research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and the Hirshfeld surface analysis of (E)-4-nitro-N′-(o-chloro, o- and p-methyl­benzyl­­idene)benzene­sulfono­hydrazides

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, and cKarnataka State Rural Development and Panchayat Raj University, Raitha Bhavan, Gadag-582101, India
*Correspondence e-mail: gowdabt@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 October 2018; accepted 28 October 2018; online 6 November 2018)

The crystal structures of (E)-N′-(2-chloro­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide, C13H10ClN3O4S (I), (E)-N′-(2-methyl­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide, C14H13N3O4S (II), and (E)-N′-(4-methyl­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide monohydrate, C14H13N3O4S·H2O (III), have been synthesized, characterized and their crystal structures determined to study the effects of the nature and sites of substitutions on the structural parameters and the hydrogen-bonding inter­actions. All three compounds crystallize in the monoclinic crystal system, with space group P21 for (I) and P21/c for (II) and (III). Compound (III) crystallizes as a monohydrate. All three compounds adopt an E configuration around the C=N bond. The mol­ecules are bent at the S atom with C—S—N—N torsion angles of −59.0 (3), 58.0 (2) and −70.2 (1)° in (I), (II) and (III), respectively. The sulfono­hydrazide parts are also non-linear, as is evident from the S—N—N—C torsional angles of 159.3 (3), −164.2 (1) and 152.3 (1)° in (I), (II) and (III), respectively, while the hydrazide parts are almost planar with the N—N=C—C torsion angles being −179.1 (3)° in (I), 176.7 (2)° in (II) and 175.0 (2)° in (III). The 4-nitro-substituted phenyl­sulfonyl and 2/4-substituted benzyl­idene rings are inclined to each other by 81.1 (1)° in (I), 81.4 (1)° in (II) and 74.4 (1)° in (III). The compounds show differences in hydrogen-bonding inter­actions. In the crystal of (I), mol­ecules are linked via N—H⋯O hydrogen bonds, forming C(4) chains along the a-axis direction that are inter­connected by weak C—H⋯O hydrogen bonds, generating layers parallel to the ac plane. In the crystal of (II), the amino H atom shows bifurcated N—H⋯O(O) hydrogen bonding with both O atoms of the nitro group generating C(9) chains along the b-axis direction. The chains are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional framework. In the crystal of (III), mol­ecules are linked by Ow—H⋯O, N—H⋯Ow and C—H⋯O hydrogen bonds, forming layers lying parallel to the bc plane. The fingerprint plots generated for the three compounds show that for (I) and (II) the O⋯H/H⋯O contacts make the largest contributions, while for the para-substituted compound (III), H⋯H contacts are the major contributors to the Hirshfeld surfaces.

1. Chemical context

Sulfonyl hydrazides have been used extensively to synthesize new Schiff bases owing to the presence of two chemically and biologically important sulfonyl and hydrazine moieties (Murtaza et al., 2016[Murtaza, S., Shamim, S., Kousar, N., Tahir, M. N., Sirajuddin, M. & Rana, U. A. (2016). J. Mol. Struct. 1107, 99-108.]). Reactions of hydrazines with other functional groups produce compounds with unique physical and chemical characteristics (Xavier et al., 2012[Xavier, A. J., Thakur, M. & Marie, J. M. (2012). J. Chem. Pharm. Res. 4, 986-990.]). Hydrazones derived from the condensation reactions of hydrazides with aldehydes show excellent biological properties (Küçükgüzel et al., 2006[Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]). As a result of the ease of the electron-transport mechanism through the π-conjugated framework, the azomethine-bridged benzene derivatives exhibit excellent optical non-linearities (Manivannan & Dhanuskodi, 2004[Manivannan, S. & Dhanuskodi, S. (2004). J. Cryst. Growth, 262, 473-478.]). Organic polymers containing the azomethine group are known to have good mechanical strength (Morgan et al., 1987[Morgan, P. W., Kwolek, S. L. & Pletcher, T. C. (1987). Macromolecules, 20, 729-739.]) and high thermal stability (Catanescu et al., 2001[Catanescu, O., Grigoras, M., Colotin, G., Dobreanu, A., Hurduc, N. & Simionescu, C. I. (2001). Eur. Polym. J. 37, 2213-2216.]). As part of our continuing studies to explore the effect of the nature and site of substituents on the crystal structures of sulfonyl hydrazide derivatives (Salian et al., 2018[Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613-1618.]), we report herein the synthesis, crystal structures and Hirshfeld surface analyses of the title compounds, (E)-4-nitro-N′-(2-chloro­benzyl­idene)benzene­sulfono­hydrazide (I)[link], (E)-4-nitro-N′-(2-methyl­benzyl­­idene)benzene­sulfono­hydrazide (II)[link] and (E)-4-nitro-N′-(4-methyl­benzyl­idene)benzene­sulfono­hydrazide monohydrate (III)[link].

[Scheme 1]

2. Structural commentary

The title compounds crystallize in the monoclinic crystal system, in space group P21 for (I)[link] and P21/c for (II)[link] and (III)[link]. The mol­ecular structures of the three compounds are shown in Figs. 1[link], 2[link] and 3[link]. Compound (III)[link] crystallizes as a monohydrate. In all three compounds the configuration about the C=N bond is E, with C7=N2 bond lengths of 1.269 (5), 1.275 (2) and 1.263 (3) Å in (I)[link], (II)[link] and (III)[link], respectively. The respective N1—N2 bond lengths of 1.404 (4), 1.400 (2) and 1.398 (2) Å are consistent with the azine bond lengths of 1.40 Å in similar structures (Salian et al., 2018[Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613-1618.]), indicating the delocalization of π-electron density over the hydrazone portion of the mol­ecules. The conformation of the N—H and C—H bonds in (I)[link] and (II)[link], with respect to the ortho-substit­uents, are syn to each other (Figs. 1[link] and 2[link]). In the central parts of each mol­ecule the S1—N1—N2=C7 torsion angles deviate from linearity with values of 159.3 (3)° in (I)[link], −164.2 (1)° in (II)[link] and 152.3 (1)° in (III)[link], while the hydrazide parts are almost planar with the N1—N2=C7—C8 torsion angles being −179.1 (3), 176.7 (2) and 175.0 (2)° in (I)[link], (II)[link] and (III)[link], respectively. The dihedral angles between the 4-nitro­benzene ring (C1–C6) and benzene ring (C8–C13) are 81.1 (1), 81.4 (1) and 74.4 (1)°, respectively. The plane of the nitro group (N3/O3/O4) is inclined to the 4-nitro­benzene ring (C1–C6) by 9.3 (5) ° in (I)[link] and 9.1 (3) ° in (II)[link], but is significantly out of plane in (III)[link] with a dihedral angle of 16.1 (2)°.

[Figure 1]
Figure 1
Mol­ecular structure of compound (I)[link], showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of compound (II)[link], showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 3]
Figure 3
Mol­ecular structure of compound (III)[link], showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystals of the title compounds there are significant difference in the hydrogen-bonding inter­actions. In the crystal of the ortho-chloro-substituted compound (I)[link], mol­ecules are linked via N—H⋯O hydrogen bonds, forming C4 chains along the a-axis direction (Table 1[link] and Fig. 4[link]). These chains are inter­connected by weak C—H⋯O hydrogen bonds, generating layers parallel to the ab plane (Table 1[link] and Fig. 5[link]). In the crystal of the ortho-methyl-substituted compound (II)[link], the amino H atom shows bifurcated N—H⋯O(O) hydrogen bonding with both the O atoms of the nitro group, generating chains with a C(9) motif that propagate along the b-axis direction (Table 2[link] and Fig. 6[link]). These chains are linked by C—H⋯O hydrogen bonds, resulting in the formation of a three-dimensional framework (Table 2[link] and Fig. 7[link]). Finally, in the crystal of the para-methyl-substituted compound (III)[link], the presence of the water mol­ecule of crystallization has an important effect on the crystal packing. The mol­ecules of compound (III)[link] are bridged by the water mol­ecule, via Ow—H⋯O and N—H⋯Ow hydrogen bonds, forming layers lying parallel to the bc plane that are reinforced by C—H⋯O hydrogen bonds (Table 3[link] and Fig. 8[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (2) 2.02 (3) 2.853 (4) 163 (4)
C3—H3⋯O2ii 0.93 2.46 3.290 (4) 149
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.84 (2) 2.51 (2) 3.230 (2) 144 (2)
N1—H1N⋯O4i 0.84 (2) 2.44 (2) 3.260 (3) 164 (2)
C2—H2⋯O2ii 0.93 2.58 3.284 (2) 133
C12—H12⋯O1iii 0.93 2.44 3.341 (3) 164
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.85 (2) 2.00 (2) 2.848 (2) 173 (2)
O5—H51⋯O2ii 0.81 (2) 2.29 (2) 3.006 (2) 148 (3)
O5—H52⋯O1iii 0.80 (2) 2.17 (2) 2.949 (2) 166 (3)
C5—H5⋯O1iii 0.93 2.52 3.167 (2) 127
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A partial view along the c axis of the crystal packing of compound (I)[link], with hydrogen bonds shown as dashed lines.
[Figure 5]
Figure 5
The crystal packing of compound (I)[link], viewed along the c axis, with hydrogen bonds shown as dashed lines.
[Figure 6]
Figure 6
A partial view along the a axis of the crystal packing of compound (II)[link], with hydrogen bonds shown as dashed lines.
[Figure 7]
Figure 7
The crystal packing of compound (II)[link], viewed along the a axis,with hydrogen bonds shown as dashed lines.
[Figure 8]
Figure 8
The crystal packing of compound (III)[link], viewed along the b axis, with hydrogen bonds shown as dashed lines.

4. Hirshfeld surface analysis

The type of inter­molecular contacts and their qu­anti­tative contribution to the crystal packing in all the three compounds were studied by Hirshfeld surfaces and two-dimensional fingerprint plots, which were generated using CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.]). The Hirshfeld surfaces mapped over dnorm are in the scale of −0.56–1.43 a.u. The bright-red spots on the Hirshfeld surfaces mapped over dnorm indicate the strong N—H⋯O inter­actions present in the crystal structure (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]); these correspond to N1—H1N⋯O1i in (I)[link] (Fig. 9[link]a; Table 1[link]), N1—H1N⋯O3i and N1—H1N⋯O4i in (II)[link] (Fig. 9[link]b; Table 2[link]) and N1—H1N⋯O5i, O5—H51⋯O2ii and O5—H52⋯O1iii in (III)[link] (Fig. 9[link]c; Table 3[link]). The fingerprint plots corresponding to the various contacts contributing more than 10% (along with the C⋯C contacts) to the Hirshfeld surfaces are shown in Fig. 10[link]. Table 4[link] lists all the contacts present in the crystal structures of the three compounds, and their respective percentage contributions to the Hirshfeld surfaces. The O⋯H/H⋯O contacts correspond to the N—H⋯O/O—H⋯O inter­actions at de + di ∼2.2 Å in (I)[link] and (III)[link] and at 2.6 Å in (II)[link], which is very close to the hydrogen-bonding distances observed in these compounds [Tables 1[link], 2[link] and 3[link] for (I)[link], (II)[link] and (III)[link], respectively]. These inter­actions are the major contributor in (I)[link] and (II)[link] [35.0% in (I)[link] and 37.3% in (II)] followed by H⋯H contacts [17.5% in (I)[link] and 28.4% in (II)]. In (III)[link], H⋯H inter­actions make the largest contribution to the Hirshfeld surface (37.2%), followed by O⋯H/H⋯O contacts (32.0%). The H⋯H inter­actions appear as a short single peak at de + di ∼2.2 Å in the fingerprint plot of (III)[link] (see Fig. 10[link]c). The distinct pair of wings corresponds to C⋯H/H⋯C contacts, which are the third largest contributor to the Hirshfeld surfaces in all three compounds [17.3% in (I)[link], 13.4% in (II)[link] and 11.0% in (III)]. A significant difference is in the percentage contribution from C⋯C contacts found for the three compounds. They are characterized by two overlapping broad peaks in the fingerprint plot for (II)[link] (see Fig. 10[link]b), accounting for 7.8% of the Hirshfeld surface with de + di ∼3.4 Å, whereas for (I)[link] and (III)[link] these inter­actions make negligible contributions of 1.0 and 0.3%, respectively. The O⋯C/C⋯O contacts contribute 4.3% in (I)[link], 1.8% in (II)[link] and 9.4% in (III)[link]. N⋯H/H⋯N contacts contribute 4.3, 7.3 and 5.0% in (I)[link], (II)[link] and (III)[link], respectively. In (I)[link], the Cl⋯H/H⋯Cl, Cl⋯C/C⋯Cl, Cl⋯O/O⋯Cl and Cl⋯N/N⋯Cl contacts contribute 6.1, 4.7, 3.1 and 1.4%, respectively, to the Hirshfeld surfaces. The percentage contributions for the various inter­actions in the title compounds are compared in Table 4[link].

Table 4
Hirshfeld contact inter­actions (%).

Contact type (I) (II) (III)
O⋯H/H⋯O 35.0 37.3 32.0
H⋯H 17.5 28.4 37.2
C⋯H/H⋯C 17.3 13.4 11.0
O⋯C/C⋯O 4.3 1.8 9.4
C⋯C 1.0 7.8 0.3
N⋯H/H⋯N 4.3 7.3 5.0
N⋯C/C⋯N 2.2 0.1 1.2
O⋯N/N⋯O 1.1 1.4 1.4
O⋯O 1.9 2.4 0.0
S⋯C/C⋯S 0.0 0.1 0.1
Cl⋯C/C⋯Cl 4.7 - -
Cl⋯H/H⋯Cl 6.1 - -
Cl⋯O/O⋯Cl 3.1 - -
Cl⋯N/N⋯Cl 1.4 - -
[Figure 9]
Figure 9
View of the Hirshfeld surface mapped over dnorm for (a) (I)[link], (b) (II)[link] and (c) (III)[link].
[Figure 10]
Figure 10
Two-dimensional fingerprint plots showing the contributions of the different types of inter­actions in (a) (I)[link], (b) (II)[link] and (c) (III)[link].

5. Database survey

Structures similar to the title compounds that have been reported in the literature include N′-[(E)-4-methyl­benzyl­idene]-4-methyl­benzene­sulfono­hydrazide (Tabatabaee et al., 2007[Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099-o2100.]), (E)-N′-(4-chloro­benzyl­idene)-p-toluene­sulfono­hydrazide 0.15-hydrate (Kia et al., 2009a[Kia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o1119-o1120.]), (E)-N′-(4-chloro­benzyl­idene)-4-methyl­benzene­sulfono­hydrazide (Balaji et al., 2014[Balaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250-o1251.]), (E)-N′-(4-bromo­benzyl­idene)-p-toluene­sulfono­hydrazide (Kia et al., 2009b[Kia, R., Etemadi, B., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o821-o822.]), (E)-N′-(4-nitro­benzyl­idene)-benzene­sulfono­hydrazide (Hussain et al., 2017a[Hussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017a). ACS Omega, 2, 420-431.]), E)-4-methyl-N′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide (Hussain et al., 2017b[Hussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017b). Sci. Rep. 7, 5832.]). (E)-N′-(2-methyl­benzyl­idene)-4-chloro­benzene­sulfono­hydrazide and (E)-N′-(4-methyl­benzyl­idene)-4-chloro­benzene­sulfono­hydrazide (Salian et al., 2018[Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613-1618.]). In all the structures, inter­molecular N—H⋯O hydrogen bonds link neighbouring mol­ecules to form chains, which are linked by ππ inter­actions, further stabilizing the crystal structures. The chains are linked via C—H⋯O hydrogen bonds, forming layers. This situation is similar to that in the recently reported structures of (E)-N′-benzyl­idene-4-chloro­benzene­sulfono­lydrazine and the 2-methyl­benzil­idene derivative, (E)-N′-(2-methyl­benzyl­idene)-4-chloro­benzene­sulfono­lydrazine (Salian et al., 2018[Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613-1618.]).

6. Synthesis and crystallization

Synthesis of 4-nitro­benzene­sulfono­hydrazide

Hydrazine hydrate (99%, 5 ml) was added to 4-nitro­benzene­sulfonyl chloride (0.01 mol), dissolved in ethanol (30 ml) at 273 K under constant stirring. The stirring continued for 15 min at 273 K and then at 303 K for 3 h. The reaction mixture was then concentrated by evaporating off the excess ethanol. The solid product obtained, i.e. 4-nitro­benzene­sulfono­hydrazide, was washed with cold water and dried.

Synthesis of the title compounds (I)[link], (II)[link] and (III)

The title compounds were synthesized by refluxing the mixtures of 4-nitro­benzene­sulfono­hydrazide (0.01 mol) and 0.01 mol of 2-chloro­benzaldehyde for (I)[link], 2-methyl­benzaldehyde for (II)[link], and 4-methyl­benzaldehyde for (III)[link], in ethanol (30 ml) and two drops of glacial acetic acid for 4 h. The reaction mixtures were cooled to room temperature and concentrated by evaporating off the excess of solvent. The solid products obtained were washed with cold water, dried and recrystallized to constant melting points from ethanol. Purity of the compounds was checked by TLC. All three compounds were characterized by measuring their IR, 1H and 13C NMR spectra.

(E)-N′-(2-chloro­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide (I)

Colourless prismatic crystals; m.p: 438–439 K; IR (cm−1): 3182.5 (N—H asym. stretch), 1604.8 (C=N), 1311.6 (S=O asym. stretch) and 1168.9 (S=O sym. stretch).

1H NMR (400 MHz, DMSO-d6): δ 7.16–7.18 (m, 2H, Ar-H), 7.45–7.47 (m, 2H, Ar-H), 7.91 (s, 1H), 8.15 (d, 2H, Ar-H), 8.41 (d, 2H, Ar-H), 11.71 (s, 1H): 13C NMR (400 MHz, DMSO-d6): δ 124.41, 126.67, 127.34, 128.75, 129.67, 130.55, 131.46, 133.08, 143.80, 144.27, 149.88.

(E)-N′-(2-methyl­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide (II)

Yellow rod-shaped crystals; m.p: 417–418 K; IR (cm−1): 3217.3 (N—H asym. stretch), 1602.9 (C=N), 1332.1 (S=O asym. stretch) and 1172.7 (S=O sym. stretch).

1H NMR (400 MHz, DMSO-d6): δ 2.31 (s, 3H), 7.34-7.37 (m, 3H, Ar-H), 7.40 (t, 1H, Ar-H), 7.81 (d, 1H, Ar-H), 8.16 (d, 1H, Ar-H), 8.31 (s, 1H), 8.44 (d, 2H, Ar-H), 12.10 (s, 1H). 13C NMR (400 MHz, DMSO-d6): δ 20.97, 124.21, 125.90, 126.78, 128.75, 129.01, 130.61, 131.68, 139.99, 144.48, 148.13, 149.74.

(E)-N′-(4-methyl­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide (III)

Yellow prismatic crystals; m.p: 447–448 K; IR (cm−1): 3291.5 (N—H asym. stretch), 1606.7 (C=N), 1305.8 (S=O asym. stretch) and 1165.0 (S=O sym. stretch).

1H NMR (400 MHz, DMSO-d6): δ 2.31 (s, 3H), 7.34 (d, 2H, Ar-H), 7.60 (d, 2H, Ar-H), 8.16 (d, 2H, Ar-H), 8.30 (s, 1H), 8.42 (d, 2H, Ar-H), 12.03 (s, 1H): 13C NMR (400 MHz, DMSO-d6): δ 20.96, 123.81, 126.65, 128.59, 128.96, 130.47, 139.94, 144.64, 147.96, 149.58.

Single crystals of the title compounds used for the single-crystal X-ray diffraction analyses were obtained by slow evaporation of the solvent in their DMF solutions at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The C-bound H atoms were positioned with idealized geometry and refined using a riding model with the aromatic C—H = 0.93 Å. The amino H atoms were refined with an N—H distance restraint of 0.86 (2) Å. For (III)[link], the H atoms of the water mol­ecule were refined with the O—H distance restrained to 0.82 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2Ueq(C-aromatic, N, O) and 1.5Ueq(C-meth­yl). For (I)[link], the low angle reflection (0 [\overline{2}] 1) had a poor agreement with its calculated value and was omitted from the refinement.

Table 5
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C13H10ClN3O4S C14H13N3O4S C14H13N3O4S·H2O
Mr 339.75 319.33 337.35
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293 293
a, b, c (Å) 4.9498 (6), 22.340 (3), 7.0003 (9) 7.190 (1), 15.288 (2), 13.596 (2) 22.589 (2), 5.4424 (4), 12.7180 (9)
β (°) 104.40 (1) 97.68 (2) 92.146 (6)
V3) 749.76 (17) 1481.1 (4) 1562.4 (2)
Z 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.42 0.24 0.24
Crystal size (mm) 0.24 × 0.24 × 0.12 0.50 × 0.48 × 0.24 0.40 × 0.36 × 0.16
 
Data collection
Diffractometer Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.907, 0.952 0.889, 0.945 0.911, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 4582, 2696, 2457 9810, 2719, 2271 9384, 2870, 2178
Rint 0.015 0.020 0.021
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.01 0.038, 0.097, 1.05 0.034, 0.092, 1.02
No. of reflections 2696 2719 2870
No. of parameters 202 203 218
No. of restraints 2 2 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.20 0.28, −0.32 0.19, −0.28
Absolute structure Flack x determined using 1102 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.05 (3)
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(E)-N'-(2-Chlorobenzylidene)-4-nitrobenzenesulfonohydrazide (I) top
Crystal data top
C13H10ClN3O4SF(000) = 348
Mr = 339.75Dx = 1.505 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.9498 (6) ÅCell parameters from 1264 reflections
b = 22.340 (3) Åθ = 3.0–27.7°
c = 7.0003 (9) ŵ = 0.42 mm1
β = 104.40 (1)°T = 293 K
V = 749.76 (17) Å3Prism, colourless
Z = 20.24 × 0.24 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur single crystal X-ray
diffractometer with Sapphire CCD detector
2457 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.015
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 35
Tmin = 0.907, Tmax = 0.952k = 2626
4582 measured reflectionsl = 87
2696 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.0544P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2696 reflectionsΔρmax = 0.14 e Å3
202 parametersΔρmin = 0.20 e Å3
2 restraintsAbsolute structure: Flack x determined using 1102 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0897 (2)0.10843 (5)0.44188 (16)0.0737 (3)
S10.59163 (16)0.12968 (4)0.08796 (12)0.0429 (2)
O10.8691 (5)0.11233 (13)0.0900 (4)0.0603 (7)
O20.4169 (5)0.15582 (12)0.0845 (3)0.0519 (6)
O30.8117 (8)0.27393 (16)0.9402 (5)0.0788 (9)
O40.4147 (8)0.3096 (2)0.7925 (5)0.1064 (14)
N10.4239 (6)0.07005 (13)0.1288 (4)0.0445 (7)
H1N0.248 (5)0.0750 (18)0.109 (5)0.053*
N20.5519 (6)0.04007 (13)0.3042 (4)0.0472 (7)
N30.6159 (8)0.27887 (16)0.7968 (5)0.0619 (9)
C10.6093 (7)0.17729 (15)0.2929 (5)0.0411 (7)
C20.8188 (7)0.16808 (16)0.4642 (5)0.0480 (8)
H20.95560.13930.46720.058*
C30.8216 (7)0.20189 (17)0.6288 (5)0.0509 (9)
H30.95900.19630.74510.061*
C40.6175 (8)0.24394 (16)0.6174 (5)0.0467 (8)
C50.4109 (8)0.25443 (17)0.4481 (6)0.0517 (9)
H50.27620.28360.44560.062*
C60.4083 (8)0.22071 (16)0.2829 (5)0.0479 (8)
H60.27280.22710.16620.057*
C70.3937 (8)0.00577 (16)0.3719 (6)0.0498 (9)
H70.20720.00130.30540.060*
C80.5085 (8)0.02677 (16)0.5566 (5)0.0504 (9)
C90.3835 (9)0.07856 (17)0.6049 (6)0.0553 (9)
C100.4901 (10)0.1087 (2)0.7781 (6)0.0719 (11)
H100.40140.14280.80840.086*
C110.7282 (13)0.0882 (2)0.9061 (7)0.0875 (17)
H110.80070.10841.02370.105*
C120.8616 (12)0.0377 (2)0.8620 (7)0.0861 (16)
H121.02680.02470.94710.103*
C130.7476 (11)0.00665 (19)0.6908 (6)0.0715 (13)
H130.83240.02850.66450.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0766 (7)0.0678 (6)0.0675 (6)0.0191 (6)0.0002 (5)0.0046 (6)
S10.0340 (4)0.0534 (5)0.0430 (4)0.0058 (4)0.0128 (3)0.0063 (4)
O10.0368 (13)0.080 (2)0.0683 (16)0.0089 (12)0.0213 (12)0.0014 (14)
O20.0519 (14)0.0638 (15)0.0395 (13)0.0067 (12)0.0103 (11)0.0142 (12)
O30.084 (2)0.083 (2)0.0589 (18)0.0005 (18)0.0023 (17)0.0094 (17)
O40.110 (3)0.128 (3)0.076 (2)0.055 (3)0.011 (2)0.027 (2)
N10.0362 (15)0.0500 (16)0.0443 (16)0.0064 (13)0.0041 (13)0.0079 (12)
N20.0466 (17)0.0437 (16)0.0472 (17)0.0088 (14)0.0039 (14)0.0061 (13)
N30.072 (2)0.0595 (19)0.053 (2)0.0030 (18)0.0142 (19)0.0050 (17)
C10.0350 (17)0.0456 (17)0.0433 (18)0.0022 (14)0.0110 (14)0.0077 (14)
C20.0355 (18)0.054 (2)0.052 (2)0.0097 (15)0.0059 (16)0.0040 (16)
C30.0401 (19)0.059 (2)0.048 (2)0.0028 (16)0.0006 (16)0.0039 (17)
C40.048 (2)0.047 (2)0.045 (2)0.0013 (16)0.0096 (17)0.0016 (16)
C50.048 (2)0.050 (2)0.056 (2)0.0108 (16)0.0100 (19)0.0057 (18)
C60.044 (2)0.052 (2)0.0443 (19)0.0118 (16)0.0048 (16)0.0082 (16)
C70.057 (2)0.046 (2)0.043 (2)0.0017 (16)0.0059 (17)0.0016 (16)
C80.065 (2)0.0430 (19)0.0394 (18)0.0024 (18)0.0053 (17)0.0017 (15)
C90.070 (3)0.0474 (19)0.0442 (19)0.0012 (18)0.0055 (18)0.0009 (16)
C100.101 (3)0.058 (2)0.051 (2)0.007 (3)0.007 (2)0.007 (2)
C110.132 (5)0.068 (3)0.046 (2)0.005 (3)0.011 (3)0.011 (2)
C120.111 (4)0.074 (3)0.051 (2)0.015 (3)0.021 (2)0.000 (2)
C130.095 (4)0.054 (2)0.052 (3)0.018 (2)0.006 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C91.743 (4)C4—C51.379 (5)
S1—O11.424 (3)C5—C61.378 (5)
S1—O21.424 (2)C5—H50.9300
S1—N11.632 (3)C6—H60.9300
S1—C11.770 (3)C7—C81.468 (5)
O3—N31.214 (4)C7—H70.9300
O4—N31.204 (4)C8—C131.390 (6)
N1—N21.404 (4)C8—C91.393 (5)
N1—H1N0.86 (2)C9—C101.373 (6)
N2—C71.269 (5)C10—C111.370 (7)
N3—C41.481 (5)C10—H100.9300
C1—C61.379 (5)C11—C121.380 (7)
C1—C21.391 (5)C11—H110.9300
C2—C31.375 (5)C12—C131.378 (6)
C2—H20.9300C12—H120.9300
C3—C41.367 (5)C13—H130.9300
C3—H30.9300
O1—S1—O2120.09 (15)C6—C5—H5120.7
O1—S1—N1107.89 (16)C4—C5—H5120.7
O2—S1—N1104.77 (15)C1—C6—C5119.1 (3)
O1—S1—C1107.59 (16)C1—C6—H6120.5
O2—S1—C1109.75 (16)C5—C6—H6120.5
N1—S1—C1105.87 (15)N2—C7—C8119.2 (3)
N2—N1—S1113.8 (2)N2—C7—H7120.4
N2—N1—H1N115 (3)C8—C7—H7120.4
S1—N1—H1N114 (3)C13—C8—C9117.3 (3)
C7—N2—N1115.4 (3)C13—C8—C7120.9 (4)
O4—N3—O3123.9 (4)C9—C8—C7121.8 (3)
O4—N3—C4117.3 (4)C10—C9—C8121.8 (4)
O3—N3—C4118.8 (4)C10—C9—Cl1117.7 (3)
C6—C1—C2121.4 (3)C8—C9—Cl1120.5 (3)
C6—C1—S1119.4 (3)C11—C10—C9119.4 (4)
C2—C1—S1119.0 (3)C11—C10—H10120.3
C3—C2—C1119.4 (3)C9—C10—H10120.3
C3—C2—H2120.3C10—C11—C12120.7 (4)
C1—C2—H2120.3C10—C11—H11119.7
C4—C3—C2118.3 (3)C12—C11—H11119.7
C4—C3—H3120.8C11—C12—C13119.3 (5)
C2—C3—H3120.8C11—C12—H12120.3
C3—C4—C5123.1 (3)C13—C12—H12120.3
C3—C4—N3118.2 (3)C12—C13—C8121.4 (4)
C5—C4—N3118.7 (3)C12—C13—H13119.3
C6—C5—C4118.6 (3)C8—C13—H13119.3
O1—S1—N1—N256.0 (3)C3—C4—C5—C60.5 (6)
O2—S1—N1—N2175.0 (2)N3—C4—C5—C6178.2 (3)
C1—S1—N1—N259.0 (3)C2—C1—C6—C51.9 (5)
S1—N1—N2—C7159.3 (3)S1—C1—C6—C5174.9 (3)
O1—S1—C1—C6151.0 (3)C4—C5—C6—C10.8 (5)
O2—S1—C1—C618.7 (3)N1—N2—C7—C8179.1 (3)
N1—S1—C1—C693.9 (3)N2—C7—C8—C1322.2 (5)
O1—S1—C1—C232.1 (3)N2—C7—C8—C9158.0 (4)
O2—S1—C1—C2164.4 (3)C13—C8—C9—C100.2 (6)
N1—S1—C1—C283.0 (3)C7—C8—C9—C10179.6 (4)
C6—C1—C2—C31.7 (5)C13—C8—C9—Cl1177.9 (3)
S1—C1—C2—C3175.1 (3)C7—C8—C9—Cl12.3 (5)
C1—C2—C3—C40.4 (5)C8—C9—C10—C111.1 (7)
C2—C3—C4—C50.7 (6)Cl1—C9—C10—C11177.1 (4)
C2—C3—C4—N3178.0 (3)C9—C10—C11—C120.2 (8)
O4—N3—C4—C3170.0 (4)C10—C11—C12—C132.3 (9)
O3—N3—C4—C38.2 (5)C11—C12—C13—C83.2 (9)
O4—N3—C4—C58.7 (6)C9—C8—C13—C122.0 (7)
O3—N3—C4—C5173.0 (4)C7—C8—C13—C12178.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)2.02 (3)2.853 (4)163 (4)
C3—H3···O2ii0.932.463.290 (4)149
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
(E)-N'-(2-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide (II) top
Crystal data top
C14H13N3O4SF(000) = 664
Mr = 319.33Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.190 (1) ÅCell parameters from 2833 reflections
b = 15.288 (2) Åθ = 2.6–27.8°
c = 13.596 (2) ŵ = 0.24 mm1
β = 97.68 (2)°T = 293 K
V = 1481.1 (4) Å3Rod, yellow
Z = 40.50 × 0.48 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur single crystal X-ray
diffractometer with Sapphire CCD detector
2271 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.020
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 85
Tmin = 0.889, Tmax = 0.945k = 1818
9810 measured reflectionsl = 1116
2719 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.8005P]
where P = (Fo2 + 2Fc2)/3
2719 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1811 (3)0.53913 (12)0.11782 (14)0.0392 (4)
C20.2549 (3)0.45557 (13)0.12179 (16)0.0472 (5)
H20.37790.44590.11040.057*
C30.1428 (3)0.38663 (13)0.14295 (16)0.0515 (5)
H30.18940.32980.14700.062*
C40.0386 (3)0.40354 (13)0.15791 (14)0.0458 (5)
C50.1143 (3)0.48574 (14)0.15301 (16)0.0506 (5)
H50.23840.49480.16280.061*
C60.0019 (3)0.55474 (13)0.13323 (16)0.0475 (5)
H60.04890.61150.13030.057*
C70.5612 (3)0.62282 (12)0.35371 (15)0.0414 (4)
H70.52510.67710.37560.050*
C80.6602 (3)0.56164 (13)0.42534 (15)0.0419 (5)
C90.7375 (3)0.58901 (15)0.52053 (16)0.0513 (5)
C100.8215 (3)0.52648 (19)0.58632 (19)0.0651 (7)
H100.87170.54360.65000.078*
C110.8321 (3)0.4407 (2)0.5599 (2)0.0701 (8)
H110.89000.40040.60530.084*
C120.7574 (3)0.41387 (16)0.4665 (2)0.0651 (7)
H120.76570.35550.44830.078*
C130.6700 (3)0.47378 (14)0.39960 (18)0.0513 (5)
H130.61720.45530.33690.062*
C140.7337 (4)0.68279 (18)0.5534 (2)0.0781 (8)
H14A0.60700.70410.54270.117*
H14B0.81040.71740.51570.117*
H14C0.78130.68680.62260.117*
N10.4195 (2)0.66562 (10)0.20225 (12)0.0431 (4)
H1N0.347 (3)0.6988 (13)0.2284 (16)0.052*
N20.5234 (2)0.60339 (10)0.26201 (12)0.0413 (4)
N30.1566 (3)0.32996 (13)0.18268 (14)0.0592 (5)
O10.2086 (2)0.69660 (9)0.05038 (11)0.0591 (4)
O20.4735 (2)0.59482 (10)0.04571 (11)0.0590 (4)
O30.3229 (3)0.34312 (13)0.18613 (15)0.0833 (6)
O40.0808 (3)0.25947 (12)0.19986 (16)0.0867 (6)
S10.32586 (7)0.62811 (3)0.09402 (4)0.04312 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0478 (11)0.0349 (10)0.0357 (10)0.0027 (8)0.0079 (8)0.0008 (8)
C20.0516 (12)0.0409 (11)0.0520 (12)0.0030 (9)0.0168 (10)0.0018 (9)
C30.0726 (14)0.0318 (10)0.0524 (13)0.0001 (10)0.0170 (11)0.0017 (9)
C40.0584 (12)0.0446 (11)0.0351 (10)0.0133 (9)0.0086 (9)0.0002 (8)
C50.0455 (11)0.0544 (13)0.0526 (13)0.0045 (9)0.0095 (9)0.0029 (10)
C60.0487 (12)0.0400 (11)0.0542 (13)0.0035 (9)0.0088 (10)0.0048 (9)
C70.0414 (10)0.0371 (10)0.0472 (11)0.0000 (8)0.0116 (8)0.0037 (9)
C80.0340 (10)0.0463 (11)0.0473 (12)0.0009 (8)0.0121 (8)0.0023 (9)
C90.0409 (11)0.0646 (14)0.0494 (13)0.0001 (10)0.0097 (9)0.0019 (11)
C100.0462 (13)0.096 (2)0.0527 (14)0.0022 (13)0.0074 (10)0.0156 (14)
C110.0456 (13)0.085 (2)0.0818 (19)0.0105 (12)0.0173 (13)0.0388 (16)
C120.0535 (13)0.0495 (13)0.097 (2)0.0086 (11)0.0280 (13)0.0170 (13)
C130.0481 (12)0.0456 (12)0.0628 (14)0.0025 (9)0.0172 (10)0.0021 (10)
C140.0869 (19)0.0817 (19)0.0621 (17)0.0032 (15)0.0039 (14)0.0177 (14)
N10.0500 (10)0.0349 (9)0.0449 (10)0.0041 (7)0.0077 (8)0.0020 (7)
N20.0413 (9)0.0383 (9)0.0457 (10)0.0024 (7)0.0103 (7)0.0003 (7)
N30.0799 (11)0.0527 (12)0.0460 (10)0.0222 (10)0.0126 (10)0.0024 (9)
O10.0738 (10)0.0416 (8)0.0592 (10)0.0047 (7)0.0012 (8)0.0139 (7)
O20.0715 (10)0.0577 (9)0.0545 (9)0.0116 (8)0.0326 (8)0.0072 (7)
O30.0790 (10)0.0840 (13)0.0928 (14)0.0339 (10)0.0331 (11)0.0027 (11)
O40.1088 (16)0.0507 (11)0.1012 (15)0.0198 (10)0.0163 (12)0.0168 (10)
S10.0545 (3)0.0361 (3)0.0402 (3)0.0054 (2)0.0117 (2)0.0023 (2)
Geometric parameters (Å, º) top
C1—C61.381 (3)C9—C141.503 (3)
C1—C21.381 (3)C10—C111.364 (4)
C1—S11.7687 (19)C10—H100.9300
C2—C31.380 (3)C11—C121.375 (4)
C2—H20.9300C11—H110.9300
C3—C41.371 (3)C12—C131.381 (3)
C3—H30.9300C12—H120.9300
C4—C51.368 (3)C13—H130.9300
C4—N31.475 (3)C14—H14A0.9600
C5—C61.377 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300N1—N21.400 (2)
C7—N21.275 (2)N1—S11.6380 (17)
C7—C81.465 (3)N1—H1N0.839 (15)
C7—H70.9300N3—O41.216 (3)
C8—C131.392 (3)N3—O31.220 (3)
C8—C91.402 (3)O1—S11.4233 (15)
C9—C101.391 (3)O2—S11.4157 (15)
C6—C1—C2121.50 (18)C9—C10—H10119.1
C6—C1—S1119.39 (15)C10—C11—C12120.1 (2)
C2—C1—S1119.10 (15)C10—C11—H11120.0
C3—C2—C1118.86 (19)C12—C11—H11120.0
C3—C2—H2120.6C11—C12—C13119.8 (2)
C1—C2—H2120.6C11—C12—H12120.1
C4—C3—C2118.70 (19)C13—C12—H12120.1
C4—C3—H3120.6C12—C13—C8120.5 (2)
C2—C3—H3120.6C12—C13—H13119.7
C5—C4—C3123.12 (19)C8—C13—H13119.7
C5—C4—N3118.3 (2)C9—C14—H14A109.5
C3—C4—N3118.5 (2)C9—C14—H14B109.5
C4—C5—C6118.25 (19)H14A—C14—H14B109.5
C4—C5—H5120.9C9—C14—H14C109.5
C6—C5—H5120.9H14A—C14—H14C109.5
C5—C6—C1119.56 (19)H14B—C14—H14C109.5
C5—C6—H6120.2N2—N1—S1114.00 (12)
C1—C6—H6120.2N2—N1—H1N118.6 (15)
N2—C7—C8121.51 (18)S1—N1—H1N112.8 (15)
N2—C7—H7119.2C7—N2—N1115.88 (16)
C8—C7—H7119.2O4—N3—O3123.7 (2)
C13—C8—C9119.5 (2)O4—N3—C4117.6 (2)
C13—C8—C7119.03 (19)O3—N3—C4118.7 (2)
C9—C8—C7121.37 (19)O2—S1—O1120.69 (10)
C10—C9—C8118.2 (2)O2—S1—N1107.39 (9)
C10—C9—C14119.2 (2)O1—S1—N1105.46 (9)
C8—C9—C14122.5 (2)O2—S1—C1107.72 (9)
C11—C10—C9121.8 (2)O1—S1—C1108.17 (9)
C11—C10—H10119.1N1—S1—C1106.63 (9)
C6—C1—C2—C30.9 (3)C10—C11—C12—C130.6 (3)
S1—C1—C2—C3178.33 (16)C11—C12—C13—C81.3 (3)
C1—C2—C3—C40.9 (3)C9—C8—C13—C121.0 (3)
C2—C3—C4—C50.1 (3)C7—C8—C13—C12178.05 (19)
C2—C3—C4—N3178.67 (19)C8—C7—N2—N1176.70 (15)
C3—C4—C5—C60.8 (3)S1—N1—N2—C7164.16 (14)
N3—C4—C5—C6177.81 (19)C5—C4—N3—O4170.4 (2)
C4—C5—C6—C10.8 (3)C3—C4—N3—O48.3 (3)
C2—C1—C6—C50.0 (3)C5—C4—N3—O38.7 (3)
S1—C1—C6—C5179.19 (16)C3—C4—N3—O3172.7 (2)
N2—C7—C8—C1317.0 (3)N2—N1—S1—O257.23 (15)
N2—C7—C8—C9165.96 (18)N2—N1—S1—O1172.86 (13)
C13—C8—C9—C100.1 (3)N2—N1—S1—C158.01 (15)
C7—C8—C9—C10176.89 (18)C6—C1—S1—O2158.52 (16)
C13—C8—C9—C14179.5 (2)C2—C1—S1—O222.28 (19)
C7—C8—C9—C143.5 (3)C6—C1—S1—O126.54 (19)
C8—C9—C10—C110.9 (3)C2—C1—S1—O1154.26 (16)
C14—C9—C10—C11178.7 (2)C6—C1—S1—N186.46 (17)
C9—C10—C11—C120.5 (4)C2—C1—S1—N192.74 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.84 (2)2.51 (2)3.230 (2)144 (2)
N1—H1N···O4i0.84 (2)2.44 (2)3.260 (3)164 (2)
C2—H2···O2ii0.932.583.284 (2)133
C12—H12···O1iii0.932.443.341 (3)164
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y1/2, z+1/2.
(E)-N'-(4-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide monohydrate (III) top
Crystal data top
C14H13N3O4S·H2OF(000) = 704
Mr = 337.35Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.589 (2) ÅCell parameters from 3331 reflections
b = 5.4424 (4) Åθ = 3.1–27.8°
c = 12.7180 (9) ŵ = 0.24 mm1
β = 92.146 (6)°T = 293 K
V = 1562.4 (2) Å3Prism, yellow
Z = 40.40 × 0.36 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur single crystal X-ray
diffractometer with Sapphire CCD detector
2178 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.021
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1927
Tmin = 0.911, Tmax = 0.963k = 66
9384 measured reflectionsl = 1415
2870 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3615P]
where P = (Fo2 + 2Fc2)/3
2870 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.19 e Å3
6 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29814 (2)0.41337 (9)0.00460 (3)0.04151 (15)
O10.31514 (6)0.4922 (3)0.09707 (10)0.0540 (4)
O20.28665 (6)0.5896 (2)0.08395 (10)0.0533 (4)
O30.50400 (7)0.4229 (3)0.11440 (12)0.0697 (5)
O40.45497 (7)0.4367 (3)0.25661 (11)0.0619 (4)
N10.23739 (7)0.2563 (3)0.01813 (12)0.0465 (4)
H1N0.2396 (9)0.153 (3)0.0681 (14)0.056*
N20.21027 (7)0.1771 (3)0.07293 (12)0.0470 (4)
N30.46427 (7)0.3533 (3)0.16974 (13)0.0463 (4)
C10.35122 (7)0.2010 (3)0.05425 (13)0.0367 (4)
C20.38690 (8)0.0791 (4)0.01472 (14)0.0439 (4)
H20.38520.11810.08600.053*
C30.42513 (8)0.1012 (4)0.02325 (14)0.0440 (4)
H30.45000.18390.02150.053*
C40.42543 (7)0.1550 (3)0.12892 (14)0.0383 (4)
C50.39051 (8)0.0344 (4)0.19866 (14)0.0431 (4)
H50.39230.07460.26980.052*
C60.35286 (8)0.1470 (3)0.16104 (13)0.0424 (4)
H60.32890.23210.20650.051*
C70.17972 (8)0.0167 (4)0.06417 (16)0.0505 (5)
H70.17910.10350.00120.061*
C80.14529 (8)0.1070 (4)0.15155 (16)0.0501 (5)
C90.11387 (10)0.3238 (4)0.14097 (19)0.0669 (6)
H90.11640.41650.07990.080*
C100.07863 (11)0.4042 (5)0.2206 (2)0.0754 (7)
H100.05780.55050.21180.090*
C110.07354 (10)0.2750 (5)0.31180 (19)0.0670 (6)
C120.10618 (11)0.0627 (5)0.32272 (19)0.0725 (7)
H120.10440.02670.38480.087*
C130.14130 (10)0.0210 (4)0.24460 (17)0.0626 (6)
H130.16270.16580.25450.075*
C140.03449 (12)0.3685 (6)0.3974 (2)0.0970 (10)
H14A0.02050.23220.43740.146*
H14B0.00130.45530.36600.146*
H14C0.05690.47740.44300.146*
O50.25535 (9)0.4283 (3)0.31149 (13)0.0753 (5)
H510.2502 (12)0.445 (5)0.2487 (14)0.090*
H520.2685 (12)0.296 (4)0.328 (2)0.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0456 (3)0.0425 (3)0.0370 (3)0.0023 (2)0.00972 (18)0.0038 (2)
O10.0622 (9)0.0571 (8)0.0437 (7)0.0028 (7)0.0164 (6)0.0144 (7)
O20.0653 (9)0.0448 (7)0.0506 (8)0.0067 (7)0.0131 (7)0.0041 (6)
O30.0700 (10)0.0800 (11)0.0592 (9)0.0336 (9)0.0065 (8)0.0081 (8)
O40.0664 (9)0.0616 (9)0.0579 (8)0.0062 (8)0.0040 (7)0.0154 (7)
N10.0452 (9)0.0583 (10)0.0363 (9)0.0017 (8)0.0052 (7)0.0027 (7)
N20.0416 (9)0.0569 (10)0.0430 (9)0.0024 (8)0.0087 (7)0.0077 (8)
N30.0474 (9)0.0467 (9)0.0444 (8)0.0028 (7)0.0023 (7)0.0059 (7)
C10.0349 (9)0.0406 (9)0.0350 (9)0.0037 (8)0.0060 (7)0.0004 (8)
C20.0456 (10)0.0545 (11)0.0323 (9)0.0030 (9)0.0102 (8)0.0018 (9)
C30.0415 (10)0.0532 (11)0.0380 (10)0.0026 (9)0.0117 (8)0.0063 (9)
C40.0356 (9)0.0402 (9)0.0393 (9)0.0028 (7)0.0023 (7)0.0036 (7)
C50.0458 (10)0.0536 (12)0.0303 (9)0.0018 (9)0.0045 (8)0.0007 (8)
C60.0417 (10)0.0518 (11)0.0341 (9)0.0030 (9)0.0084 (8)0.0057 (8)
C70.0420 (11)0.0591 (12)0.0505 (12)0.0031 (10)0.0043 (9)0.0030 (10)
C80.0425 (11)0.0548 (12)0.0533 (12)0.0013 (9)0.0039 (9)0.0123 (10)
C90.0678 (15)0.0632 (14)0.0700 (15)0.0114 (12)0.0066 (12)0.0006 (12)
C100.0706 (16)0.0697 (15)0.0857 (19)0.0242 (13)0.0016 (14)0.0173 (14)
C110.0539 (13)0.0848 (17)0.0624 (15)0.0074 (13)0.0029 (11)0.0267 (13)
C120.0834 (17)0.0808 (17)0.0542 (14)0.0141 (15)0.0159 (12)0.0067 (13)
C130.0661 (14)0.0672 (14)0.0548 (13)0.0171 (12)0.0086 (11)0.0087 (11)
C140.0808 (18)0.127 (3)0.0847 (19)0.0258 (18)0.0152 (15)0.0400 (18)
O50.1131 (15)0.0646 (10)0.0485 (9)0.0000 (10)0.0078 (10)0.0005 (9)
Geometric parameters (Å, º) top
S1—O21.4230 (13)C6—H60.9300
S1—O11.4284 (13)C7—C81.465 (3)
S1—N11.6335 (17)C7—H70.9300
S1—C11.7652 (18)C8—C131.379 (3)
O3—N31.221 (2)C8—C91.381 (3)
O4—N31.220 (2)C9—C101.383 (3)
N1—N21.398 (2)C9—H90.9300
N1—H1N0.850 (15)C10—C111.365 (3)
N2—C71.263 (3)C10—H100.9300
N3—C41.473 (2)C11—C121.375 (3)
C1—C21.383 (2)C11—C141.514 (3)
C1—C61.389 (2)C12—C131.372 (3)
C2—C31.382 (3)C12—H120.9300
C2—H20.9300C13—H130.9300
C3—C41.375 (2)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.375 (2)C14—H14C0.9600
C5—C61.377 (3)O5—H510.808 (16)
C5—H50.9300O5—H520.802 (17)
O2—S1—O1120.13 (8)C1—C6—H6120.5
O2—S1—N1107.70 (8)N2—C7—C8121.14 (19)
O1—S1—N1104.45 (8)N2—C7—H7119.4
O2—S1—C1109.10 (8)C8—C7—H7119.4
O1—S1—C1108.56 (8)C13—C8—C9117.7 (2)
N1—S1—C1105.98 (8)C13—C8—C7122.4 (2)
N2—N1—S1113.94 (12)C9—C8—C7119.9 (2)
N2—N1—H1N117.2 (14)C8—C9—C10120.4 (2)
S1—N1—H1N113.8 (15)C8—C9—H9119.8
C7—N2—N1116.04 (17)C10—C9—H9119.8
O4—N3—O3124.16 (17)C11—C10—C9121.9 (2)
O4—N3—C4118.13 (15)C11—C10—H10119.0
O3—N3—C4117.71 (16)C9—C10—H10119.0
C2—C1—C6121.61 (17)C10—C11—C12117.2 (2)
C2—C1—S1119.44 (13)C10—C11—C14120.5 (2)
C6—C1—S1118.77 (13)C12—C11—C14122.3 (3)
C3—C2—C1119.35 (16)C13—C12—C11121.9 (2)
C3—C2—H2120.3C13—C12—H12119.1
C1—C2—H2120.3C11—C12—H12119.1
C4—C3—C2118.22 (16)C12—C13—C8120.8 (2)
C4—C3—H3120.9C12—C13—H13119.6
C2—C3—H3120.9C8—C13—H13119.6
C3—C4—C5123.13 (17)C11—C14—H14A109.5
C3—C4—N3118.79 (15)C11—C14—H14B109.5
C5—C4—N3118.07 (16)H14A—C14—H14B109.5
C4—C5—C6118.66 (16)C11—C14—H14C109.5
C4—C5—H5120.7H14A—C14—H14C109.5
C6—C5—H5120.7H14B—C14—H14C109.5
C5—C6—C1119.01 (16)H51—O5—H52113 (3)
C5—C6—H6120.5
O2—S1—N1—N246.42 (15)C3—C4—C5—C60.8 (3)
O1—S1—N1—N2175.19 (13)N3—C4—C5—C6178.33 (16)
C1—S1—N1—N270.24 (14)C4—C5—C6—C10.3 (3)
S1—N1—N2—C7152.32 (14)C2—C1—C6—C50.8 (3)
O2—S1—C1—C2153.79 (14)S1—C1—C6—C5174.26 (14)
O1—S1—C1—C221.22 (17)N1—N2—C7—C8175.00 (16)
N1—S1—C1—C290.50 (15)N2—C7—C8—C134.2 (3)
O2—S1—C1—C631.06 (16)N2—C7—C8—C9177.82 (19)
O1—S1—C1—C6163.64 (14)C13—C8—C9—C101.6 (3)
N1—S1—C1—C684.65 (15)C7—C8—C9—C10176.5 (2)
C6—C1—C2—C30.1 (3)C8—C9—C10—C110.2 (4)
S1—C1—C2—C3174.89 (14)C9—C10—C11—C121.5 (4)
C1—C2—C3—C41.0 (3)C9—C10—C11—C14180.0 (2)
C2—C3—C4—C51.4 (3)C10—C11—C12—C131.7 (4)
C2—C3—C4—N3177.66 (16)C14—C11—C12—C13179.8 (2)
O4—N3—C4—C3163.87 (17)C11—C12—C13—C80.3 (4)
O3—N3—C4—C316.5 (2)C9—C8—C13—C121.4 (3)
O4—N3—C4—C515.3 (2)C7—C8—C13—C12176.6 (2)
O3—N3—C4—C5164.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.85 (2)2.00 (2)2.848 (2)173 (2)
O5—H51···O2ii0.81 (2)2.29 (2)3.006 (2)148 (3)
O5—H52···O1iii0.80 (2)2.17 (2)2.949 (2)166 (3)
C5—H5···O1iii0.932.523.167 (2)127
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y1/2, z+1/2.
Hirshfeld contact interactions (%). top
Contact type(I)(II)(III)
O···H/H···O35.037.332.0
H···H17.528.437.2
C···H/H···C17.313.411.0
O···C/C···O4.31.89.4
C···C1.07.80.3
N···H/H···N4.37.35.0
N···C/C···N2.20.11.2
O···N/N···O1.11.41.4
O···O1.92.40.0
S···C/C···S0.00.10.1
Cl···C/C···Cl4.7--
Cl···H/H···Cl6.1--
Cl···O/O···Cl3.1--
Cl···N/N···Cl1.4--
 

Acknowledgements

The authors thank SAIF Panjab University for extending the services of their NMR facility and Mangalore University for providing all the facilities required.

Funding information

ARS thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its DST-PURSE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty.

References

First citationBalaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250–o1251.  CrossRef IUCr Journals Google Scholar
First citationCatanescu, O., Grigoras, M., Colotin, G., Dobreanu, A., Hurduc, N. & Simionescu, C. I. (2001). Eur. Polym. J. 37, 2213–2216.  CrossRef Google Scholar
First citationHussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017a). ACS Omega, 2, 420–431.  CrossRef Google Scholar
First citationHussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017b). Sci. Rep. 7, 5832.  CrossRef PubMed Google Scholar
First citationKia, R., Etemadi, B., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o821–o822.  CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o1119–o1120.  CrossRef IUCr Journals Google Scholar
First citationKüçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science PubMed Google Scholar
First citationManivannan, S. & Dhanuskodi, S. (2004). J. Cryst. Growth, 262, 473–478.  CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorgan, P. W., Kwolek, S. L. & Pletcher, T. C. (1987). Macromolecules, 20, 729–739.  CrossRef CAS Web of Science Google Scholar
First citationMurtaza, S., Shamim, S., Kousar, N., Tahir, M. N., Sirajuddin, M. & Rana, U. A. (2016). J. Mol. Struct. 1107, 99–108.  CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSalian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613–1618.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.  Google Scholar
First citationXavier, A. J., Thakur, M. & Marie, J. M. (2012). J. Chem. Pharm. Res. 4, 986–990.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds