research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of bis­­[(E)-4-bromo-2-({[2-(pyridin-2-yl)eth­yl]imino}­meth­yl)phenol]nickel(II) bis­­[(E)-4-bromo-2-({[2-(pyridin-2-yl)eth­yl]imino}­meth­yl)phenolato]nickel(II) bis­(perchlorate) methanol monosolvate, a structure containing strong inter-species hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by A. J. Lough, University of Toronto, Canada (Received 27 June 2018; accepted 16 July 2018; online 20 July 2018)

The title compound, [Ni(C14H12BrN2O)2][Ni(C14H13BrN2O)2](ClO4)2·CH3OH consists of two mononuclear ([Ni(HL)2]2+ and [NiL2]) complex mol­ecules linked by strong hydrogen bonding [O⋯O separations of only 2.430 (5) Å], which is the shortest reported to date for such species. In one of the complexes, both the coordinated phen­oxy groups retain their protons and thus this is the cationic equivalent species of the other complex where both coordinated phen­oxy groups are deprotonated. In addition, perchlorate anions are present for charge balance, as well as methanol solvate mol­ecules. For the neutral NiL2 complex, each 2-ethyl­amine­pyridine arm is disordered over two equivalent conformations with occupancies of 0.750 (8):0.250 (8). The perchlorate anion is disordered over two equivalent conformations with occupancies of 0.602 (8):0.398 (8). The perchlorate ions also link to the H atoms on the methanol methyl and hydroxyl groups. These inter­actions link the moieties into a complex three-dimensional array. The crystal studied was refined as a two-component twin.

1. Chemical context

Metal–Schiff base complexes have been of inter­est for a variety of reactions, in particular catalytic reactions (Egekenze et al., 2017a[Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017a). Acta Cryst. E73, 1113-1116.],b[Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017b). Acta Cryst. E73, 1479-1482.], 2018a[Egekenze, R., Gultneh, Y. & Butcher, R. J. (2018a). Polyhedron, 144, 198-209.],b[Egekenze, R., Gultneh, Y. & Butcher, R. J. (2018b). Inorg. Chim. Acta, 478, 232-242.]). The metalloenzyme urease contains NiII at its active site. Ureases can be found in a variety of species and efficiently accelerate by several orders of magnitude the rate of hydrolysis of urea into CO2 and NH3 (Mobley, 2001[Mobley, H. L. T. (2001). Urease. In Helicobacter pylori: Physiology and Genetics, edited by H. L. Mobley, G. L. Mendz and S. L Hazell. Washington (DC): ASM Press.]). It has been of great inter­est to catalyze a variety of reactions to mimic the catalytic efficiency of metalloenzymes. The crystal structures of related NiII–Schiff base complexes have been reported (Ayikoé et al., 2011[Ayikoé, K., Gultneh, Y. & Butcher, R. J. (2011). Acta Cryst. E67, m1211.]; Butcher et al., 2009[Butcher, R. J., Gultneh, Y. & Ayikoé, K. (2009). Acta Cryst. E65, m1193-m1194.]; Elmali et al., 2000[Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302-1304.]; Kobayashi et al., 2017[Kobayashi, F., Koga, A., Ohtani, R., Hayami, S. & Nakamura, M. (2017). Acta Cryst. E73, 637-639.]; Kuchtanin et al., 2016[Kuchtanin, V., Kleščíková, L., Šoral, M., Fischer, R., Růžičková, Z., Rakovský, E., Moncoľ, J. & Segľa, P. (2016). Polyhedron, 117, 90-96.]; Okeke et al., 2017[Okeke, U., Gultneh, Y. & Butcher, R. J. (2017). Acta Cryst. E73, 1708-1711.]; Duran et al., 1989[Duran, M. L., Garcia-Vazquez, J. A., Macias, A., Romero, J. & Sousa, A. (1989). Z. Anorg. Allg. Chem. 573, 215-222.]). Similar complexes have been studied in relation to catalytic redox reactions, catechol oxidase activity, and alkaline phosphatase reactivity (Özalp-Yaman et al., 2005[Özalp-Yaman, Ş., Kasumov, V. T. & Önal, A. M. (2005). Polyhedron, 24, 1821-1828.]; Sanyal et al., 2016[Sanyal, R., Dash, S. K., Kundu, P., Mandal, D., Roy, S. & Das, D. (2016). Inorg. Chim. Acta, 453, 394-401.]; Bhardwaj & Singh, 2014[Bhardwaj, V. K. & Singh, A. (2014). Inorg. Chem. 53, 10731-10742.]). In view of this inter­est and in a continuation of our previous research listed above, the title NiII–Schiff base complex has been synthesized to be used as a catalyst for the hydrolysis of phosphate esters.

[Scheme 1]

While the vast majority of such Ni complexes are of the type [NiL2] where HL is the neutral Schiff base, there are a few examples where, upon coordination, the Schiff base retains its protons (You & Chi, 2006[You, Z.-L. & Chi, J.-Y. (2006). Acta Cryst. E62, m1498-m1500.]; Layek et al., 2013[Layek, M., Ghosh, M., Sain, S. M., Fleck, M., Muthiah, P. T., Jenniefer, S. J., Ribas, J. & Bandyopadhyay, D. (2013). J. Mol. Struct. 1036, 422-426.]; Ohta et al., 2001[Ohta, H., Harada, K., Irie, K., Kashino, S., Kambe, T., Sakane, G., Shibahara, T., Takamizawa, S., Mori, W., Nonoyama, M., Hirotsu, M. & Kojima, M. (2001). Chem. Lett. 30, 842-843.]; You et al., 2004[You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m805-m807.]; Paital et al., 2007[Paital, A. R., Wong, W. T., Aromí, G. & Ray, D. (2007). Inorg. Chem. 46, 5727-5733.]; Xua et al., 2015[Xua, H., Fan, X., Chao, F. & Zhang, S. (2015). Private Communication (Refcode QUGZOJ01). CCDC, Cambridge, England.]; Lucas et al., 2011[Lucas, C. R., Byrne, J. M. D., Collins, J. L., Dawe, L. N. & Miller, D. O. (2011). Can. J. Chem. 89, 1174-1189.]; Dutta et al., 2010[Dutta, S., Biswas, P., Flörke, U. & Nag, K. (2010). Inorg. Chem. 49, 7382-7400.]; Chakraborty et al., 2006[Chakraborty, J., Singh, R. K. B., Samanta, B., Choudhury, C. R., Dey, S. K., Talukder, P., Borah, M. J. & Mitra, S. (2006). Z. Naturforsch. Teil B, 61, 1209-1216.]; Mukherjee et al., 2007[Mukherjee, P., Biswas, C., Drew, M. G. B. & Ghosh, A. (2007). Polyhedron, 26, 3121-3128.]; Yamaguchi et al., 2008[Yamaguchi, T., Sunatsuki, Y. & Ishida, H. (2008). Acta Cryst. C64, m156-m160.]; Fondo et al., 2006[Fondo, M., García-Deibe, A. M., Ocampo, N., Sanmartín, J., Bermejo, M. R. & Llamas-Saiz, A. L. (2006). Dalton Trans. pp. 4260-4270.]; Zhang & Liang, 2017[Zhang, W. G. & Liang, J. H. (2017). Russ. J. Coord. Chem. 43, 540-546.]). The present structure is an unusual variant of this theme.

2. Structural commentary

The title compound crystallizes in the ortho­rhom­bic space group Pbcn and consists of a coordination cation [NiL2]2+, a neutral compound [Ni(HL2)] and perchlorate as anion to balance the charge. There is methanol in the lattice. Thus the stoichiometry is [Ni(HL)2]2+[NiL2](ClO4)2·MeOH. The NiII atoms are coordinated by nitro­gen and oxygen donor groups from the two tridentate ligands, thus making the NiII atoms six-coordinate (see Figs. 1[link] and 2[link]). For the neutral NiL2, the 2-ethyl­amine­pyridine arm is disordered over two equivalent conformations with occupancies of 0.750 (8):0.250 (8). The per­chlor­ate anion is disordered over two equivalent conformations with occupancies of 0.602 (8):0.398 (8). As noted in the synthesis section, no base was used in the preparation of the title compound, hence the presence of protonated (i.e. neutral) ligand mol­ecules. There is precedent in the literature (You & Chi, 2006[You, Z.-L. & Chi, J.-Y. (2006). Acta Cryst. E62, m1498-m1500.]; Layek et al., 2013[Layek, M., Ghosh, M., Sain, S. M., Fleck, M., Muthiah, P. T., Jenniefer, S. J., Ribas, J. & Bandyopadhyay, D. (2013). J. Mol. Struct. 1036, 422-426.]; Ohta et al., 2001[Ohta, H., Harada, K., Irie, K., Kashino, S., Kambe, T., Sakane, G., Shibahara, T., Takamizawa, S., Mori, W., Nonoyama, M., Hirotsu, M. & Kojima, M. (2001). Chem. Lett. 30, 842-843.]; You et al., 2004[You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m805-m807.]; Paital et al., 2007[Paital, A. R., Wong, W. T., Aromí, G. & Ray, D. (2007). Inorg. Chem. 46, 5727-5733.]; Xua et al., 2015[Xua, H., Fan, X., Chao, F. & Zhang, S. (2015). Private Communication (Refcode QUGZOJ01). CCDC, Cambridge, England.]; Lucas et al., 2011[Lucas, C. R., Byrne, J. M. D., Collins, J. L., Dawe, L. N. & Miller, D. O. (2011). Can. J. Chem. 89, 1174-1189.]; Dutta et al., 2010[Dutta, S., Biswas, P., Flörke, U. & Nag, K. (2010). Inorg. Chem. 49, 7382-7400.]; Chakraborty et al., 2006[Chakraborty, J., Singh, R. K. B., Samanta, B., Choudhury, C. R., Dey, S. K., Talukder, P., Borah, M. J. & Mitra, S. (2006). Z. Naturforsch. Teil B, 61, 1209-1216.]; Mukherjee et al., 2007[Mukherjee, P., Biswas, C., Drew, M. G. B. & Ghosh, A. (2007). Polyhedron, 26, 3121-3128.]; Yamaguchi et al., 2008[Yamaguchi, T., Sunatsuki, Y. & Ishida, H. (2008). Acta Cryst. C64, m156-m160.]; Fondo et al., 2006[Fondo, M., García-Deibe, A. M., Ocampo, N., Sanmartín, J., Bermejo, M. R. & Llamas-Saiz, A. L. (2006). Dalton Trans. pp. 4260-4270.]; Zhang & Liang, 2017[Zhang, W. G. & Liang, J. H. (2017). Russ. J. Coord. Chem. 43, 540-546.]) for nickel complexes with Schiff bases where the ligand is not deprotonated, although this is the only example where these are separated into independent metal complexes. A common motif of these examples is the presence of a strong inter­molecular hydrogen bond between these species with O⋯O separations ranging from 2.438 Å (Mukherjee et al., 2007[Mukherjee, P., Biswas, C., Drew, M. G. B. & Ghosh, A. (2007). Polyhedron, 26, 3121-3128.]) to 2.592 Å (Layek, et al., 2013[Layek, M., Ghosh, M., Sain, S. M., Fleck, M., Muthiah, P. T., Jenniefer, S. J., Ribas, J. & Bandyopadhyay, D. (2013). J. Mol. Struct. 1036, 422-426.]). In the present case (Table 1[link], Fig. 3[link]), this distance is 2.430 (5) Å, which is the shortest reported. The NiII atoms are coordinated to nitro­gen and oxygen donor groups from the two tridentate ligands, thus making the NiII atoms six-coordinate, with two perchlor­ate anions present for charge balance (see Fig. 1[link]). While both Ni1 and Ni2 are six-coordinate, they are distorted from an octa­hedral geometry because of the chelate bite with cis angles ranging from 84.01 (16) to 93.07 (16)° for Ni1 and 84.10 (18) to 95.7 (6)° for Ni2. Surprisingly, the Ni—O bond lengths for Ni1 [2.070 (4) Å] are slightly shorter than for Ni2 [2.091 (4) Å], even though atom O1A is neutral and retains its proton while O1B is deprotonated and thus formally negatively charged. The Ni—Nimine and Ni—Npy bond lengths are 2.080 (4), 2.079 (5) Å and 2.095 (5), 2.128 (6) Å, respectively, with the bonds involving the imine group being shorter than those involving pyridine, as is expected based on the metrical parameters of similar complexes.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O1B 0.82 (2) 1.64 (3) 2.430 (5) 161 (8)
C9A—H9AA⋯O1Ai 0.97 2.40 3.105 (7) 129
C9A—H9AB⋯O14ii 0.97 2.55 3.482 (12) 162
C11A—H11A⋯O14Aii 0.93 2.60 3.406 (12) 145
C9B—H9BB⋯Br1iii 0.97 3.12 3.859 (10) 134
C14B—H14B⋯N1Bi 0.93 2.54 3.155 (9) 124
C9C—H9CA⋯O1Bi 0.97 2.37 3.02 (3) 124
O1S—H1S⋯O12 0.82 2.12 2.907 (15) 162
O1S—H1S⋯O13 0.82 2.57 3.249 (15) 140
O1S—H1S⋯O13A 0.82 1.64 2.436 (16) 162
C1S—H1S3⋯O13 0.96 2.55 3.276 (19) 133
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Diagram of the cation, {bis­[(E)-4-bromo-2-({[2-(pyridin-2-yl)eth­yl]imino}meth­yl)phenol]nickel(II)} showing the O—H phenol group coordinated to the nickel atom. Only the major component of the disordered group is shown. Atomic displacement parameters are at the 30% probability level. Unlabeled atoms are generated by the symmetry operation 1 − x, y, [1\over2] − z.
[Figure 2]
Figure 2
Diagram of the neutral complex, {bis­[(E)-4-bromo-2-({[2-(pyridin-2-yl)eth­yl]imino}­meth­yl)phenolato]nickel(II)}. Atomic displacement parameters are at the 30% probability level. Unlabeled atoms are generated by the symmetry operation 1 − x, y, [1\over2] − z.
[Figure 3]
Figure 3
Diagram of both the cation and neutral complex linked by strong hydrogen bonding (shown as dashed lines). For the cation, only the major component of the disordered group is shown. Atomic displacement parameters are at the 30% probability level.

3. Supra­molecular features

The main point of inter­est in this structure is the presence of very strong inter-species hydrogen bonding between the phenol and phenolate moieties as mentioned above. In addition, the perchlorate anions link the complexes and methanol solvate mol­ecules through both C—H⋯O and O—H⋯O inter­actions (Table 1[link]). These, along with C—H⋯Br inter­actions (Table 1[link]), link all the species into a complex three-dimensional array as shown in Fig. 4[link].

[Figure 4]
Figure 4
Packing diagram viewed along the a axis showing the extensive O—H⋯O, C—H⋯O, C—H⋯N, and C—H⋯Br inter­actions linking the cation, neutral complex, anion, and solvent mol­ecules into a three-dimensional array. For the disordered moieties, only the major conformation is shown.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.39 with November 2017 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar Ni complexes of Schiff base ligands where the coord­inated O atoms are linked by O—H⋯O hydrogen bonds gave 15 hits (ADIKOO, You & Chi, 2006[You, Z.-L. & Chi, J.-Y. (2006). Acta Cryst. E62, m1498-m1500.]; HEWDUK, Layek et al., 2013[Layek, M., Ghosh, M., Sain, S. M., Fleck, M., Muthiah, P. T., Jenniefer, S. J., Ribas, J. & Bandyopadhyay, D. (2013). J. Mol. Struct. 1036, 422-426.]; IDAVOY, Ohta et al., 2001[Ohta, H., Harada, K., Irie, K., Kashino, S., Kambe, T., Sakane, G., Shibahara, T., Takamizawa, S., Mori, W., Nonoyama, M., Hirotsu, M. & Kojima, M. (2001). Chem. Lett. 30, 842-843.]; IWOVIZ, You et al., 2004[You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m805-m807.]; LERXIS, Zhang & Liang, 2017[Zhang, W. G. & Liang, J. H. (2017). Russ. J. Coord. Chem. 43, 540-546.]; MIHJOD, Paital et al., 2007[Paital, A. R., Wong, W. T., Aromí, G. & Ray, D. (2007). Inorg. Chem. 46, 5727-5733.]; QUGZOJ, Xua et al., 2015[Xua, H., Fan, X., Chao, F. & Zhang, S. (2015). Private Communication (Refcode QUGZOJ01). CCDC, Cambridge, England.]; UBICIT, Lucas et al., 2011[Lucas, C. R., Byrne, J. M. D., Collins, J. L., Dawe, L. N. & Miller, D. O. (2011). Can. J. Chem. 89, 1174-1189.]; UJUNIX, Dutta et al., 2010[Dutta, S., Biswas, P., Flörke, U. & Nag, K. (2010). Inorg. Chem. 49, 7382-7400.]; VESMAI, Chakraborty et al., 2006[Chakraborty, J., Singh, R. K. B., Samanta, B., Choudhury, C. R., Dey, S. K., Talukder, P., Borah, M. J. & Mitra, S. (2006). Z. Naturforsch. Teil B, 61, 1209-1216.]; VIKMUY, Mukherjee et al., 2007[Mukherjee, P., Biswas, C., Drew, M. G. B. & Ghosh, A. (2007). Polyhedron, 26, 3121-3128.]; WIZFAN, Yamaguchi et al., 2008[Yamaguchi, T., Sunatsuki, Y. & Ishida, H. (2008). Acta Cryst. C64, m156-m160.]; YEQGIL, YEQHAE, YEQHEI, Fondo et al., 2006[Fondo, M., García-Deibe, A. M., Ocampo, N., Sanmartín, J., Bermejo, M. R. & Llamas-Saiz, A. L. (2006). Dalton Trans. pp. 4260-4270.]).

5. Synthesis and crystallization

2-(2-Pyrid­yl)ethyl­amine (0.1613 g, 1.320 mmol) was added to a reaction flask and dissolved in 50 ml of methanol. 5-Bromo­salicyl­aldehyde (0.2654 g, 1.320 mmol) was added to the solution. The mixture was refluxed for 5 h. The nickel(II) complex was prepared by reacting the ligand in 50 ml of methanol with Ni(ClO4)2·6H2O (0.7242 g, 1.980 mmol) with no added base. The mixture was stirred at room temperature overnight. The product was crystallized by slow diffusion in methanol for two weeks giving green crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. For the neutral NiL2, each 2-ethyl­amine­pyridine arm is disordered over two equivalent conformation with occupancies of 0.750 (8):0.250 (8). The perchlorate anion is disordered over two equivalent conformations with occupancies of 0.602 (8):0.398 (8). In addition there is pseudo-merohedral twinning present with a twin law of 0 0 [\overline{1}] 0 [\overline{1}] 0 [\overline{1}] 0 0 and BASF value of 0.0016 (3). The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H ranging from 0.95 to 0.98 Å and Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. The OH hydrogen atom was refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C14H12BrN2O)2][Ni(C14H13BrN2O)2](ClO4)2·CH4O
Mr 1567.04
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 296
a, b, c (Å) 19.103 (5), 17.414 (4), 19.053 (5)
V3) 6339 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.27
Crystal size (mm) 0.32 × 0.28 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.433, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 6170, 6170, 3693
Rint 0.088
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.178, 1.02
No. of reflections 6170
No. of parameters 492
No. of restraints 332
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.90, −0.89
Computer programs: APEX3 and SAINT (Bruker, 2012[Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis[(E)-4-bromo-2-({[2-(pyridin-2-yl)ethyl]imino}methyl)phenol]nickel(II) bis[(E)-4-bromo-2-({[2-(pyridin-2-yl)ethyl]imino}methyl)phenolato]nickel(II) bis(perchlorate) methanol monosolvate top
Crystal data top
[Ni(C14H12BrN2O)2][Ni(C14H13BrN2O)2](ClO4)2·CH4ODx = 1.642 Mg m3
Mr = 1567.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 4627 reflections
a = 19.103 (5) Åθ = 2.4–26.3°
b = 17.414 (4) ŵ = 3.27 mm1
c = 19.053 (5) ÅT = 296 K
V = 6339 (3) Å3Prism, transparent light olive-green
Z = 40.32 × 0.28 × 0.13 mm
F(000) = 3144
Data collection top
Bruker APEXII CCD
diffractometer
3693 reflections with I > 2σ(I)
w scansRint = 0.088
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 26.5°, θmin = 1.6°
Tmin = 0.433, Tmax = 0.745h = 1623
6170 measured reflectionsk = 1719
6170 independent reflectionsl = 2223
Refinement top
Refinement on F2332 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0767P)2 + 9.3718P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
6170 reflectionsΔρmax = 0.90 e Å3
492 parametersΔρmin = 0.89 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.5000000.55970 (5)0.2500000.0426 (3)
Br10.87543 (3)0.64179 (5)0.18413 (5)0.0946 (3)
O1A0.57178 (18)0.6453 (2)0.2724 (2)0.0503 (9)
H1A0.567 (4)0.686 (3)0.294 (4)0.11 (3)*
N1A0.5439 (2)0.5639 (3)0.1502 (2)0.0466 (11)
N2A0.4284 (2)0.4763 (3)0.2165 (2)0.0502 (11)
C1A0.6398 (3)0.6417 (3)0.2536 (3)0.0478 (12)
C2A0.6928 (3)0.6663 (4)0.2984 (3)0.0607 (16)
H2AA0.6812860.6836940.3430270.073*
C3A0.7625 (3)0.6653 (4)0.2778 (4)0.0636 (17)
H3AA0.7971940.6823360.3082450.076*
C4A0.7794 (3)0.6394 (3)0.2132 (4)0.0608 (16)
C5A0.7296 (3)0.6124 (3)0.1678 (3)0.0581 (15)
H5AA0.7427340.5933140.1241610.070*
C6A0.6583 (2)0.6133 (3)0.1872 (3)0.0463 (13)
C7A0.6069 (3)0.5853 (3)0.1373 (3)0.0532 (14)
H7AA0.6212500.5825030.0907590.064*
C8A0.5050 (3)0.5342 (4)0.0888 (3)0.0662 (17)
H8AA0.5201050.4821120.0791840.079*
H8AB0.5162290.5653250.0480550.079*
C9A0.4255 (3)0.5347 (4)0.0998 (3)0.0635 (17)
H9AA0.4114650.5854510.1155350.076*
H9AB0.4027880.5252560.0551180.076*
C10A0.4001 (3)0.4772 (4)0.1514 (3)0.0562 (15)
C11A0.3483 (4)0.4241 (4)0.1335 (4)0.077 (2)
H11A0.3284280.4257460.0889790.093*
C12A0.3262 (4)0.3696 (5)0.1806 (5)0.088 (2)
H12A0.2918930.3341530.1684160.105*
C13A0.3560 (4)0.3686 (4)0.2461 (4)0.077 (2)
H13A0.3425410.3321360.2791380.092*
C14A0.4063 (3)0.4225 (4)0.2620 (3)0.0647 (17)
H14A0.4260670.4215690.3066020.078*
Ni20.5000000.85234 (6)0.2500000.0536 (3)
Br20.45642 (5)0.75407 (7)0.62684 (4)0.1140 (4)
O1B0.53437 (18)0.7680 (2)0.32016 (19)0.0532 (9)
N1B0.4042 (2)0.8375 (3)0.2999 (3)0.0628 (14)
C1B0.5161 (3)0.7651 (3)0.3887 (3)0.0532 (14)
C2B0.5638 (3)0.7434 (4)0.4396 (3)0.0689 (18)
H2BA0.6093030.7310750.4262500.083*
C3B0.5457 (4)0.7395 (4)0.5095 (4)0.0718 (18)
H3BA0.5787770.7254340.5429380.086*
C4B0.4787 (3)0.7565 (4)0.5292 (3)0.0694 (19)
C5B0.4306 (3)0.7773 (4)0.4815 (4)0.0682 (18)
H5BA0.3852140.7881220.4961660.082*
C6B0.4474 (3)0.7833 (3)0.4096 (3)0.0577 (15)
C7B0.3934 (3)0.8077 (4)0.3602 (4)0.0672 (18)
H7BA0.3471010.8009110.3737640.081*
C8B0.3418 (7)0.8540 (6)0.2606 (6)0.072 (3)0.750 (8)
H8BA0.3007650.8412640.2881910.087*0.750 (8)
H8BB0.3409190.8235690.2179580.087*0.750 (8)
C9B0.3412 (5)0.9387 (5)0.2424 (5)0.078 (2)0.750 (8)
H9BA0.2937080.9532520.2305150.094*0.750 (8)
H9BB0.3544640.9674330.2839730.094*0.750 (8)
N2B0.4574 (3)0.9393 (4)0.1842 (4)0.0778 (18)0.750 (8)
C10B0.3876 (3)0.9618 (4)0.1844 (4)0.081 (2)0.750 (8)
C11B0.3634 (3)1.0139 (4)0.1347 (5)0.094 (2)0.750 (8)
H11B0.3167341.0289970.1348620.113*0.750 (8)
C12B0.4091 (4)1.0436 (4)0.0848 (4)0.104 (3)0.750 (8)
H12B0.3930091.0784350.0515790.125*0.750 (8)
C13B0.4790 (4)1.0211 (5)0.0846 (4)0.104 (3)0.750 (8)
H13B0.5095291.0408830.0512220.125*0.750 (8)
C14B0.5031 (3)0.9689 (5)0.1343 (4)0.087 (2)0.750 (8)
H14B0.5497740.9538940.1341490.105*0.750 (8)
C8C0.340 (2)0.877 (3)0.2588 (15)0.075 (4)0.250 (8)
H8CA0.2980290.8488640.2709330.090*0.250 (8)
H8CB0.3351500.9285500.2762060.090*0.250 (8)
C9C0.3451 (12)0.8802 (13)0.1796 (12)0.078 (3)0.250 (8)
H9CA0.3562680.8292950.1621780.094*0.250 (8)
H9CB0.2993440.8938320.1612950.094*0.250 (8)
N2C0.4645 (9)0.9346 (14)0.1779 (12)0.082 (3)0.250 (8)
C10C0.3968 (8)0.9346 (12)0.1512 (12)0.086 (3)0.250 (8)
C11C0.3795 (10)0.9826 (13)0.0956 (13)0.094 (3)0.250 (8)
H11C0.3341600.9826120.0777820.112*0.250 (8)
C12C0.4299 (13)1.0306 (13)0.0666 (12)0.101 (3)0.250 (8)
H12C0.4183121.0627370.0293620.121*0.250 (8)
C13C0.4976 (12)1.0306 (15)0.0932 (15)0.099 (3)0.250 (8)
H13C0.5313731.0627580.0738170.119*0.250 (8)
C14C0.5150 (9)0.9826 (16)0.1489 (15)0.090 (3)0.250 (8)
H14C0.5602830.9826530.1666930.109*0.250 (8)
Cl10.73020 (12)0.41261 (15)0.04156 (12)0.1002 (7)
O110.7917 (4)0.4471 (5)0.0653 (5)0.145 (4)0.602 (8)
O120.7358 (6)0.3960 (6)0.0303 (3)0.135 (4)0.602 (8)
O130.7219 (5)0.3417 (5)0.0779 (5)0.145 (4)0.602 (8)
O140.6721 (5)0.4583 (6)0.0544 (6)0.179 (5)0.602 (8)
O11A0.7786 (8)0.4212 (8)0.0960 (7)0.157 (6)0.398 (8)
O12A0.6654 (5)0.3894 (10)0.0683 (9)0.175 (6)0.398 (8)
O13A0.7546 (9)0.3604 (8)0.0080 (7)0.156 (6)0.398 (8)
O14A0.7209 (8)0.4854 (5)0.0090 (7)0.133 (5)0.398 (8)
O1S0.7449 (6)0.2322 (7)0.0582 (6)0.094 (3)0.5
H1S0.7393580.2751910.0415270.141*0.5
C1S0.7385 (9)0.1792 (10)0.0070 (8)0.098 (5)0.5
H1S10.7834390.1566170.0022820.146*0.5
H1S20.7064370.1399270.0217270.146*0.5
H1S30.7212080.2032220.0348750.146*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0392 (5)0.0488 (6)0.0399 (5)0.0000.0026 (4)0.000
Br10.0406 (3)0.1081 (7)0.1351 (7)0.0032 (4)0.0209 (4)0.0139 (5)
O1A0.0375 (18)0.055 (3)0.058 (2)0.0020 (18)0.0072 (16)0.018 (2)
N1A0.046 (2)0.054 (3)0.039 (2)0.001 (2)0.0004 (18)0.002 (2)
N2A0.049 (2)0.049 (3)0.053 (3)0.004 (2)0.003 (2)0.000 (2)
C1A0.038 (3)0.046 (3)0.060 (3)0.001 (2)0.003 (2)0.002 (3)
C2A0.048 (3)0.067 (4)0.067 (4)0.002 (3)0.003 (3)0.016 (3)
C3A0.044 (3)0.058 (4)0.089 (5)0.000 (3)0.006 (3)0.017 (3)
C4A0.039 (3)0.052 (4)0.092 (5)0.002 (3)0.015 (3)0.004 (3)
C5A0.044 (3)0.060 (4)0.071 (4)0.003 (3)0.018 (3)0.004 (3)
C6A0.038 (3)0.051 (3)0.050 (3)0.003 (2)0.007 (2)0.000 (3)
C7A0.052 (3)0.064 (4)0.043 (3)0.003 (3)0.010 (2)0.001 (3)
C8A0.059 (3)0.095 (5)0.044 (3)0.010 (3)0.000 (3)0.014 (3)
C9A0.050 (3)0.091 (5)0.050 (3)0.004 (3)0.009 (3)0.013 (3)
C10A0.044 (3)0.062 (4)0.063 (4)0.003 (3)0.003 (3)0.006 (3)
C11A0.068 (4)0.084 (5)0.080 (5)0.010 (4)0.004 (4)0.022 (4)
C12A0.074 (5)0.077 (6)0.113 (7)0.017 (4)0.003 (4)0.020 (5)
C13A0.070 (4)0.056 (4)0.104 (6)0.013 (3)0.024 (4)0.006 (4)
C14A0.059 (4)0.062 (4)0.073 (4)0.005 (3)0.012 (3)0.003 (3)
Ni20.0385 (5)0.0453 (6)0.0770 (7)0.0000.0050 (5)0.000
Br20.0980 (6)0.1772 (11)0.0669 (5)0.0334 (6)0.0250 (4)0.0002 (5)
O1B0.051 (2)0.053 (2)0.055 (2)0.0138 (18)0.0065 (17)0.0076 (18)
N1B0.039 (2)0.079 (4)0.070 (3)0.009 (2)0.001 (2)0.016 (3)
C1B0.054 (3)0.049 (4)0.057 (3)0.005 (3)0.005 (3)0.008 (3)
C2B0.060 (4)0.082 (5)0.065 (4)0.018 (3)0.009 (3)0.006 (3)
C3B0.072 (4)0.078 (5)0.066 (4)0.007 (4)0.003 (3)0.007 (4)
C4B0.065 (4)0.082 (5)0.060 (4)0.024 (4)0.011 (3)0.010 (3)
C5B0.051 (3)0.077 (5)0.077 (4)0.012 (3)0.019 (3)0.018 (4)
C6B0.044 (3)0.056 (4)0.074 (4)0.006 (3)0.010 (3)0.016 (3)
C7B0.038 (3)0.076 (5)0.087 (5)0.002 (3)0.005 (3)0.030 (4)
C8B0.048 (4)0.066 (6)0.103 (5)0.007 (5)0.007 (4)0.011 (4)
C9B0.058 (4)0.069 (5)0.108 (5)0.008 (4)0.015 (4)0.007 (4)
N2B0.070 (4)0.052 (4)0.111 (4)0.006 (3)0.028 (3)0.011 (3)
C10B0.071 (4)0.058 (4)0.114 (4)0.007 (3)0.025 (4)0.008 (4)
C11B0.083 (5)0.071 (5)0.128 (5)0.015 (4)0.026 (4)0.019 (4)
C12B0.098 (5)0.081 (5)0.133 (5)0.014 (4)0.029 (4)0.028 (4)
C13B0.101 (5)0.080 (5)0.132 (5)0.009 (4)0.030 (5)0.028 (4)
C14B0.083 (4)0.062 (4)0.117 (5)0.008 (4)0.035 (4)0.023 (4)
C8C0.052 (6)0.067 (8)0.105 (6)0.010 (7)0.013 (6)0.009 (7)
C9C0.059 (5)0.066 (6)0.109 (5)0.010 (5)0.017 (5)0.002 (5)
N2C0.074 (5)0.057 (5)0.114 (5)0.002 (5)0.029 (5)0.012 (5)
C10C0.075 (5)0.064 (5)0.118 (5)0.006 (5)0.023 (5)0.011 (5)
C11C0.084 (5)0.072 (5)0.126 (6)0.010 (5)0.027 (5)0.018 (5)
C12C0.093 (6)0.078 (5)0.132 (6)0.009 (5)0.028 (5)0.026 (5)
C13C0.095 (6)0.074 (5)0.128 (6)0.003 (5)0.033 (5)0.025 (5)
C14C0.087 (5)0.064 (5)0.120 (6)0.007 (5)0.031 (5)0.020 (5)
Cl10.0979 (15)0.1148 (19)0.0879 (14)0.0206 (14)0.0121 (11)0.0020 (13)
O110.159 (9)0.137 (9)0.141 (9)0.016 (7)0.045 (8)0.059 (7)
O120.181 (10)0.139 (10)0.085 (7)0.047 (8)0.013 (7)0.004 (6)
O130.103 (7)0.175 (10)0.158 (8)0.006 (7)0.017 (7)0.044 (8)
O140.167 (10)0.213 (12)0.157 (10)0.109 (10)0.025 (8)0.031 (10)
O11A0.169 (11)0.147 (12)0.154 (12)0.003 (10)0.093 (10)0.062 (10)
O12A0.156 (12)0.200 (15)0.168 (12)0.000 (12)0.051 (11)0.028 (13)
O13A0.175 (12)0.157 (13)0.137 (12)0.063 (11)0.015 (11)0.008 (11)
O14A0.141 (10)0.149 (10)0.108 (9)0.035 (9)0.020 (8)0.034 (9)
O1S0.091 (7)0.098 (8)0.093 (7)0.033 (7)0.005 (6)0.012 (7)
C1S0.120 (11)0.089 (10)0.084 (9)0.068 (9)0.015 (8)0.019 (8)
Geometric parameters (Å, º) top
Ni1—O1A2.070 (4)C2B—H2BA0.9300
Ni1—O1Ai2.070 (4)C3B—C4B1.367 (9)
Ni1—N1A2.080 (4)C3B—H3BA0.9300
Ni1—N1Ai2.080 (4)C4B—C5B1.342 (9)
Ni1—N2A2.095 (5)C5B—C6B1.411 (9)
Ni1—N2Ai2.095 (5)C5B—H5BA0.9300
Br1—C4A1.917 (5)C6B—C7B1.459 (9)
O1A—C1A1.349 (6)C7B—H7BA0.9300
O1A—H1A0.82 (2)C8B—C9B1.514 (14)
N1A—C7A1.283 (6)C8B—H8BA0.9700
N1A—C8A1.480 (7)C8B—H8BB0.9700
N2A—C14A1.344 (7)C9B—C10B1.472 (11)
N2A—C10A1.353 (7)C9B—H9BA0.9700
C1A—C2A1.391 (8)C9B—H9BB0.9700
C1A—C6A1.404 (7)N2B—C10B1.3900
C2A—C3A1.387 (8)N2B—C14B1.3900
C2A—H2AA0.9300C10B—C11B1.3900
C3A—C4A1.350 (9)C11B—C12B1.3900
C3A—H3AA0.9300C11B—H11B0.9300
C4A—C5A1.370 (9)C12B—C13B1.3900
C5A—C6A1.411 (7)C12B—H12B0.9300
C5A—H5AA0.9300C13B—C14B1.3900
C6A—C7A1.451 (7)C13B—H13B0.9300
C7A—H7AA0.9300C14B—H14B0.9300
C8A—C9A1.534 (8)C8C—C9C1.513 (15)
C8A—H8AA0.9700C8C—H8CA0.9700
C8A—H8AB0.9700C8C—H8CB0.9700
C9A—C10A1.485 (9)C9C—C10C1.472 (11)
C9A—H9AA0.9700C9C—H9CA0.9700
C9A—H9AB0.9700C9C—H9CB0.9700
C10A—C11A1.396 (9)N2C—C10C1.3900
C11A—C12A1.373 (10)N2C—C14C1.3900
C11A—H11A0.9300C10C—C11C1.3900
C12A—C13A1.371 (11)C11C—C12C1.3900
C12A—H12A0.9300C11C—H11C0.9300
C13A—C14A1.377 (9)C12C—C13C1.3900
C13A—H13A0.9300C12C—H12C0.9300
C14A—H14A0.9300C13C—C14C1.3900
Ni2—N1B2.079 (5)C13C—H13C0.9300
Ni2—N1Bi2.079 (5)C14C—H14C0.9300
Ni2—O1Bi2.091 (4)Cl1—O141.387 (6)
Ni2—O1B2.091 (4)Cl1—O13A1.391 (6)
Ni2—N2C2.098 (18)Cl1—O111.396 (6)
Ni2—N2Ci2.098 (18)Cl1—O11A1.397 (6)
Ni2—N2Bi2.128 (6)Cl1—O12A1.399 (6)
Ni2—N2B2.128 (6)Cl1—O121.403 (6)
Br2—C4B1.909 (6)Cl1—O14A1.422 (6)
O1B—C1B1.353 (7)Cl1—O131.424 (6)
N1B—C7B1.277 (8)O1S—C1S1.349 (17)
N1B—C8B1.436 (14)O1S—H1S0.8200
N1B—C8C1.60 (5)C1S—H1S10.9600
C1B—C2B1.383 (9)C1S—H1S20.9600
C1B—C6B1.409 (8)C1S—H1S30.9600
C2B—C3B1.378 (9)
O1A—Ni1—O1Ai87.8 (2)C8C—N1B—Ni2113.2 (10)
O1A—Ni1—N1A84.01 (16)O1B—C1B—C2B121.2 (5)
O1Ai—Ni1—N1A93.07 (16)O1B—C1B—C6B120.2 (5)
O1A—Ni1—N1Ai93.07 (16)C2B—C1B—C6B118.6 (6)
O1Ai—Ni1—N1Ai84.01 (16)C3B—C2B—C1B121.7 (6)
N1A—Ni1—N1Ai176.0 (2)C3B—C2B—H2BA119.2
O1A—Ni1—N2A174.13 (17)C1B—C2B—H2BA119.2
O1Ai—Ni1—N2A90.23 (17)C4B—C3B—C2B119.3 (7)
N1A—Ni1—N2A90.56 (17)C4B—C3B—H3BA120.3
N1Ai—Ni1—N2A92.25 (17)C2B—C3B—H3BA120.3
O1A—Ni1—N2Ai90.23 (17)C5B—C4B—C3B120.9 (6)
O1Ai—Ni1—N2Ai174.13 (17)C5B—C4B—Br2120.9 (5)
N1A—Ni1—N2Ai92.25 (17)C3B—C4B—Br2118.1 (5)
N1Ai—Ni1—N2Ai90.56 (17)C4B—C5B—C6B121.5 (6)
N2A—Ni1—N2Ai92.2 (3)C4B—C5B—H5BA119.3
C1A—O1A—Ni1123.4 (3)C6B—C5B—H5BA119.3
C1A—O1A—H1A107 (6)C1B—C6B—C5B118.0 (6)
Ni1—O1A—H1A130 (6)C1B—C6B—C7B122.8 (6)
C7A—N1A—C8A115.0 (4)C5B—C6B—C7B119.2 (5)
C7A—N1A—Ni1124.3 (4)N1B—C7B—C6B125.8 (5)
C8A—N1A—Ni1120.5 (3)N1B—C7B—H7BA117.1
C14A—N2A—C10A118.3 (5)C6B—C7B—H7BA117.1
C14A—N2A—Ni1119.5 (4)N1B—C8B—C9B108.6 (9)
C10A—N2A—Ni1122.1 (4)N1B—C8B—H8BA110.0
O1A—C1A—C2A121.6 (5)C9B—C8B—H8BA110.0
O1A—C1A—C6A119.9 (5)N1B—C8B—H8BB110.0
C2A—C1A—C6A118.5 (5)C9B—C8B—H8BB110.0
C3A—C2A—C1A121.4 (6)H8BA—C8B—H8BB108.3
C3A—C2A—H2AA119.3C10B—C9B—C8B115.7 (8)
C1A—C2A—H2AA119.3C10B—C9B—H9BA108.4
C4A—C3A—C2A119.4 (6)C8B—C9B—H9BA108.4
C4A—C3A—H3AA120.3C10B—C9B—H9BB108.4
C2A—C3A—H3AA120.3C8B—C9B—H9BB108.4
C3A—C4A—C5A121.6 (5)H9BA—C9B—H9BB107.4
C3A—C4A—Br1119.1 (5)C10B—N2B—C14B120.0
C5A—C4A—Br1119.3 (5)C10B—N2B—Ni2124.5 (3)
C4A—C5A—C6A120.1 (5)C14B—N2B—Ni2115.3 (3)
C4A—C5A—H5AA120.0C11B—C10B—N2B120.0
C6A—C5A—H5AA120.0C11B—C10B—C9B119.4 (5)
C1A—C6A—C5A118.9 (5)N2B—C10B—C9B120.1 (5)
C1A—C6A—C7A122.6 (4)C10B—C11B—C12B120.0
C5A—C6A—C7A118.5 (5)C10B—C11B—H11B120.0
N1A—C7A—C6A127.4 (5)C12B—C11B—H11B120.0
N1A—C7A—H7AA116.3C13B—C12B—C11B120.0
C6A—C7A—H7AA116.3C13B—C12B—H12B120.0
N1A—C8A—C9A112.8 (5)C11B—C12B—H12B120.0
N1A—C8A—H8AA109.0C12B—C13B—C14B120.0
C9A—C8A—H8AA109.0C12B—C13B—H13B120.0
N1A—C8A—H8AB109.0C14B—C13B—H13B120.0
C9A—C8A—H8AB109.0C13B—C14B—N2B120.0
H8AA—C8A—H8AB107.8C13B—C14B—H14B120.0
C10A—C9A—C8A114.2 (5)N2B—C14B—H14B120.0
C10A—C9A—H9AA108.7C9C—C8C—N1B117 (3)
C8A—C9A—H9AA108.7C9C—C8C—H8CA107.9
C10A—C9A—H9AB108.7N1B—C8C—H8CA107.9
C8A—C9A—H9AB108.7C9C—C8C—H8CB107.9
H9AA—C9A—H9AB107.6N1B—C8C—H8CB107.9
N2A—C10A—C11A120.0 (6)H8CA—C8C—H8CB107.2
N2A—C10A—C9A119.0 (5)C10C—C9C—C8C115.6 (11)
C11A—C10A—C9A121.1 (6)C10C—C9C—H9CA108.4
C12A—C11A—C10A121.0 (7)C8C—C9C—H9CA108.4
C12A—C11A—H11A119.5C10C—C9C—H9CB108.4
C10A—C11A—H11A119.5C8C—C9C—H9CB108.4
C13A—C12A—C11A118.4 (7)H9CA—C9C—H9CB107.4
C13A—C12A—H12A120.8C10C—N2C—C14C120.0
C11A—C12A—H12A120.8C10C—N2C—Ni2122.7 (9)
C12A—C13A—C14A118.8 (7)C14C—N2C—Ni2116.6 (9)
C12A—C13A—H13A120.6C11C—C10C—N2C120.0
C14A—C13A—H13A120.6C11C—C10C—C9C120.5 (7)
N2A—C14A—C13A123.5 (7)N2C—C10C—C9C119.4 (7)
N2A—C14A—H14A118.2C10C—C11C—C12C120.0
C13A—C14A—H14A118.2C10C—C11C—H11C120.0
N1B—Ni2—N1Bi165.8 (3)C12C—C11C—H11C120.0
N1B—Ni2—O1Bi85.91 (17)C13C—C12C—C11C120.0
N1Bi—Ni2—O1Bi84.10 (18)C13C—C12C—H12C120.0
N1B—Ni2—O1B84.10 (18)C11C—C12C—H12C120.0
N1Bi—Ni2—O1B85.91 (17)C12C—C13C—C14C120.0
O1Bi—Ni2—O1B90.8 (2)C12C—C13C—H13C120.0
N1B—Ni2—N2C95.7 (6)C14C—C13C—H13C120.0
N1Bi—Ni2—N2C94.0 (6)C13C—C14C—N2C120.0
O1Bi—Ni2—N2C87.7 (7)C13C—C14C—H14C120.0
O1B—Ni2—N2C178.5 (7)N2C—C14C—H14C120.0
N1B—Ni2—N2Ci94.0 (6)O14—Cl1—O11111.7 (4)
N1Bi—Ni2—N2Ci95.7 (6)O13A—Cl1—O11A110.6 (4)
O1Bi—Ni2—N2Ci178.5 (7)O13A—Cl1—O12A110.8 (4)
O1B—Ni2—N2Ci87.7 (7)O11A—Cl1—O12A110.2 (4)
N2C—Ni2—N2Ci93.8 (14)O14—Cl1—O12110.6 (4)
N1B—Ni2—N2Bi99.0 (2)O11—Cl1—O12109.9 (4)
N1Bi—Ni2—N2Bi91.2 (2)O13A—Cl1—O14A109.1 (4)
O1Bi—Ni2—N2Bi175.1 (2)O11A—Cl1—O14A108.1 (4)
O1B—Ni2—N2Bi90.2 (2)O12A—Cl1—O14A107.8 (4)
N1B—Ni2—N2B91.2 (2)O14—Cl1—O13108.8 (4)
N1Bi—Ni2—N2B99.0 (2)O11—Cl1—O13108.0 (4)
O1Bi—Ni2—N2B90.2 (2)O12—Cl1—O13107.7 (4)
O1B—Ni2—N2B175.1 (2)C1S—O1S—H1S109.5
N2Bi—Ni2—N2B89.3 (4)O1S—C1S—H1S1109.5
C1B—O1B—Ni2124.3 (3)O1S—C1S—H1S2109.5
C7B—N1B—C8B114.7 (6)H1S1—C1S—H1S2109.5
C7B—N1B—C8C119.4 (10)O1S—C1S—H1S3109.5
C7B—N1B—Ni2127.1 (4)H1S1—C1S—H1S3109.5
C8B—N1B—Ni2117.9 (6)H1S2—C1S—H1S3109.5
Ni1—O1A—C1A—C2A139.6 (5)O1B—C1B—C6B—C5B178.3 (5)
Ni1—O1A—C1A—C6A41.1 (7)C2B—C1B—C6B—C5B0.8 (9)
O1A—C1A—C2A—C3A177.4 (6)O1B—C1B—C6B—C7B1.6 (9)
C6A—C1A—C2A—C3A2.0 (9)C2B—C1B—C6B—C7B179.3 (6)
C1A—C2A—C3A—C4A0.6 (10)C4B—C5B—C6B—C1B1.3 (9)
C2A—C3A—C4A—C5A1.5 (10)C4B—C5B—C6B—C7B178.8 (6)
C2A—C3A—C4A—Br1177.8 (5)C8B—N1B—C7B—C6B178.0 (8)
C3A—C4A—C5A—C6A2.1 (10)C8C—N1B—C7B—C6B168 (2)
Br1—C4A—C5A—C6A177.2 (4)Ni2—N1B—C7B—C6B5.5 (10)
O1A—C1A—C6A—C5A178.0 (5)C1B—C6B—C7B—N1B22.5 (10)
C2A—C1A—C6A—C5A1.4 (8)C5B—C6B—C7B—N1B157.6 (6)
O1A—C1A—C6A—C7A1.6 (8)C7B—N1B—C8B—C9B122.8 (8)
C2A—C1A—C6A—C7A179.0 (6)Ni2—N1B—C8B—C9B63.9 (10)
C4A—C5A—C6A—C1A0.6 (9)N1B—C8B—C9B—C10B77.1 (10)
C4A—C5A—C6A—C7A179.1 (6)C14B—N2B—C10B—C11B0.0
C8A—N1A—C7A—C6A177.0 (6)Ni2—N2B—C10B—C11B173.8 (6)
Ni1—N1A—C7A—C6A2.9 (9)C14B—N2B—C10B—C9B172.0 (8)
C1A—C6A—C7A—N1A19.0 (9)Ni2—N2B—C10B—C9B14.3 (8)
C5A—C6A—C7A—N1A161.4 (6)C8B—C9B—C10B—C11B137.7 (8)
C7A—N1A—C8A—C9A160.9 (6)C8B—C9B—C10B—N2B50.3 (11)
Ni1—N1A—C8A—C9A24.7 (7)N2B—C10B—C11B—C12B0.0
N1A—C8A—C9A—C10A70.4 (7)C9B—C10B—C11B—C12B172.0 (8)
C14A—N2A—C10A—C11A1.4 (8)C10B—C11B—C12B—C13B0.0
Ni1—N2A—C10A—C11A174.7 (5)C11B—C12B—C13B—C14B0.0
C14A—N2A—C10A—C9A178.1 (5)C12B—C13B—C14B—N2B0.0
Ni1—N2A—C10A—C9A5.7 (7)C10B—N2B—C14B—C13B0.0
C8A—C9A—C10A—N2A54.1 (7)Ni2—N2B—C14B—C13B174.3 (5)
C8A—C9A—C10A—C11A125.5 (6)C7B—N1B—C8C—C9C154.4 (15)
N2A—C10A—C11A—C12A1.3 (10)Ni2—N1B—C8C—C9C32 (3)
C9A—C10A—C11A—C12A178.2 (6)N1B—C8C—C9C—C10C71 (3)
C10A—C11A—C12A—C13A0.4 (11)C14C—N2C—C10C—C11C0.0
C11A—C12A—C13A—C14A0.5 (11)Ni2—N2C—C10C—C11C169.7 (19)
C10A—N2A—C14A—C13A0.6 (9)C14C—N2C—C10C—C9C176 (2)
Ni1—N2A—C14A—C13A175.6 (5)Ni2—N2C—C10C—C9C7 (3)
C12A—C13A—C14A—N2A0.4 (10)C8C—C9C—C10C—C11C135 (3)
Ni2—O1B—C1B—C2B141.8 (5)C8C—C9C—C10C—N2C48 (4)
Ni2—O1B—C1B—C6B39.1 (7)N2C—C10C—C11C—C12C0.0
O1B—C1B—C2B—C3B179.4 (6)C9C—C10C—C11C—C12C176 (2)
C6B—C1B—C2B—C3B0.2 (10)C10C—C11C—C12C—C13C0.0
C1B—C2B—C3B—C4B0.9 (11)C11C—C12C—C13C—C14C0.0
C2B—C3B—C4B—C5B0.5 (11)C12C—C13C—C14C—N2C0.0
C2B—C3B—C4B—Br2177.7 (5)C10C—N2C—C14C—C13C0.0
C3B—C4B—C5B—C6B0.6 (10)Ni2—N2C—C14C—C13C170.3 (18)
Br2—C4B—C5B—C6B176.6 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1B0.82 (2)1.64 (3)2.430 (5)161 (8)
C7A—H7AA···O140.932.472.990 (9)115
C9A—H9AA···O1Ai0.972.403.105 (7)129
C9A—H9AB···O14ii0.972.553.482 (12)162
C11A—H11A···O14Aii0.932.603.406 (12)145
C14A—H14A···N1Ai0.932.673.126 (8)111
C7B—H7BA···O11Aiii0.932.543.069 (14)117
C9B—H9BB···Br1iii0.973.123.859 (10)134
C14B—H14B···N1Bi0.932.543.155 (9)124
C9C—H9CA···O1Bi0.972.373.02 (3)124
C13C—H13C···Br1iv0.933.083.55 (2)114
C14C—H14C···Br1iv0.933.053.54 (2)115
O1S—H1S···O120.822.122.907 (15)162
O1S—H1S···O130.822.573.249 (15)140
O1S—H1S···O13A0.821.642.436 (16)162
C1S—H1S3···O130.962.553.276 (19)133
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z; (iii) x1/2, y+1/2, z+1/2; (iv) x+3/2, y+1/2, z.
 

Acknowledgements

UO and RO acknowledge the Howard University College of Arts & Sciences for a Teaching Fellowship. RJB is grateful to the Howard University Nanoscience Facility access to liquid nitro­gen.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1205608; grant No. CHE-0619278).

References

First citationAyikoé, K., Gultneh, Y. & Butcher, R. J. (2011). Acta Cryst. E67, m1211.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBhardwaj, V. K. & Singh, A. (2014). Inorg. Chem. 53, 10731–10742.  CrossRef Google Scholar
First citationBruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Gultneh, Y. & Ayikoé, K. (2009). Acta Cryst. E65, m1193–m1194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakraborty, J., Singh, R. K. B., Samanta, B., Choudhury, C. R., Dey, S. K., Talukder, P., Borah, M. J. & Mitra, S. (2006). Z. Naturforsch. Teil B, 61, 1209–1216.  Google Scholar
First citationDuran, M. L., Garcia-Vazquez, J. A., Macias, A., Romero, J. & Sousa, A. (1989). Z. Anorg. Allg. Chem. 573, 215–222.  CrossRef Google Scholar
First citationDutta, S., Biswas, P., Flörke, U. & Nag, K. (2010). Inorg. Chem. 49, 7382–7400.  CrossRef Google Scholar
First citationEgekenze, R., Gultneh, Y. & Butcher, R. J. (2017a). Acta Cryst. E73, 1113–1116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEgekenze, R., Gultneh, Y. & Butcher, R. J. (2017b). Acta Cryst. E73, 1479–1482.  CrossRef IUCr Journals Google Scholar
First citationEgekenze, R., Gultneh, Y. & Butcher, R. J. (2018a). Polyhedron, 144, 198–209.  CrossRef Google Scholar
First citationEgekenze, R., Gultneh, Y. & Butcher, R. J. (2018b). Inorg. Chim. Acta, 478, 232–242.  CrossRef Google Scholar
First citationElmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFondo, M., García-Deibe, A. M., Ocampo, N., Sanmartín, J., Bermejo, M. R. & Llamas-Saiz, A. L. (2006). Dalton Trans. pp. 4260–4270.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKobayashi, F., Koga, A., Ohtani, R., Hayami, S. & Nakamura, M. (2017). Acta Cryst. E73, 637–639.  CrossRef IUCr Journals Google Scholar
First citationKuchtanin, V., Kleščíková, L., Šoral, M., Fischer, R., Růžičková, Z., Rakovský, E., Moncoľ, J. & Segľa, P. (2016). Polyhedron, 117, 90–96.  CrossRef Google Scholar
First citationLayek, M., Ghosh, M., Sain, S. M., Fleck, M., Muthiah, P. T., Jenniefer, S. J., Ribas, J. & Bandyopadhyay, D. (2013). J. Mol. Struct. 1036, 422–426.  CrossRef Google Scholar
First citationLucas, C. R., Byrne, J. M. D., Collins, J. L., Dawe, L. N. & Miller, D. O. (2011). Can. J. Chem. 89, 1174–1189.  CrossRef Google Scholar
First citationMobley, H. L. T. (2001). Urease. In Helicobacter pylori: Physiology and Genetics, edited by H. L. Mobley, G. L. Mendz and S. L Hazell. Washington (DC): ASM Press.  Google Scholar
First citationMukherjee, P., Biswas, C., Drew, M. G. B. & Ghosh, A. (2007). Polyhedron, 26, 3121–3128.  CrossRef Google Scholar
First citationOhta, H., Harada, K., Irie, K., Kashino, S., Kambe, T., Sakane, G., Shibahara, T., Takamizawa, S., Mori, W., Nonoyama, M., Hirotsu, M. & Kojima, M. (2001). Chem. Lett. 30, 842–843.  CrossRef Google Scholar
First citationOkeke, U., Gultneh, Y. & Butcher, R. J. (2017). Acta Cryst. E73, 1708–1711.  CrossRef IUCr Journals Google Scholar
First citationÖzalp-Yaman, Ş., Kasumov, V. T. & Önal, A. M. (2005). Polyhedron, 24, 1821–1828.  Google Scholar
First citationPaital, A. R., Wong, W. T., Aromí, G. & Ray, D. (2007). Inorg. Chem. 46, 5727–5733.  CrossRef Google Scholar
First citationSanyal, R., Dash, S. K., Kundu, P., Mandal, D., Roy, S. & Das, D. (2016). Inorg. Chim. Acta, 453, 394–401.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXua, H., Fan, X., Chao, F. & Zhang, S. (2015). Private Communication (Refcode QUGZOJ01). CCDC, Cambridge, England.  Google Scholar
First citationYamaguchi, T., Sunatsuki, Y. & Ishida, H. (2008). Acta Cryst. C64, m156–m160.  CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L. & Chi, J.-Y. (2006). Acta Cryst. E62, m1498–m1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m805–m807.  CrossRef IUCr Journals Google Scholar
First citationZhang, W. G. & Liang, J. H. (2017). Russ. J. Coord. Chem. 43, 540–546.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds