research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[(S)-2-(2-hy­dr­oxy­benzyl­amino)-4-methyl­penta­noato-κ2N,O1](1,10-phenanthroline-κ2N,N′)cadmium dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar, University, Muzaffarpur, Bihar, India, bOndokuz Mayis University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., 01601 Kiev, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, jameslspogr@ukr.net

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 September 2018; accepted 1 October 2018; online 12 October 2018)

The asymmetric unit of the mononuclear mixed-ligand title complex, [Cd(C13H18NO3)2(C12H8N2)]·2H2O, contains two crystallographically independent mol­ecules that differ insignificantly in their geometrical parameters. In both, the CdII cation lies on a twofold rotation axis and is coordinated in a distorted octa­hedral fashion to two monodeprotonated residues of the L-leucine-derived ligand (S)-2-(2-hy­droxy­benzyl­amino)-4-methyl­penta­noic acid (L), as well as to a 1,10-phenanthroline ligand in a κ2N,N′ mode. The former coordinate in an N,O-chelating mode, exhibiting a trans-N,N′ mutual disposition. The phenolic oxygen donor groups remain protonated and do not coordinate to the cation but take part in intra- and inter­molecular hydrogen bonds. In the crystal, O—H⋯O hydrogen bonding results in the formation of a three-dimensional network structure. The contribution to the electron density of two disordered water mol­ecules was removed with the SQUEEZE procedure in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The studied crystal was refined as a two-component inversion twin. The title complex was also characterized by IR and 1H NMR spectroscopic methods.

1. Chemical context

Schiff base metal complexes are an important research area with respect to inorganic and supra­molecular chemistry (Burkhardt et al., 2008[Burkhardt, A., Görls, H. & Plass, W. (2008). Carbohydr. Res. 343, 1266-1277.]; Przybylski et al., 2009[Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124-148.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). Such compounds have been found to exhibit a number of properties among which are anti­bacterial, anti­fungal, anti­tumor, herbicidal activities (Asadi et al., 2011[Asadi, M., Sepehrpour, H. & Mohammadi, K. (2011). J. Serb. Chem. Soc. 76, 63-74.]), as well as having applications in pharmaceutical, agricultural and industrial chemistry (Anis et al., 2013[Anis, I., Aslam, M., Noreen, Z., Afza, N., Hussain, A., Safder, M. & Chaudhry, A. H. (2013). Int J Curr Pharm Res, 5, 21-24.]). Unlike oximes, another azomethine ligand family (Sliva et al., 1997[Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273-276.]; Penkova et al., 2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]; Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. 2010, 4851-4858.]), Schiff base ligands containing additional polar or acidic groups are known for their enhanced reactivity and, as a consequence, instability upon coordination to metals (Casella & Gullotti, 1983[Casella, L. & Gullotti, M. (1983). Inorg. Chem. 22, 2259-2266.]). Thus, attempts to isolate Schiff bases derived from amino­hydroxamic acids resulted in cyclization under the formation of 2-substituted 3-hy­droxy­imidazolidine-4-ones (Iskenderov et al., 2009[Iskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123-o2124.]). In attempts to achieve stable polydentate ligand systems retaining the initial donor sets, it was found that reduction of Schiff bases to amines allows the formation of stable complexes (Koh et al., 1996[Koh, L. L., Ranford, J. O., Robinson, W. T., Svensson, J. O., Tan, A. L. C. & Wu, D. (1996). Inorg. Chem. 35, 6466-6472.]). Phenanthroline and phenanthroline-derived ligands also have important roles in many fields (Faizi & Sharkina, 2015[Faizi, M. S. H. & Sharkina, N. O. (2015). Acta Cryst. E71, 195-198.]; Faizi et al., 2017[Faizi, M. S. H., Dege, N. & Malinkin, S. (2017). Acta Cryst. E73, 1393-1397.]). Herein we report the synthesis and structure of a new hydrated cadmium complex, [Cd(C13H18NO3)2(C12H8N2)]·2H2O, with a phenanthroline ligand and two ligands derived from L-leucine.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title complex contains two mononuclear mol­ecules (Fig. 1[link]). In each, the metal cation is located on a twofold rotation axis and is coordinated by three chelating ligands, leading to a distorted octa­hedral N4O2 coordination sphere. The mixed-ligand complex is made up from one neutral phenanthroline ligand and two residues of the monodeprotonated L-leucine-derived ligand L. The L ligands of each complex are trans-N,N′ disposed with respect to each other and comprise the chiral atoms C8 for the first and C27 for the second mol­ecule. The Cd—O and Cd—N bond lengths in the first mol­ecule are virtually the same in the Cd1O4N2 octa­hedron with Cd1—O1, Cd1—N1 and Cd1—N2 = 2.346 (3), 2.341 (4) and 2.315 (4) Å, respectively. The second mol­ecule also exhibits similar geometrical parameters [Cd2—O4, Cd2—N3 and Cd2—N4 = 2.322 (4), 2.351 (5) and 2.339 (4) Å, respectively]. All three sets of ligands form five-membered chelate rings. Unlike the essentially planar chelate rings formed by the phenanthroline ligands, the ones involving the L-leucine-derived ligands exhibit a λ-conformation in both complex mol­ecules. The deviations of the carbon atoms from the planes defined by the central atom and donor atoms are 0.258 (6) Å for C7, 0.599 (7) Å for C8, −0.417 (7) Å for C26 and 0.632 (5) Å for C27. In the second mol­ecule, the highest deviations are found to be 0.160 and 0.232 Å for O4 and N4, respectively. The N—Cd—O and N—Cd—N bite angles are 73.01 (13) and 71.2 (2)°, respectively, for the first mol­ecule and 72.40 (14) and 70.8 (2)° for the second. The phenolic O—H group remains protonated and is non-coordinating, albeit participating in an extensive inter­molecular hydrogen-bonding network. Intra­molecular hydrogen bonds are also found to exist and take place between atoms H2A and O3 as well as between H4 and O6 of the L-leucine-derived ligands. To a minor extent, intra­molecular C—H⋯O inter­actions are also present between a methyl­ene group and O4 (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O2i 0.82 1.83 2.645 (5) 174
N4—H4⋯O6 0.98 2.07 2.763 (5) 126
N2—H2A⋯O3 0.98 2.09 2.795 (6) 127
O3—H3A⋯O5 0.82 2.33 2.951 (9) 133
C28—H28A⋯O4ii 0.97 2.67 3.470 (7) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, y, -z+2.
[Figure 1]
Figure 1
Structures of the two complex mol­ecules in the title compound. Displacement ellipsoids are drawn at the 40% probability level. Atoms with primed labels are generated by the symmetry operations −x + 1, y, −z + 1 for complex Cd1 and −x + 1, y, −z + 2 for complex Cd2.

3. Supra­molecular features

In the crystal structure, the complex mol­ecules are linked via hydrogen-bonding inter­actions between phenolic O—H and C—O groups of L-leucine-derived ligands (Table 1[link], Fig. 2[link]). ππ inter­actions take place between the central phenanthroline ring and the C14–C19 rings of two leucine-derived L ligands with distances between the centroids of the aromatic fragments being 3.813 (4) Å for the first mol­ecule. The stacking inter­actions of the second mol­ecule are between C33–C38 rings of two L-leucine-derived ligands L and the C23–C25/C23′–C25′(–x + 1, y, –z + 2) phenanthroline fragment with a centroid-to-centroid distance of 3.773 (4) Å.

[Figure 2]
Figure 2
The crystal packing of the title compound viewed along [010]. Hydrogen bonds are shown as dashed lines (see Table 1[link] for numerical details).

4. Database survey

A search in the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed only one precedent of a CdII complex with a 2-hy­droxy­benzyl derivative of an amino acid (refcode WARLIL). In this mononuclear complex, the phenolic and β-carb­oxy­lic groups are deprotonated. The N-(2-hy­droxy­benz­yl)-D,L-aspartic acid residue coordinates in an (O,N,O′)-tridentate mode including the phenolic O atom (Lou et al., 2005[Lou, B.-Y., Yuan, D.-Q., Han, L., Wu, B.-L. & Hong, M.-C. (2005). Chin. J. Struct. Chem. 24, 759-764.]). This differs from the title compound in which the phenolic group is protonated and is non-coordinating. The second O atom of the β-carb­oxy­lic group bridges the neighbouring CdII units into a polymeric chain. In addition, there are four structures of complexes of homologous zinc and with 2-hy­droxy­benzyl derivatives of alanine (refcodes AZIROQ, AZIRUW, NOLYIW, NOLYOC). These compounds have a Zn2O2 binuclear core, and the ligands also coordinate in an (O,N,O′)-tridentate manner, with an additional μ2-mode for the phenolic O atom (Lou et al., 2004[Lou, B.-Y., Yuan, D.-Q., Wang, R.-H., Xu, Y., Wu, B.-L., Han, L. & Hong, M.-C. (2004). J. Mol. Struct. 698, 87-91.]; Ranford et al., 1998[Ranford, J. D., Vittal, J. J. & Wu, D. (1998). Angew. Chem. Int. Ed. 37, 1114-1116.]).

5. Synthesis and crystallization

Synthesis of (S)-2-(2-hy­droxy­benzyl­amino)-4-methyl­penta­noic acid (L)

A mixture of L-leucine (1.00 g, 7.62 mmol) and LiOH·H2O (0.323 g, 7.62 mmol) in methanol (25 ml) was stirred for 10 min to dissolve. A methano­lic solution of o-salicyl­aldehyde (0.930 g, 7.62 mmol) was added dropwise to the above solution whereby the colour of the solution turned to yellow. Stirring was continued for 30 min before the solution was treated with NaBH4 (0.580 g, 15.3 mmol), leading to a colourless solution. The solvent was evaporated under reduced pressure, and the resulting solid was dissolved in water. The clear solution was then acidified with diluted HCl (pH ∼5–7). The ligand precipitated as a white solid. The suspension was filtered, and the residue was washed thoroughly with water. The solid was dried in a vacuum desiccator (yield 1.65 g, 88%). Because of its poor solubility, the 1H NMR spectrum for the ligand was recorded as the lithium salt of the ligand, prepared by adding 2 equiv. of LiOH·3H2O in CD3OD. 1H NMR Li2L (CD3OD, 400 MHz, ppm): 0.76 (d, 3H, Hj) , 0.81 (d, 3H, Hi) , 1.36 (m, 1H, Hg) , 1.41 (m, 1H, Hg′), 1.67 (m, 1H, Hh) , 3.07 (dd, 1H, Hf) , 3.65 (d, 1H, He) , 3.94 (d, 1H, He′), 6.35 (t, 1H, Hc) , 6.45 (d, 1H, Ha) , 6.94 (m, 2H, Hb,d). m/z (ESI–MS, [LiL]); calculated: 242.22, found 242.02. IR (KBr, cm−1) ν(COO)asym 1600 (s), 1593 (s); ν (COO)sym 1393 (m), cm−1.

Synthesis of [Cd(L)2(phen)]·(H2O)2]

A methano­lic solution of Cd(NO3)2·4H2O (0.130 g, 0.421 mmol) was added under stirring to 20 ml of a methano­lic solution of L (0.200 g, 0.843mmol) and NaOH (0.034 g, 0.843 mmol), followed by addition of phenanthroline monohydrate (0.076 g, 0.421mmol) in 5 ml of methanol. A clear solution was formed within half an hour under constant stirring. After 2 h, the solvent was evaporated to dryness. The residue was subsequently washed with methanol and diethyl ether, and finally dried under vacuum. Empirical formula [Cd(L)2(phen)]·2H2O. Yield: 60%. [Cd(L)2(phen)]·2H2O: IR (KBr, cm−1) ν(COO)asym 1594, ν(COO)sym 1384, ν(phenolic, CO) 1257. 1H NMR [Cd(L)2(phen)]·2H2O] (DMSO, 400 MHz. ppm): 0.6 (s, broad, 3HJ), 0.7 (s, broad, 3Hi), 1.3 (s, broad, 1Hg), 1.5 (s, broad, Hg′), 2.7 (s, broad, 1Hf), 2.9 (s, broad, 2He,e′), 6.6 (s, broad, 1Hd), 6.4 (s, broad, 1Hc), 6.6 (s, broad, 1Hb), 6.1 (s, broad,1Ha), 8.0 (s, broad, 2Hn), 8.1 (s, broad, 2Hm), 8.7 (s, broad, 2Hl), 9.1 (s, broad, 2Hk). ESI–Mass (-ve) at 829.18 (calculated 829.18). Suitable needle-shaped crystals for X-ray data collection were obtained by slow evaporation of a methanol: DMF (2:1 v:v) solution within a week.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms O3, C3, C4 and C6 showed highly anisotropic displacement parameters and were modelled using the ISOR instruction in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The H atoms of the phenolic OH group were located from a difference-Fourier map and were constrained to ride on their parent atoms, with O—H = 0.82 Å and with Uiso(H) = 1.5Ueq(O). All C-bound H atoms were positioned geom­etrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C13H18NO3)2(C12H8N2)]·2H2O
Mr 801.22
Crystal system, space group Monoclinic, I2
Temperature (K) 293
a, b, c (Å) 18.0171 (6), 12.2561 (3), 18.8597 (9)
β (°) 101.582 (3)
V3) 4079.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.59
Crystal size (mm) 0.19 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.867, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 22798, 7944, 6342
Rint 0.037
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.076, 0.99
No. of reflections 7944
No. of parameters 444
No. of restraints 37
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.18
Absolute structure Refined as an inversion twin
Absolute structure parameter −0.03 (3)
Computer programs: SMART and SAINT (Bruker, 2011[Bruker (2011). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

After unsuccessful attempts to model disordered solvent mol­ecules, their contributions to the diffraction data were removed by using the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). PLATON calculated a solvent-accessible void volume in the unit cell of 629 Å3 (15.4% of the total cell volume), corresponding to 151 electrons (residual electron density after the last refinement cycle) per unit cell, or 37.75 electrons per one complex mol­ecule. This number agrees with two water mol­ecules. Although not modelled in the refined structure, the two water mol­ecules are included in the formula and other crystallographic data.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis[(S)-2-(2-hydroxybenzylamino)-4-methylpentanoato-κ2N,O1](1,10-phenanthroline-κ2N,N')cadmium dihydrate top
Crystal data top
[Cd(C13H18NO3)2(C12H8N2)]·2H2OF(000) = 1584
Mr = 801.22Dx = 1.304 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 18.0171 (6) ÅCell parameters from 2245 reflections
b = 12.2561 (3) Åθ = 1.8–26.0°
c = 18.8597 (9) ŵ = 0.59 mm1
β = 101.582 (3)°T = 293 K
V = 4079.8 (3) Å3Needle, colorless
Z = 40.19 × 0.12 × 0.09 mm
Data collection top
Bruker SMART CCD
diffractometer
7944 independent reflections
Radiation source: fine-focus sealed tube, x-ray6342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 2221
Tmin = 0.867, Tmax = 0.942k = 1515
22798 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0365P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.036
S = 0.99Δρmax = 0.22 e Å3
7944 reflectionsΔρmin = 0.18 e Å3
444 parametersAbsolute structure: Refined as an inversion twin
37 restraintsAbsolute structure parameter: 0.03 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.5000000.69148 (3)0.5000000.05478 (18)
C10.3532 (4)0.5367 (7)0.4350 (4)0.094 (2)
H10.3287910.6030700.4233360.113*
C20.3123 (6)0.4396 (10)0.4188 (6)0.136 (4)
H20.2612750.4413060.3968320.163*
C30.3476 (8)0.3454 (10)0.4352 (6)0.142 (4)
H30.3204260.2810530.4241840.171*
C40.4239 (6)0.3391 (6)0.4682 (4)0.106 (2)
C50.4604 (3)0.4394 (4)0.4823 (3)0.0693 (15)
C60.4641 (6)0.2410 (6)0.4860 (6)0.146 (6)
H60.4385030.1749090.4773830.176*
C70.3702 (3)0.8567 (5)0.5040 (3)0.0707 (15)
C80.4129 (4)0.8566 (6)0.5827 (4)0.0677 (19)
H80.3760620.8629660.6142690.081*
C90.4657 (4)0.9528 (5)0.5960 (3)0.0820 (18)
H9A0.4368901.0178130.5789650.098*
H9B0.5038230.9437260.5668200.098*
C100.5066 (6)0.9725 (7)0.6751 (4)0.121 (3)
H100.5330400.9048800.6925730.145*
C110.5670 (6)1.0626 (7)0.6790 (5)0.152 (4)
H11A0.6005001.0446640.6469870.228*
H11B0.5426921.1310510.6647250.228*
H11C0.5955931.0680850.7276350.228*
C120.4540 (7)0.9980 (11)0.7240 (6)0.208 (6)
H12A0.4168170.9410720.7208490.313*
H12B0.4819621.0031530.7729010.313*
H12C0.4290611.0661200.7099910.313*
C130.4116 (3)0.6711 (5)0.6333 (4)0.0833 (18)
H13A0.3659370.6534680.5982760.100*
H13B0.3962560.7042150.6748370.100*
C140.4537 (3)0.5672 (5)0.6570 (3)0.0637 (14)
C150.4194 (4)0.4692 (7)0.6421 (3)0.0750 (16)
H150.3701910.4676260.6149550.090*
C160.4535 (5)0.3729 (6)0.6649 (4)0.089 (2)
H160.4283820.3071340.6530540.106*
C170.5248 (5)0.3745 (6)0.7052 (4)0.096 (2)
H170.5484360.3094390.7220260.116*
C180.5618 (4)0.4705 (7)0.7211 (4)0.099 (2)
H180.6112380.4710170.7475840.119*
C190.5264 (4)0.5667 (5)0.6981 (3)0.0790 (17)
N10.4256 (3)0.5362 (4)0.4664 (2)0.0674 (12)
N20.4565 (2)0.7519 (3)0.6006 (2)0.0576 (10)
H2A0.5012630.7695130.6376660.069*
O10.3930 (2)0.7999 (3)0.4576 (2)0.0728 (10)
O20.3145 (3)0.9197 (4)0.4897 (3)0.1030 (15)
O30.5641 (3)0.6627 (4)0.7132 (3)0.130 (2)
H3A0.5429460.6997880.7394440.194*
Cd20.5000000.46530 (4)1.0000000.05859 (18)
C200.5982 (4)0.3122 (7)0.9104 (4)0.076 (2)
H200.6145510.3792130.8960420.091*
C210.6251 (4)0.2141 (7)0.8843 (4)0.094 (2)
H210.6598470.2168570.8539950.113*
C220.6000 (4)0.1167 (7)0.9037 (4)0.098 (2)
H220.6158580.0524200.8851450.118*
C230.5505 (3)0.1129 (5)0.9514 (4)0.0829 (19)
C240.5265 (3)0.2132 (4)0.9755 (3)0.0661 (14)
C250.5235 (4)0.0111 (5)0.9773 (5)0.104 (3)
H250.5396930.0550260.9616020.124*
C260.5314 (4)0.6410 (6)0.8935 (4)0.0804 (18)
C270.4446 (3)0.6360 (4)0.8759 (3)0.0664 (14)
H270.4282020.6419180.8232450.080*
C280.4105 (4)0.7320 (5)0.9101 (3)0.0778 (16)
H28A0.4240750.7242880.9622410.093*
H28B0.4340210.7985450.8974350.093*
C290.3254 (5)0.7458 (6)0.8891 (5)0.098 (2)
H290.3015660.6750930.8940810.117*
C300.3004 (6)0.7846 (11)0.8102 (6)0.195 (5)
H30A0.3174100.7334120.7784040.293*
H30B0.2461060.7895650.7982640.293*
H30C0.3219610.8549580.8048160.293*
C310.2988 (6)0.8255 (8)0.9385 (7)0.164 (4)
H31A0.2448500.8336140.9247120.246*
H31B0.3118560.7993330.9873700.246*
H31C0.3226870.8948200.9350770.246*
C320.3922 (3)0.4556 (4)0.8372 (3)0.0645 (13)
H32A0.4352480.4415620.8148710.077*
H32B0.3531620.4901510.8013090.077*
C330.3628 (3)0.3497 (4)0.8590 (3)0.0593 (12)
C340.3872 (3)0.2514 (5)0.8345 (3)0.0728 (15)
H340.4231150.2521140.8053160.087*
C350.3586 (4)0.1516 (5)0.8532 (4)0.0872 (19)
H350.3745570.0866910.8355920.105*
C360.3074 (4)0.1500 (5)0.8971 (4)0.0847 (19)
H360.2888310.0834700.9097710.102*
C370.2824 (3)0.2463 (5)0.9235 (4)0.0759 (16)
H370.2490140.2441960.9552440.091*
C380.3078 (3)0.3458 (4)0.9020 (3)0.0606 (13)
N30.5503 (2)0.3089 (4)0.9548 (2)0.0644 (11)
N40.4156 (2)0.5315 (3)0.8985 (2)0.0529 (9)
H40.3691030.5498570.9153870.063*
O40.5687 (2)0.5731 (4)0.9349 (2)0.0770 (11)
O50.5606 (4)0.7171 (7)0.8649 (4)0.164 (4)
O60.2817 (2)0.4428 (3)0.9223 (2)0.0803 (11)
H6A0.2507280.4316030.9478980.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0543 (4)0.0500 (4)0.0664 (4)0.0000.0272 (3)0.000
C10.072 (4)0.118 (6)0.096 (5)0.017 (4)0.024 (4)0.012 (4)
C20.101 (7)0.160 (10)0.143 (8)0.066 (7)0.015 (6)0.024 (8)
C30.197 (12)0.117 (8)0.126 (8)0.089 (9)0.064 (8)0.035 (7)
C40.171 (8)0.073 (5)0.082 (5)0.042 (5)0.048 (5)0.010 (4)
C50.105 (4)0.051 (3)0.058 (3)0.009 (3)0.031 (3)0.002 (2)
C60.303 (19)0.057 (4)0.105 (9)0.026 (6)0.101 (11)0.008 (5)
C70.072 (4)0.066 (3)0.085 (4)0.019 (3)0.043 (3)0.027 (3)
C80.085 (4)0.051 (4)0.078 (5)0.007 (3)0.044 (4)0.012 (3)
C90.121 (5)0.056 (4)0.080 (4)0.017 (3)0.047 (4)0.009 (3)
C100.184 (8)0.091 (5)0.095 (5)0.019 (6)0.045 (5)0.015 (5)
C110.220 (11)0.090 (6)0.136 (8)0.023 (7)0.012 (7)0.021 (6)
C120.244 (13)0.261 (15)0.145 (9)0.056 (11)0.097 (10)0.084 (9)
C130.093 (4)0.070 (4)0.103 (5)0.014 (3)0.056 (4)0.029 (3)
C140.074 (4)0.067 (4)0.057 (3)0.012 (3)0.029 (3)0.015 (3)
C150.083 (4)0.080 (4)0.062 (3)0.012 (4)0.016 (3)0.015 (4)
C160.141 (7)0.063 (4)0.069 (4)0.006 (4)0.036 (4)0.008 (3)
C170.144 (7)0.075 (5)0.077 (5)0.031 (5)0.037 (5)0.021 (4)
C180.106 (5)0.107 (6)0.079 (4)0.010 (5)0.002 (4)0.030 (4)
C190.117 (5)0.062 (4)0.054 (3)0.008 (4)0.006 (3)0.013 (3)
N10.072 (3)0.070 (3)0.064 (3)0.019 (2)0.022 (2)0.003 (2)
N20.067 (3)0.052 (2)0.061 (2)0.007 (2)0.033 (2)0.011 (2)
O10.073 (2)0.078 (3)0.074 (2)0.0225 (19)0.029 (2)0.006 (2)
O20.099 (3)0.117 (3)0.106 (3)0.057 (3)0.052 (3)0.039 (3)
O30.182 (5)0.094 (4)0.090 (3)0.043 (3)0.027 (3)0.017 (3)
Cd20.0580 (4)0.0627 (4)0.0563 (4)0.0000.0145 (3)0.000
C200.075 (4)0.082 (5)0.071 (4)0.008 (4)0.011 (3)0.012 (4)
C210.086 (4)0.112 (6)0.088 (5)0.018 (4)0.025 (3)0.026 (4)
C220.089 (5)0.088 (6)0.109 (6)0.022 (4)0.002 (4)0.034 (4)
C230.064 (4)0.081 (5)0.092 (5)0.015 (3)0.013 (3)0.018 (4)
C240.053 (3)0.064 (4)0.073 (4)0.003 (2)0.007 (2)0.006 (3)
C250.099 (7)0.054 (4)0.141 (8)0.006 (3)0.018 (4)0.011 (4)
C260.085 (5)0.091 (5)0.070 (4)0.035 (4)0.028 (4)0.007 (4)
C270.086 (4)0.066 (3)0.046 (3)0.020 (3)0.011 (3)0.008 (2)
C280.104 (5)0.055 (3)0.068 (4)0.013 (3)0.001 (3)0.009 (3)
C290.110 (6)0.056 (4)0.119 (6)0.007 (4)0.005 (5)0.005 (4)
C300.150 (9)0.275 (15)0.136 (9)0.038 (9)0.033 (7)0.031 (9)
C310.180 (10)0.124 (8)0.189 (11)0.073 (7)0.038 (8)0.017 (7)
C320.071 (3)0.068 (3)0.053 (3)0.010 (3)0.009 (2)0.003 (3)
C330.055 (3)0.054 (3)0.065 (3)0.011 (2)0.001 (2)0.009 (2)
C340.069 (3)0.070 (4)0.076 (4)0.002 (3)0.006 (3)0.016 (3)
C350.088 (5)0.057 (4)0.113 (5)0.004 (3)0.010 (4)0.018 (3)
C360.067 (4)0.055 (4)0.126 (6)0.008 (3)0.006 (4)0.005 (4)
C370.054 (3)0.072 (4)0.101 (5)0.011 (3)0.014 (3)0.009 (4)
C380.058 (3)0.053 (3)0.070 (3)0.011 (2)0.011 (3)0.009 (3)
N30.055 (3)0.072 (3)0.064 (3)0.001 (2)0.008 (2)0.009 (2)
N40.058 (2)0.052 (2)0.050 (2)0.0103 (18)0.0133 (18)0.0006 (18)
O40.061 (2)0.091 (3)0.083 (3)0.013 (2)0.026 (2)0.005 (2)
O50.157 (5)0.182 (8)0.148 (5)0.098 (6)0.021 (4)0.078 (6)
O60.071 (2)0.059 (2)0.124 (3)0.0123 (18)0.049 (2)0.011 (2)
Geometric parameters (Å, º) top
Cd1—N2i2.315 (4)Cd2—O4ii2.322 (4)
Cd1—N22.315 (4)Cd2—O42.322 (4)
Cd1—N1i2.341 (4)Cd2—N4ii2.339 (4)
Cd1—N12.341 (4)Cd2—N42.339 (4)
Cd1—O1i2.346 (3)Cd2—N32.351 (5)
Cd1—O12.346 (3)Cd2—N3ii2.352 (5)
C1—N11.320 (8)C20—N31.321 (8)
C1—C21.400 (12)C20—C211.420 (10)
C1—H10.9300C20—H200.9300
C2—C31.324 (15)C21—C221.353 (10)
C2—H20.9300C21—H210.9300
C3—C41.393 (15)C22—C231.388 (10)
C3—H30.9300C22—H220.9300
C4—C51.393 (9)C23—C241.408 (8)
C4—C61.408 (12)C23—C251.459 (9)
C5—N11.347 (7)C24—N31.333 (7)
C5—C5i1.449 (12)C24—C24ii1.458 (12)
C6—C6i1.30 (2)C25—C25ii1.318 (16)
C6—H60.9300C25—H250.9300
C7—O11.251 (6)C26—O41.242 (8)
C7—O21.252 (6)C26—O51.246 (8)
C7—C81.529 (9)C26—C271.533 (8)
C8—C91.503 (10)C27—N41.477 (6)
C8—N21.506 (8)C27—C281.529 (8)
C8—H80.9800C27—H270.9800
C9—C101.544 (10)C28—C291.514 (10)
C9—H9A0.9700C28—H28A0.9700
C9—H9B0.9700C28—H28B0.9700
C10—C121.482 (12)C29—C311.494 (13)
C10—C111.543 (11)C29—C301.540 (13)
C10—H100.9800C29—H290.9800
C11—H11A0.9600C30—H30A0.9600
C11—H11B0.9600C30—H30B0.9600
C11—H11C0.9600C30—H30C0.9600
C12—H12A0.9600C31—H31A0.9600
C12—H12B0.9600C31—H31B0.9600
C12—H12C0.9600C31—H31C0.9600
C13—N21.489 (6)C32—N41.477 (6)
C13—C141.504 (7)C32—C331.491 (7)
C13—H13A0.9700C32—H32A0.9700
C13—H13B0.9700C32—H32B0.9700
C14—C151.355 (10)C33—C341.393 (7)
C14—C191.380 (8)C33—C381.402 (7)
C15—C161.360 (10)C34—C351.400 (8)
C15—H150.9300C34—H340.9300
C16—C171.354 (9)C35—C361.358 (10)
C16—H160.9300C35—H350.9300
C17—C181.356 (10)C36—C371.391 (9)
C17—H170.9300C36—H360.9300
C18—C191.369 (9)C37—C381.391 (8)
C18—H180.9300C37—H370.9300
C19—O31.359 (7)C38—O61.360 (6)
N2—H2A0.9800N4—H40.9800
O3—H3A0.8200O6—H6A0.8200
N2i—Cd1—N2142.70 (19)O4ii—Cd2—O4110.6 (2)
N2i—Cd1—N1i102.22 (15)O4ii—Cd2—N4ii72.40 (14)
N2—Cd1—N1i107.96 (14)O4—Cd2—N4ii84.68 (14)
N2i—Cd1—N1107.96 (14)O4ii—Cd2—N484.68 (14)
N2—Cd1—N1102.22 (15)O4—Cd2—N472.40 (14)
N1i—Cd1—N171.2 (2)N4ii—Cd2—N4139.38 (18)
N2i—Cd1—O1i73.01 (13)O4ii—Cd2—N3160.06 (16)
N2—Cd1—O1i85.98 (14)O4—Cd2—N389.30 (16)
N1i—Cd1—O1i88.94 (16)N4ii—Cd2—N3110.19 (13)
N1—Cd1—O1i159.98 (16)N4—Cd2—N3102.76 (14)
N2i—Cd1—O185.98 (14)O4ii—Cd2—N3ii89.30 (17)
N2—Cd1—O173.01 (13)O4—Cd2—N3ii160.06 (16)
N1i—Cd1—O1159.98 (16)N4ii—Cd2—N3ii102.76 (14)
N1—Cd1—O188.94 (16)N4—Cd2—N3ii110.18 (13)
O1i—Cd1—O1111.0 (2)N3—Cd2—N3ii70.8 (2)
N1—C1—C2121.5 (8)N3—C20—C21120.3 (8)
N1—C1—H1119.2N3—C20—H20119.8
C2—C1—H1119.2C21—C20—H20119.8
C3—C2—C1118.9 (10)C22—C21—C20119.9 (7)
C3—C2—H2120.6C22—C21—H21120.0
C1—C2—H2120.6C20—C21—H21120.0
C2—C3—C4122.5 (9)C21—C22—C23119.8 (6)
C2—C3—H3118.7C21—C22—H22120.1
C4—C3—H3118.7C23—C22—H22120.1
C3—C4—C5114.9 (8)C22—C23—C24117.3 (7)
C3—C4—C6124.6 (9)C22—C23—C25123.2 (7)
C5—C4—C6120.5 (9)C24—C23—C25119.6 (7)
N1—C5—C4123.6 (7)N3—C24—C23122.5 (6)
N1—C5—C5i118.3 (3)N3—C24—C24ii118.3 (3)
C4—C5—C5i118.1 (5)C23—C24—C24ii119.2 (4)
C6i—C6—C4121.3 (6)C25ii—C25—C23121.2 (4)
C6i—C6—H6119.3C25ii—C25—H25119.4
C4—C6—H6119.3C23—C25—H25119.4
O1—C7—O2123.6 (6)O4—C26—O5123.5 (7)
O1—C7—C8120.5 (5)O4—C26—C27120.6 (5)
O2—C7—C8115.9 (6)O5—C26—C27115.9 (7)
C9—C8—N2110.3 (5)N4—C27—C28110.5 (4)
C9—C8—C7109.8 (5)N4—C27—C26112.2 (5)
N2—C8—C7110.9 (5)C28—C27—C26110.8 (5)
C9—C8—H8108.6N4—C27—H27107.7
N2—C8—H8108.6C28—C27—H27107.7
C7—C8—H8108.6C26—C27—H27107.7
C8—C9—C10116.6 (6)C29—C28—C27116.6 (5)
C8—C9—H9A108.1C29—C28—H28A108.2
C10—C9—H9A108.1C27—C28—H28A108.2
C8—C9—H9B108.1C29—C28—H28B108.2
C10—C9—H9B108.1C27—C28—H28B108.2
H9A—C9—H9B107.3H28A—C28—H28B107.3
C12—C10—C11110.7 (8)C31—C29—C28110.2 (7)
C12—C10—C9113.2 (9)C31—C29—C30109.4 (8)
C11—C10—C9110.7 (7)C28—C29—C30111.8 (8)
C12—C10—H10107.3C31—C29—H29108.5
C11—C10—H10107.3C28—C29—H29108.5
C9—C10—H10107.3C30—C29—H29108.5
C10—C11—H11A109.5C29—C30—H30A109.5
C10—C11—H11B109.5C29—C30—H30B109.5
H11A—C11—H11B109.5H30A—C30—H30B109.5
C10—C11—H11C109.5C29—C30—H30C109.5
H11A—C11—H11C109.5H30A—C30—H30C109.5
H11B—C11—H11C109.5H30B—C30—H30C109.5
C10—C12—H12A109.5C29—C31—H31A109.5
C10—C12—H12B109.5C29—C31—H31B109.5
H12A—C12—H12B109.5H31A—C31—H31B109.5
C10—C12—H12C109.5C29—C31—H31C109.5
H12A—C12—H12C109.5H31A—C31—H31C109.5
H12B—C12—H12C109.5H31B—C31—H31C109.5
N2—C13—C14113.7 (4)N4—C32—C33113.2 (4)
N2—C13—H13A108.8N4—C32—H32A108.9
C14—C13—H13A108.8C33—C32—H32A108.9
N2—C13—H13B108.8N4—C32—H32B108.9
C14—C13—H13B108.8C33—C32—H32B108.9
H13A—C13—H13B107.7H32A—C32—H32B107.7
C15—C14—C19117.1 (5)C34—C33—C38118.0 (5)
C15—C14—C13120.4 (6)C34—C33—C32120.5 (5)
C19—C14—C13122.4 (6)C38—C33—C32121.4 (5)
C14—C15—C16123.0 (6)C33—C34—C35121.0 (6)
C14—C15—H15118.5C33—C34—H34119.5
C16—C15—H15118.5C35—C34—H34119.5
C17—C16—C15118.9 (7)C36—C35—C34119.8 (6)
C17—C16—H16120.6C36—C35—H35120.1
C15—C16—H16120.6C34—C35—H35120.1
C16—C17—C18120.4 (6)C35—C36—C37120.9 (6)
C16—C17—H17119.8C35—C36—H36119.5
C18—C17—H17119.8C37—C36—H36119.5
C17—C18—C19120.0 (6)C36—C37—C38119.4 (6)
C17—C18—H18120.0C36—C37—H37120.3
C19—C18—H18120.0C38—C37—H37120.3
O3—C19—C18119.8 (6)O6—C38—C37122.1 (5)
O3—C19—C14119.4 (6)O6—C38—C33117.2 (5)
C18—C19—C14120.7 (6)C37—C38—C33120.7 (5)
C1—N1—C5118.6 (5)C20—N3—C24120.1 (6)
C1—N1—Cd1125.3 (5)C20—N3—Cd2123.6 (5)
C5—N1—Cd1116.1 (4)C24—N3—Cd2116.3 (4)
C13—N2—C8110.9 (4)C32—N4—C27112.5 (4)
C13—N2—Cd1115.4 (3)C32—N4—Cd2117.3 (3)
C8—N2—Cd1109.6 (3)C27—N4—Cd2109.1 (3)
C13—N2—H2A106.8C32—N4—H4105.7
C8—N2—H2A106.8C27—N4—H4105.7
Cd1—N2—H2A106.8Cd2—N4—H4105.7
C7—O1—Cd1116.1 (4)C26—O4—Cd2115.8 (4)
C19—O3—H3A109.5C38—O6—H6A109.5
N1—C1—C2—C30.4 (15)N3—C20—C21—C221.6 (10)
C1—C2—C3—C40.2 (17)C20—C21—C22—C232.7 (10)
C2—C3—C4—C50.4 (15)C21—C22—C23—C242.3 (9)
C2—C3—C4—C6179.3 (11)C21—C22—C23—C25177.3 (7)
C3—C4—C5—N10.7 (10)C22—C23—C24—N30.8 (8)
C6—C4—C5—N1179.6 (8)C25—C23—C24—N3178.7 (6)
C3—C4—C5—C5i179.1 (7)C22—C23—C24—C24ii178.9 (6)
C6—C4—C5—C5i2.0 (11)C25—C23—C24—C24ii1.5 (9)
C3—C4—C6—C6i177.1 (14)C22—C23—C25—C25ii180.0 (9)
C5—C4—C6—C6i2 (2)C24—C23—C25—C25ii0.4 (13)
O1—C7—C8—C996.8 (7)O4—C26—C27—N413.5 (8)
O2—C7—C8—C980.3 (7)O5—C26—C27—N4167.5 (6)
O1—C7—C8—N225.4 (8)O4—C26—C27—C28110.5 (6)
O2—C7—C8—N2157.5 (5)O5—C26—C27—C2868.5 (8)
N2—C8—C9—C1064.3 (8)N4—C27—C28—C2962.8 (6)
C7—C8—C9—C10173.2 (6)C26—C27—C28—C29172.3 (5)
C8—C9—C10—C1263.4 (10)C27—C28—C29—C31167.2 (7)
C8—C9—C10—C11171.6 (7)C27—C28—C29—C3071.0 (9)
N2—C13—C14—C15135.5 (6)N4—C32—C33—C34133.4 (5)
N2—C13—C14—C1948.4 (8)N4—C32—C33—C3849.2 (6)
C19—C14—C15—C160.7 (9)C38—C33—C34—C351.0 (8)
C13—C14—C15—C16177.0 (6)C32—C33—C34—C35178.4 (5)
C14—C15—C16—C170.8 (10)C33—C34—C35—C361.4 (9)
C15—C16—C17—C181.4 (11)C34—C35—C36—C370.5 (10)
C16—C17—C18—C191.8 (11)C35—C36—C37—C382.8 (10)
C17—C18—C19—O3179.0 (7)C36—C37—C38—O6175.8 (5)
C17—C18—C19—C141.7 (10)C36—C37—C38—C335.3 (8)
C15—C14—C19—O3178.5 (5)C34—C33—C38—O6176.6 (4)
C13—C14—C19—O35.3 (9)C32—C33—C38—O60.7 (7)
C15—C14—C19—C181.1 (9)C34—C33—C38—C374.4 (8)
C13—C14—C19—C18177.4 (5)C32—C33—C38—C37178.3 (5)
C2—C1—N1—C50.7 (10)C21—C20—N3—C240.2 (9)
C2—C1—N1—Cd1178.0 (6)C21—C20—N3—Cd2178.8 (5)
C4—C5—N1—C10.9 (8)C23—C24—N3—C200.2 (8)
C5i—C5—N1—C1179.3 (6)C24ii—C24—N3—C20179.9 (6)
C4—C5—N1—Cd1177.9 (5)C23—C24—N3—Cd2178.6 (4)
C5i—C5—N1—Cd10.5 (7)C24ii—C24—N3—Cd21.2 (7)
C14—C13—N2—C8176.2 (5)C33—C32—N4—C27179.9 (4)
C14—C13—N2—Cd158.4 (6)C33—C32—N4—Cd252.3 (5)
C9—C8—N2—C13143.7 (5)C28—C27—N4—C32134.3 (5)
C7—C8—N2—C1394.4 (6)C26—C27—N4—C32101.4 (5)
C9—C8—N2—Cd187.7 (5)C28—C27—N4—Cd293.8 (4)
C7—C8—N2—Cd134.2 (6)C26—C27—N4—Cd230.4 (5)
O2—C7—O1—Cd1179.1 (5)O5—C26—O4—Cd2166.8 (6)
C8—C7—O1—Cd12.2 (7)C27—C26—O4—Cd212.1 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O2iii0.821.832.645 (5)174
N4—H4···O60.982.072.763 (5)126
N2—H2A···O30.982.092.795 (6)127
O3—H3A···O50.822.332.951 (9)133
C28—H28A···O4ii0.972.673.470 (7)141
Symmetry codes: (ii) x+1, y, z+2; (iii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev, Ukraine, for financial support, and Dr Pratik Sen and Dr Manabendra Ray for valuable discussions.

References

First citationAnis, I., Aslam, M., Noreen, Z., Afza, N., Hussain, A., Safder, M. & Chaudhry, A. H. (2013). Int J Curr Pharm Res, 5, 21–24.  Google Scholar
First citationAsadi, M., Sepehrpour, H. & Mohammadi, K. (2011). J. Serb. Chem. Soc. 76, 63–74.  Web of Science CrossRef Google Scholar
First citationBruker (2011). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurkhardt, A., Görls, H. & Plass, W. (2008). Carbohydr. Res. 343, 1266–1277.  Web of Science CrossRef PubMed Google Scholar
First citationCasella, L. & Gullotti, M. (1983). Inorg. Chem. 22, 2259–2266.  CrossRef CAS Web of Science Google Scholar
First citationFaizi, M. S. H., Dege, N. & Malinkin, S. (2017). Acta Cryst. E73, 1393–1397.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Sharkina, N. O. (2015). Acta Cryst. E71, 195–198.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123–o2124.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoh, L. L., Ranford, J. O., Robinson, W. T., Svensson, J. O., Tan, A. L. C. & Wu, D. (1996). Inorg. Chem. 35, 6466–6472.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationLou, B.-Y., Yuan, D.-Q., Han, L., Wu, B.-L. & Hong, M.-C. (2005). Chin. J. Struct. Chem. 24, 759–764.  Google Scholar
First citationLou, B.-Y., Yuan, D.-Q., Wang, R.-H., Xu, Y., Wu, B.-L., Han, L. & Hong, M.-C. (2004). J. Mol. Struct. 698, 87–91.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. 2010, 4851–4858.  Web of Science CrossRef Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrzybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.  Web of Science CrossRef CAS Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wu, D. (1998). Angew. Chem. Int. Ed. 37, 1114–1116.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds