 (2)0.496 (2)0.076*
H9B0.529 (6)0.405 (2)0.522 (2)0.076*
C80.3075 (7)0.3790 (3)0.5796 (3)0.0730 (15)
H8A0.321 (6)0.414 (2)0.609 (2)0.088*
H8B0.167 (6)0.372 (2)0.575 (2)0.088*
C70.3989 (7)0.3169 (3)0.6173 (2)0.0603 (12)
H7A0.527 (6)0.323 (2)0.625 (2)0.072*
H7B0.352 (6)0.313 (2)0.664 (2)0.072*
C100.7173 (6)0.1022 (2)0.3693 (2)0.0500 (10)
H10A0.756 (5)0.064 (2)0.3953 (19)0.060*
H10B0.798 (5)0.1392 (19)0.3909 (18)0.060*
C110.7527 (5)0.09148 (19)0.29454 (19)0.0433 (9)
C150.6836 (6)0.0338 (2)0.2589 (3)0.0634 (13)
H150.622 (6)0.003 (2)0.280 (2)0.076*
C140.8046 (7)0.0681 (3)0.1601 (2)0.0711 (14)
H140.834 (6)0.060 (2)0.117 (2)0.085*
C130.8791 (6)0.1269 (3)0.1905 (2)0.0639 (12)
H130.957 (6)0.161 (2)0.163 (2)0.077*
C120.8528 (6)0.1385 (2)0.2583 (2)0.0514 (10)
H120.903 (5)0.177 (2)0.2834 (19)0.062*
C160.0922 (4)0.38525 (17)0.17181 (16)0.0315 (8)
C170.1431 (5)0.45554 (19)0.17099 (19)0.0419 (9)
H170.154 (5)0.4782 (18)0.1319 (18)0.050*
C180.1798 (5)0.4895 (2)0.2311 (2)0.0484 (10)
H180.212 (5)0.535 (2)0.2291 (18)0.058*
C190.1628 (5)0.45471 (19)0.2933 (2)0.0423 (9)
H190.178 (5)0.4782 (18)0.3327 (18)0.051*
C200.1130 (4)0.38455 (17)0.29563 (16)0.0322 (8)
C210.0791 (4)0.35064 (18)0.23471 (18)0.0333 (8)
H210.049 (4)0.3043 (17)0.2347 (16)0.040*
C220.0577 (4)0.3458 (2)0.10677 (17)0.0377 (8)
C230.0942 (4)0.34456 (19)0.36318 (18)0.0366 (8)
O4W0.018 (3)0.5169 (8)0.4782 (9)0.138 (5)0.2
H4WA0.00660.47640.46150.207*0.2
H4WB0.01120.51190.52130.207*0.2
O5W0.086 (3)0.5056 (8)0.4928 (9)0.138 (5)0.2
H5WA0.07410.49890.53610.207*0.2
H5WB0.08120.47180.46610.207*0.2
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0391 (2)0.0350 (2)0.0325 (2)0.0007 (2)0.00440 (15)0.0006 (2)
O1W0.0417 (15)0.0661 (18)0.0504 (16)0.0018 (12)0.0065 (12)0.0141 (14)
O2W0.0363 (14)0.0672 (18)0.0431 (15)0.0005 (12)0.0028 (11)0.0152 (13)
O20.0547 (16)0.0430 (16)0.0411 (15)0.0053 (12)0.0118 (12)0.0040 (12)
O10.0723 (18)0.0507 (16)0.0320 (15)0.0058 (13)0.0091 (12)0.0048 (13)
O30.0655 (17)0.0388 (16)0.0385 (15)0.0013 (12)0.0034 (12)0.0051 (12)
O40.0690 (18)0.0542 (17)0.0323 (15)0.0054 (13)0.0008 (12)0.0085 (13)
O3W0.085 (4)0.059 (4)0.129 (6)0.009 (3)0.025 (4)0.033 (4)
N50.0338 (15)0.0535 (19)0.0395 (17)0.0023 (17)0.0042 (13)0.0067 (17)
N40.0367 (16)0.0421 (18)0.0349 (17)0.0003 (14)0.0015 (13)0.0025 (14)
N30.0411 (18)0.047 (2)0.0386 (18)0.0035 (14)0.0065 (13)0.0064 (15)
N20.0330 (15)0.0432 (19)0.0360 (16)0.0024 (15)0.0016 (13)0.0069 (15)
N10.0358 (17)0.0402 (19)0.063 (2)0.0030 (15)0.0099 (16)0.0016 (16)
N60.066 (3)0.086 (3)0.079 (3)0.001 (2)0.004 (2)0.048 (2)
C60.047 (2)0.076 (3)0.031 (2)0.005 (2)0.0010 (19)0.006 (2)
C50.045 (2)0.056 (3)0.041 (2)0.002 (2)0.0042 (18)0.018 (2)
C40.052 (2)0.038 (2)0.053 (3)0.0043 (19)0.011 (2)0.004 (2)
C30.041 (2)0.063 (3)0.033 (2)0.0004 (19)0.0044 (17)0.009 (2)
C20.057 (3)0.064 (3)0.046 (3)0.014 (2)0.007 (2)0.023 (2)
C10.055 (3)0.046 (3)0.079 (3)0.011 (2)0.016 (2)0.024 (3)
C90.061 (3)0.036 (2)0.095 (4)0.001 (2)0.012 (3)0.014 (3)
C80.076 (3)0.060 (3)0.086 (4)0.001 (3)0.027 (3)0.035 (3)
C70.059 (3)0.071 (3)0.053 (3)0.005 (2)0.011 (2)0.025 (3)
C100.047 (2)0.050 (3)0.053 (3)0.0033 (19)0.0030 (19)0.006 (2)
C110.036 (2)0.042 (2)0.051 (2)0.0065 (17)0.0032 (17)0.0141 (19)
C150.053 (3)0.061 (3)0.078 (3)0.010 (2)0.017 (2)0.022 (3)
C140.064 (3)0.095 (4)0.055 (3)0.026 (3)0.009 (3)0.015 (3)
C130.068 (3)0.065 (3)0.060 (3)0.015 (2)0.011 (2)0.003 (3)
C120.049 (2)0.041 (3)0.064 (3)0.0016 (19)0.005 (2)0.006 (2)
C160.0283 (17)0.034 (2)0.032 (2)0.0023 (14)0.0050 (14)0.0003 (16)
C170.048 (2)0.041 (2)0.037 (2)0.0002 (17)0.0023 (17)0.0075 (19)
C180.063 (3)0.029 (2)0.053 (3)0.0046 (19)0.0011 (19)0.002 (2)
C190.048 (2)0.038 (2)0.042 (2)0.0016 (17)0.0083 (17)0.0067 (19)
C200.0277 (18)0.035 (2)0.034 (2)0.0026 (14)0.0044 (14)0.0048 (16)
C210.0295 (18)0.0323 (19)0.038 (2)0.0029 (15)0.0023 (14)0.0015 (19)
C220.0327 (19)0.047 (3)0.034 (2)0.0061 (16)0.0050 (15)0.0005 (19)
C230.0298 (19)0.044 (2)0.037 (2)0.0023 (16)0.0060 (15)0.0016 (19)
O4W0.16 (2)0.121 (12)0.135 (14)0.018 (11)0.049 (10)0.014 (10)
O5W0.16 (2)0.121 (12)0.135 (14)0.018 (11)0.049 (10)0.014 (10)
Geometric parameters (Å, º) top
Cu1—N52.009 (3)C3—H3B1.01 (3)
Cu1—N12.011 (3)C2—C11.496 (6)
Cu1—N42.019 (3)C2—H2A0.96 (4)
Cu1—N22.019 (3)C2—H2B0.95 (4)
Cu1—O2W2.499 (2)C1—H1A1.05 (4)
Cu1—O1W2.514 (2)C1—H1B0.84 (4)
O1W—H1WA0.8490C9—C81.518 (7)
O1W—H1WB0.7628C9—H9A0.91 (4)
O2W—H2WA0.7075C9—H9B0.99 (4)
O2W—H2WB0.8243C8—C71.515 (7)
O2—C221.253 (4)C8—H8A0.88 (5)
O1—C221.258 (4)C8—H8B1.01 (5)
O3—C231.262 (4)C7—H7A0.93 (4)
O4—C231.247 (4)C7—H7B1.00 (4)
O3W—H3WA0.8501C10—C111.508 (5)
O3W—H3WB0.8500C10—H10A0.92 (4)
N5—C71.472 (5)C10—H10B0.99 (4)
N5—C61.475 (5)C11—C151.373 (5)
N5—H50.83 (4)C11—C121.376 (5)
N4—C51.478 (4)C15—H150.85 (4)
N4—C41.491 (5)C14—C131.358 (7)
N4—H40.78 (3)C14—H140.90 (4)
N3—C41.428 (5)C13—C121.365 (6)
N3—C31.430 (5)C13—H131.03 (4)
N3—C101.460 (5)C12—H120.94 (4)
N2—C21.477 (5)C16—C211.386 (4)
N2—C31.494 (5)C16—C171.388 (5)
N2—H20.81 (3)C16—C221.507 (4)
N1—C91.480 (5)C17—C181.378 (5)
N1—C11.484 (5)C17—H170.87 (3)
N1—H10.79 (4)C18—C191.377 (5)
N6—C141.335 (6)C18—H180.90 (4)
N6—C151.337 (6)C19—C201.383 (5)
C6—C51.494 (6)C19—H190.90 (3)
C6—H6A0.98 (4)C20—C211.387 (4)
C6—H6B0.95 (4)C20—C231.516 (4)
C5—H5A0.97 (4)C21—H210.91 (3)
C5—H5B0.94 (4)O4W—H4WA0.8499
C4—H4A0.94 (4)O4W—H4WB0.8499
C4—H4B0.98 (4)O5W—H5WA0.8621
C3—H3A0.95 (4)O5W—H5WB0.8273
N5—Cu1—N194.53 (13)C1—C2—H2A112 (2)
N5—Cu1—N486.23 (12)N2—C2—H2B109 (2)
N1—Cu1—N4178.43 (13)C1—C2—H2B111 (2)
N5—Cu1—N2177.48 (12)H2A—C2—H2B106 (3)
N1—Cu1—N286.37 (12)N1—C1—C2108.5 (3)
N4—Cu1—N292.82 (12)N1—C1—H1A106 (2)
N5—Cu1—O2W86.10 (10)C2—C1—H1A111 (2)
N1—Cu1—O2W90.74 (10)N1—C1—H1B111 (3)
N4—Cu1—O2W87.94 (10)C2—C1—H1B115 (3)
N2—Cu1—O2W91.54 (10)H1A—C1—H1B105 (4)
N5—Cu1—O1W90.65 (10)N1—C9—C8111.0 (4)
N1—Cu1—O1W89.69 (10)N1—C9—H9A106 (3)
N4—Cu1—O1W91.68 (10)C8—C9—H9A113 (3)
N2—Cu1—O1W91.71 (10)N1—C9—H9B111 (2)
O2W—Cu1—O1W176.75 (8)C8—C9—H9B110 (2)
Cu1—O1W—H1WA120.8H9A—C9—H9B106 (4)
Cu1—O1W—H1WB121.4C7—C8—C9114.8 (4)
H1WA—O1W—H1WB110.2C7—C8—H8A105 (3)
Cu1—O2W—H2WA123.2C9—C8—H8A109 (3)
Cu1—O2W—H2WB115.9C7—C8—H8B109 (3)
H2WA—O2W—H2WB114.4C9—C8—H8B114 (2)
H3WA—O3W—H3WB104.5H8A—C8—H8B103 (4)
C7—N5—C6112.7 (3)N5—C7—C8111.8 (4)
C7—N5—Cu1117.9 (3)N5—C7—H7A108 (2)
C6—N5—Cu1107.0 (2)C8—C7—H7A111 (3)
C7—N5—H5106 (2)N5—C7—H7B110 (2)
C6—N5—H5104 (3)C8—C7—H7B110 (2)
Cu1—N5—H5109 (2)H7A—C7—H7B106 (3)
C5—N4—C4111.9 (3)N3—C10—C11112.0 (3)
C5—N4—Cu1106.8 (2)N3—C10—H10A107 (2)
C4—N4—Cu1115.0 (2)C11—C10—H10A111 (2)
C5—N4—H4110 (3)N3—C10—H10B113 (2)
C4—N4—H4108 (3)C11—C10—H10B112 (2)
Cu1—N4—H4105 (3)H10A—C10—H10B101 (3)
C4—N3—C3115.3 (3)C15—C11—C12116.5 (4)
C4—N3—C10116.8 (3)C15—C11—C10120.9 (4)
C3—N3—C10116.0 (3)C12—C11—C10122.5 (4)
C2—N2—C3112.3 (3)N6—C15—C11124.9 (4)
C2—N2—Cu1106.7 (2)N6—C15—H15116 (3)
C3—N2—Cu1114.5 (2)C11—C15—H15119 (3)
C2—N2—H2107 (2)N6—C14—C13124.0 (4)
C3—N2—H2108 (2)N6—C14—H14120 (3)
Cu1—N2—H2108 (2)C13—C14—H14116 (3)
C9—N1—C1112.9 (3)C14—C13—C12118.5 (5)
C9—N1—Cu1115.8 (3)C14—C13—H13120 (2)
C1—N1—Cu1106.8 (2)C12—C13—H13122 (2)
C9—N1—H1109 (3)C13—C12—C11120.3 (4)
C1—N1—H1108 (3)C13—C12—H12124 (2)
Cu1—N1—H1104 (3)C11—C12—H12116 (2)
C14—N6—C15115.9 (4)C21—C16—C17118.0 (3)
N5—C6—C5109.0 (3)C21—C16—C22119.9 (3)
N5—C6—H6A111 (2)C17—C16—C22122.1 (3)
C5—C6—H6A112 (2)C18—C17—C16120.7 (3)
N5—C6—H6B106 (2)C18—C17—H17120 (2)
C5—C6—H6B114 (2)C16—C17—H17120 (2)
H6A—C6—H6B104 (3)C19—C18—C17120.6 (4)
N4—C5—C6109.3 (3)C19—C18—H18121 (2)
N4—C5—H5A110 (2)C17—C18—H18119 (2)
C6—C5—H5A111 (2)C18—C19—C20120.0 (3)
N4—C5—H5B106 (2)C18—C19—H19120 (2)
C6—C5—H5B112 (2)C20—C19—H19120 (2)
H5A—C5—H5B108 (3)C19—C20—C21118.9 (3)
N3—C4—N4115.1 (3)C19—C20—C23121.3 (3)
N3—C4—H4A109 (2)C21—C20—C23119.7 (3)
N4—C4—H4A109 (2)C16—C21—C20121.8 (3)
N3—C4—H4B109 (2)C16—C21—H21118 (2)
N4—C4—H4B106 (2)C20—C21—H21121 (2)
H4A—C4—H4B110 (3)O2—C22—O1123.8 (3)
N3—C3—N2114.3 (3)O2—C22—C16117.7 (3)
N3—C3—H3A107 (2)O1—C22—C16118.5 (3)
N2—C3—H3A105 (2)O4—C23—O3124.4 (3)
N3—C3—H3B108 (2)O4—C23—C20119.0 (3)
N2—C3—H3B107 (2)O3—C23—C20116.6 (3)
H3A—C3—H3B115 (3)H4WA—O4W—H4WB104.5
N2—C2—C1109.5 (3)H5WA—O5W—H5WB119.6
N2—C2—H2A109 (2)
C7—N5—C6—C5170.6 (3)N3—C10—C11—C12114.6 (4)
Cu1—N5—C6—C539.4 (4)C14—N6—C15—C110.7 (7)
C4—N4—C5—C6164.5 (3)C12—C11—C15—N60.5 (6)
Cu1—N4—C5—C637.7 (3)C10—C11—C15—N6178.9 (4)
N5—C6—C5—N452.4 (4)C15—N6—C14—C130.7 (7)
C3—N3—C4—N467.4 (4)N6—C14—C13—C120.4 (7)
C10—N3—C4—N474.0 (4)C14—C13—C12—C110.1 (6)
C5—N4—C4—N3178.4 (3)C15—C11—C12—C130.1 (6)
Cu1—N4—C4—N356.3 (4)C10—C11—C12—C13179.2 (4)
C4—N3—C3—N268.6 (4)C21—C16—C17—C180.1 (5)
C10—N3—C3—N273.2 (4)C22—C16—C17—C18177.8 (3)
C2—N2—C3—N3179.5 (3)C16—C17—C18—C191.3 (6)
Cu1—N2—C3—N358.5 (3)C17—C18—C19—C201.6 (6)
C3—N2—C2—C1164.3 (3)C18—C19—C20—C210.6 (5)
Cu1—N2—C2—C138.0 (4)C18—C19—C20—C23179.6 (3)
C9—N1—C1—C2168.2 (3)C17—C16—C21—C200.8 (5)
Cu1—N1—C1—C239.9 (4)C22—C16—C21—C20178.8 (3)
N2—C2—C1—N152.9 (4)C19—C20—C21—C160.6 (5)
C1—N1—C9—C8177.6 (4)C23—C20—C21—C16179.2 (3)
Cu1—N1—C9—C859.0 (4)C21—C16—C22—O22.2 (4)
N1—C9—C8—C771.4 (5)C17—C16—C22—O2179.9 (3)
C6—N5—C7—C8179.4 (3)C21—C16—C22—O1176.0 (3)
Cu1—N5—C7—C854.0 (4)C17—C16—C22—O11.9 (5)
C9—C8—C7—N568.1 (5)C19—C20—C23—O420.1 (5)
C4—N3—C10—C11156.2 (3)C21—C20—C23—O4159.6 (3)
C3—N3—C10—C1162.6 (4)C19—C20—C23—O3158.9 (3)
N3—C10—C11—C1564.7 (5)C21—C20—C23—O321.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.79 (4)2.37 (4)3.115 (4)157 (4)
N2—H2···O3i0.81 (3)2.25 (4)3.044 (4)167 (3)
N4—H4···O1ii0.78 (3)2.31 (3)3.037 (4)157 (3)
N5—H5···O2iii0.83 (4)2.10 (4)2.910 (4)163 (3)
O1W—H1WA···O4i0.852.002.849 (3)174
O1W—H1WB···O2ii0.762.072.831 (3)176
O2W—H2WA···O1iii0.712.152.859 (3)178
O2W—H2WB···O30.821.902.722 (3)180
O3W—H3WA···O1ii0.851.882.731 (6)179
O3W—H3WB···O1iv0.852.182.760 (6)126
C1—H1A···O4i1.05 (4)2.64 (4)3.662 (5)164 (3)
C4—H4B···O3Wv0.98 (4)2.60 (4)3.274 (7)125 (3)
C5—H5B···O3Wv0.94 (4)2.62 (4)3.415 (7)142 (3)
C10—H10A···O3W0.92 (4)2.49 (4)3.367 (8)161 (3)
C13—H13···O2i1.03 (4)2.53 (4)3.446 (6)147 (3)
C1—H1B···N6vi0.84 (4)2.66 (4)3.474 (5)165 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y, z+1; (vi) x+1, y+1/2, z+1/2.
Selected bond lengths (Å) top
(I)(II)
Cu1—N12.0146 (17)2.011 (3)
Cu1—N22.0290 (17)2.019 (3)
Cu1—N42.0119 (17)2.019 (3)
Cu1—N52.0206 (17)2.009 (3)
Cu1—O1W2.5071 (16)2.514 (2)
Cu1—O2W2.4832 (15)2.499 (2)
 

References

First citationBosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 1, 63–126.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLee, J. H. & Moon, H. R. (2018). J. Incl. Phenom. Macrocycl. Chem. 92, 237–249.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMelson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.  Google Scholar
First citationPark, H. J. & Suh, M. P. (2012). CrystEngComm, 14, 2748–2755.  CSD CrossRef CAS Google Scholar
First citationRosokha, S. V., Lampeka, Ya. D. & Maloshtan, I. M. (1993). J. Chem. Soc. Dalton Trans. pp. 631–636.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 533–536.  CSD CrossRef IUCr Journals Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572–1581.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. [In Russian.]  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds