research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of 3-O-benzyl-1,2-O-iso­propyl­­idene-5-O-methane­sulfonyl-6-O-tri­phenyl­methyl-α-D-gluco­furan­ose and its azide displacement product

CROSSMARK_Color_square_no_text.svg

aDiscipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia, bJuniata College, Department of Chemistry, 1700 Moore Street, Huntingdon, Pennsylvania, PA16652-2196, USA, cPriority Research Centre for Chemical Biology & Clinical Pharmacology, University of Newcastle, Callaghan, NSW 2308, Australia, dSchool of Chemistry and Molecular Biosciences, University of Queensland, Brisbane St Lucia, QLD 4072, Australia, and eInstitute for Glycomics and The School of Environment and Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
*Correspondence e-mail: michela.simone@newcastle.edu.au

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 April 2018; accepted 23 May 2018; online 31 May 2018)

The effect of different leaving groups on the substitution versus elimination outcomes with C-5 D-glucose derivatives was investigated. The stereochemical configurations of 3-O-benzyl-1,2-O-iso­propyl­idene-5-O-methane­sulfonyl-6-O-tri­phenyl­methyl-α-D-gluco­furan­ose, C36H38O8S (3) [systematic name: 1-[(3aR,5R,6S,6aR)-6-benz­yloxy-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxol-5-yl)-2-(trit­yloxy)ethyl methane­sulfonate], a stable inter­mediate, and 5-azido-3-O-benzyl-5-de­oxy-1,2-O-iso­propyl­idene-6-O-tri­phenyl­methyl-β-L-ido­furan­ose, C35H35N3O5 (4) [systematic name: (3aR,5S,6S,6aR)-5-[1-azido-2-(trit­yloxy)eth­yl]-6-benz­yloxy-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxole], a substitution product, were examined and the inversion of configuration for the azido group on C-5 in 4 was confirmed. The absolute structures of the mol­ecules in the crystals of both compounds were confirmed by resonant scattering. In the crystal of 3, neighbouring mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along the b-axis direction. The chains are linked by C—H⋯π inter­actions, forming layers parallel to the ab plane. In the crystal of 4, mol­ecules are also linked by C—H⋯O hydrogen bonds, forming this time helices along the a-axis direction. The helices are linked by a number of C—H⋯π inter­actions, forming a supra­molecular framework.

1. Chemical context

Nucleophilic substitution reactions and their competition with elimination are mechanistically complex processes in carbohydrate systems (Latham et al., 2017[Latham, K., Simone, M. I., Dose, W., Allen, J. & Donne, S. (2017). Carbon, 114, 566-578.]; Monnier et al., 2008[Monnier, V. M., Sell, D. R., Dai, Z., Nemet, I., Collard, F. & Zhang, J. (2008). Ann. N. Y. Acad. Sci. 1126, 81-88.]; Kroh et al., 2008[Kroh, L. W., Fiedler, T. & Wagner, J. (2008). Ann. N. Y. Acad. Sci. 1126, 210-215.]; Hayase et al., 2002[Hayase, F., Takahashi, Y., Sasaki, S., Shizuuchi, S. & Watanabe, H. (2002). Int. Congr. Ser. 1245, 217-221.]; Jin et al., 2008[Jin, F., Yun, J., Li, G., Kishita, A., Tohji, K. & Enomoto, H. (2008). Green Chem. 10, 612-615.]; Chheda et al., 2007[Chheda, J. N., Román-Leshkov, Y. & Dumesic, J. A. (2007). Green Chem. 9, 342-350.]; Reza et al., 2014[Reza, M. T., Andert, J., Wirth, B., Busch, D., Pielert, J., Lynam, J. G. & Mumme, J. (2014). Appl. Bioenergy, 1, 11-29.]; Srokol et al., 2004[Srokol, Z., Bouche, A.-G., van Estrik, A., Strik, R. C. J., Maschmeyer, T. & Peters, J. A. (2004). Carbohydr. Res. 339, 1717-1726.]; Chuntanapum & Matsumura, 2010[Chuntanapum, A. & Matsumura, Y. (2010). Ind. Eng. Chem. Res. 49, 4055-4062.]; Stemann et al., 2013[Stemann, J., Erlach, B. & Ziegler, F. (2013). Waste Biomass Valor. 4, 441-454.]). Leaving groups that are normally readily displaced by substitution in simple carbon scaffolds can react to give mixtures of substitution (both with retention and inversion of configuration) and elimination products in monosaccharides and derivatives thereof (Latham et al., 2017[Latham, K., Simone, M. I., Dose, W., Allen, J. & Donne, S. (2017). Carbon, 114, 566-578.]; Tsuchiya et al., 1985[Tsuchiya, T., Takahashi, Y., Endo, M., Umezawa, S. & Umezawa, H. (1985). J. Carbohydr. Chem. 4, 587-611.]; Tsuchiya, 1990[Tsuchiya, T. (1990). Adv. Carbohydr. Chem. 48, 91-277.]; Mulard et al., 1994[Mulard, L. A., Kováč, P. & Glaudemans, C. P. J. (1994). Carbohydr. Res. 259, 21-34.]; Hasegawa et al., 1985[Hasegawa, A., Goto, M. & Kiso, M. (1985). J. Carbohydr. Chem. 4, 627-638.]; Karpiesiuk et al., 1989[Karpiesiuk, W., Banaszek, A. & Zamojski, A. N. (1989). Carbohydr. Res. 186, 156-162.]; Yamashita et al., 1984[Yamashita, M., Kawai, Y., Uchida, I., Komori, T., Kohsaka, M., Imanaka, H., Sakane, K., Setoi, H. & Teraji, T. (1984). Tetrahedron Lett. 25, 4689-4692.]; Vos et al., 1984[Vos, J. N., Van Boom, J. H., van Boeckel, C. A. A. & Beetz, T. (1984). J. Carbohydr. Chem. 3, 117-124.]). Introduction of a leaving group at position C-5 of D-glucose derivative 1 (Fig. 1[link]) provides a potential opportunity for specific nucleophilic substitutions (e.g. with azide) or installation of a C=C moiety. Elimination gives rise to four possible alkenes via cis and/or trans isomers with either a C-4/C-5 or a C-5/C-6 disposed double bond. Prior reports suggest that the latter pathway is more probable (Gramera et al., 1964a[Gramera, R. E., Ingle, T. R. & Whistler, R. L. (1964a). J. Org. Chem. 29, 1083-1086.],b[Gramera, R. E., Ingle, T. R. & Whistler, R. L. (1964b). J. Org. Chem. 29, 2074-2075.]; Buchanan & Oakes, 1965[Buchanan, J. G. & Oakes, E. M. (1965). Carbohydr. Res. 1, 242-253.]).

[Figure 1]
Figure 1
The synthesis of the title compounds. Reagents and conditions. (i) tri­fluoro­methane­sulfonyl anhydride, DCM, pyridine, 243 K (to 2); methane­sulfonyl chloride, DMAP, DCM, Et3N (67%) (to 3); (ii) NaN3, DMF, r.t. (88% over two steps from 1 via 2). The numbering system used is highlighted in red.

In our development of novel imino­sugars (Simone et al., 2012[Simone, M. I., Soengas, R. G., Jenkinson, S. F., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2012). Tetrahedron Asymmetry, 23, 401-408.]; Soengas et al., 2012[Soengas, R. G., Simone, M. I., Hunter, S., Nash, R. J., Evinson, E. L. & Fleet, G. W. J. (2012). Eur. J. Org. Chem. pp. 2394-2402.]; Reed et al., 2013[Reed, J. H., Turner, P., Kato, A., Houston, T. A. & Simone, M. I. (2013). Acta Cryst. E69, o1069-o1070.]), we viewed the installation of a C-5 disposed double bond (through elimination) and the ability to stereoselectively substitute at C-5 (through substitution) as critical to analogue development. To effect these transformations in an orthogonal manner (Fig. 1[link]), we probed the nature of the C-5 leaving group through the introduction of a mesylate (2) and a triflate moiety (3), which could then be either displaced or eliminated. We had previously noted that C-6 OH silylation (TES, TBDMS, TIPS) afforded a high degree of protecting-group lability; as such, this moiety was trityl protected. With analogues 2 and 3 in hand, treatment with sodium azide under SN2 conditions afforded substituted azido product 4 in 88% yield. To confirm the stereochemistry of the starting triflate/mesylate (2 and 3) and azide 4, these analogues were carefully crystallized. Mesylate 3 was crystallized by diffusion from CH2Cl2/hexane to give colourless, block-like crystals while azide 4 was readily crystallized from an ethanol/toluene mixture affording large, colourless crystals. Reaction conditions to afford the regioselective elimination product/s with a C-4/C-5 and/or a C-5/C-6 disposed double bond are currently under investigation.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of compounds 3 and 4 are illustrated in Figs. 2[link] and 3[link], respectively. Notable, and anti­cipated, is the inversion of configuration for the azido group on C5 in compound 4.

[Figure 2]
Figure 2
A view of the mol­ecular structure of compound 3, with atom labelling and displacement ellipsoids drawn at the 30% probability level. For clarity, H atoms have been omitted.
[Figure 3]
Figure 3
A view of the mol­ecular structure of compound 4, with atom labelling and displacement ellipsoids drawn at the 30% probability level. For clarity, H atoms have been omitted.

In 3 the central tetra­hydro­furan (THF) ring (O1/C1–C4) has a twisted conformation on the C3—C4 bond, with quasi-axial departure of the benzyl group from C3 and in the opposite direction of the iso­propyl­idene group from C1 and C2 (Fig. 2[link]). This conformation accommodates the sterically bulky trityl moiety, which projects equatorially from C4. The 2,2-dimethyl-1,3-dioxolane ring (O2/O3/C1/C2/C7) also has a twisted conformation, on the O3—C7 bond, and its mean plane is inclined to the mean plane of the THF ring by 65.6 (7)°.

The X-ray structure analysis of 4 shows that the THF ring has an envelope conformation with atom C4 as the flap. The pendant bonds adopt a conformation highly similar to that observed for 3 (Fig. 3[link]). As in 3, the 2,2-dimethyl-1,3-dioxolane ring has a twisted conformation on the O3—C7 bond, and its mean plane is inclined to the mean plane of the THF ring by 66.21 (9)°. The benzyl group is involved in a C—H⋯π inter­action with a phenyl ring of the tri­phenyl­methyl moiety, C12—H12⋯Cg5 (see Table 2[link] for details). The middle nitro­gen atom of the azide, which is cationic, appears to be involved in a weak ion–dipole intra­molecular inter­action with the endocyclic THF oxygen atom [N2⋯O1 = 2.900 (2) Å].

Table 2
Hydrogen-bond geometry (Å, °) for 4[link]

Cg5 and Cg6 are the centroids of the C24–C29 and C30–C35 rings.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O3i 0.95 2.56 3.281 (2) 133
C1—H1⋯Cg5ii 1.00 2.90 3.8014 (16) 150
C8—H8CCg6iii 0.98 2.91 3.5435 (18) 123
C12—H12⋯Cg5 0.95 2.88 3.7503 (18) 153
C15—H15⋯Cg6i 0.95 2.91 3.6050 (18) 131
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) x, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal of 3, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction (Table 1[link]). The chains are linked by C—H⋯π inter­actions, so forming layers lying parallel to the ab plane (Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 3[link]

Cg3 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C34—H34⋯O8i 0.95 2.55 3.179 (17) 124
C25—H25⋯Cg3ii 0.95 2.99 3.830 (12) 149
Symmetry codes: (i) x, y-1, z; (ii) x+1, y-1, z.
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of compound 3. The C—H⋯O and C—H⋯π inter­actions (see Table 1[link]) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

In the crystal of 4, mol­ecules are also linked by C—H⋯O hydrogen bonds, forming 21 helices propagating along the a-axis direction (Table 2[link]). The helices are linked by a number of C—H⋯π inter­actions, so forming a supra­molecular framework (Table 2[link] and Fig. 5[link]). In the crystal, there are voids with a potential solvent-accessible volume of ca 161 Å3 (5% of the unit-cell volume). However, on examination of the final difference-Fourier map no evidence could be found of electron density being present in the channels.

[Figure 5]
Figure 5
A view along the b axis of the crystal packing of compound 4. The C—H⋯O and C—H⋯π inter­actions (see Table 2[link]) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included. The channels in the crystal structure are shown in brown (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

4. Database survey

Sulfonate esters (e.g. tri­fluoro­methane­sulfonates, para-toluene­sulfonates and methane­sulfonates) make up an important class of inter­mediates in organic chemistry for their role as leaving groups in nucleophilic substitutions. X-ray crystallographic analyses of sulfonate esters are limited by the degree of their chemical instability. Relative solvolysis rates for tri­fluoro­methane­sulfonates, para-toluene­sulfonates and methane­sulfonates are, respectively, in the ranges 1.4 × 108, 3.7 × 104, and 3.0 × 103 compared to chloride (Noyce &Virgilio, 1972[Noyce, D. S. & Virgilio, J. A. (1972). J. Org. Chem. 37, 2643-2647.]). Notable literature examples of monosaccharide-derived sulfonate ester crystal structural studies include the only reported primary tri­fluoro­methane­sulfonate (Simone et al., 2007[Simone, M., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, o1088-o1090.]), primary and secondary para-toluene­sulfonates (Reed et al., 2013[Reed, J. H., Turner, P., Kato, A., Houston, T. A. & Simone, M. I. (2013). Acta Cryst. E69, o1069-o1070.]; Mamat et al., 2012[Mamat, C., Peppel, T. & Köckerling, M. (2012). Crystals, 2, 105-109.]), primary and secondary mesylates (Krajewski et al., 1992[Krajewski, J. W., Gluziński, P. & Banaszek, A. (1992). Carbohydr. Res. 225, 1-9.]; Sofian et al., 2002[Sofian, A. S. M., Lee, C. K. & Linden, A. (2002). Carbohydr. Res. 337, 2377-2381.]), dimesylates (Adiwidjaja et al., 2000[Adiwidjaja, G., Brunck, J.-S., Polchow, K. & Voss, J. (2000). Carbohydr. Res. 325, 237-244.]; Armishaw et al., 1996[Armishaw, O. A., Cox, P. J., Hassan, A. K. & Wardell, J. L. (1996). J. Chem. Crystallogr. 26, 701-705.]; Brown et al., 1986[Brown, J. H., Cook, S. J., Jones, R. H. & Khan, R. (1986). Tetrahedron, 42, 5089-5096.]; Craythorne et al., 2009[Craythorne, S. J., Pollock, C. L., Blake, A. J., Nieuwenhuyzen, M., Marr, A. C. & Marr, P. C. (2009). New J. Chem. 33, 479-483.]) and a trimesylate (Voss et al., 2016[Voss, J., Polchow-Stein, K. & Adiwidjaja, G. (2016). Z. Naturforsch. Teil B, 71, 789-793.]).

5. Synthesis and crystallization

The reagents and conditions used for the syntheses of compounds 3 and 4 are outlined in Fig. 1[link]. Reactions were performed under an atmosphere of nitro­gen gas and maintained using an inflated balloon. Further general experimental details are included in the archived CIF.

Synthesis of compound 3: 3-O-benzyl-1,2-O-iso­propyl­idene-6-O-tri­phenyl­methyl-α-D-gluco­furan­ose 1 (520 mg, 0.943 mmol) was dissolved in CH2Cl2 (12 ml) with pyridine (260 µL, 3.262 mmol) and 4-di­methyl­amino­pyridine (40 mg, 0.327 mmol). Methane­sulfonyl chloride (180 µL, 2.325 mmol) was added and the reaction mixture heated to reflux for 25 h. Thin layer chromatographic (TLC) analysis (1:4 ethyl acetate/hexa­ne) revealed complete consumption of the starting material (Rf = 0.46) and formation of the desired product (Rf = 0.52). The reaction mixture was pre-absorbed on silica gel and compond 3 was isolated by flash chromatography to give an off-white foam (449 mg, 76%) and recrystallized from CH2Cl2/hexa­nes yielding colourless block-shaped crystals [m.p. 397–403 K (433–434 K; Saeki et al., 1968[Saeki, H., Iwashige, T. & Ohki, E. (1968). Chem. Pharm. Bull. 16, 1040-1047.])]; [α]D20: −15.5° (c 0.11 in CHCl3; 1H NMR (400 MHz, CDCl3) δ 7.50–7.20 (m, 20 H, ArHs), 5.88 (d, 1H, JH1,H2 3.6 Hz, H-1), 5.30 (ddd, 1H, JH-5,H-4 8.4 Hz, JH-5,H-6 6.0 Hz, JH-5,H-6′ 2.0 Hz H-5), 4.75 (d, 1H, JBnCH,BnCH′ 10.8 Hz, BnCHH′), 4.60–4.55 (m, 2H, H-2 & BnCHH′), 4.51 (dd, 1H, JH-4,H-5 8.8 Hz, JH-4,H-3 3.2 Hz, H-4), 4.14 (d, 1H, JH-3,H-4 2.8 Hz, H-3), 3.65 (dd, 1H, JH-6′,H-6 11.2 Hz, JH-6′,H-5 2.0 Hz, H-6′), 3.44 (dd, 1H, JH-6,H-6′ 11.2 Hz, JH-6,H-5 6.0 Hz, H-6), 2.89 (s, 3H, MsCH3), 1.35, 1.29 (2 × s, 2 × CH3 acetonide); 13C-NMR (100 MHz, CDCl3) δ 143.4 (Cquat trit­yl), 137.4 (ArCquat Bn), 128.7–127.2 (22 × ArC trityl, Bn), 112.1 (Cquat acetonide), 105.4 (C1), 87.0 (ArCquat trit­yl) 81.5 (C2), 81.2 (C3), 77.9 (C5), 77.8 (C4), 72.5 (BnCH2), 63.1 (C6), 39.3 (MsCH3), 26.8, 26.3 (2 × CH3 acetonide); νmax (thin film): 2935, 2924, 2852 (m/s, ArCH and alkyl CH), 1461 (m, S=O), 1270 (m, alkyl aryl ether C—O), 1073 (m, S=O); HRMS m/z calculated for C36H38KO8S [M + K+]+ 669.19190 (100%), found 669.19148 (100%).

Synthesis of compound 4: 3-O-benzyl-1,2-O-iso­propyl­idene-6-O-tri­phenyl­methyl-α-D-gluco­furan­ose 1 (1.00 g, 1.81 mmol) was dissolved in CH2Cl2 (20 ml) and cooled to 243 K. Pyridine (291 µL, 3.62 mmol) was added and stirred for 10 min. Tri­fluoro­methane­sulfonic anhydride (607 µL, 3.62 mmol) was added dropwise with continued stirring. TLC analysis (1:4 ethyl acetate/hexa­nes) after 45 min showed complete consumption of the starting material (Rf = 0.42) and formation of a new product (Rf = 0.67). The reaction mixture was acidified with glacial acetic acid (5 ml) and washed with brine (3 × 20 ml). The organic layer was concentrated in vacuo and dissolved in N,N-di­methyl­formamide (25 ml). The solution was cooled to 243 K and sodium azide (345 mg, 5.31 mmol) was added. The reaction mixture was left to warm up to room temperature while stirring for 12 h. Analysis by TLC (1:4 ethyl acetate/hexa­ne) showed complete consumption of the triflate inter­mediate (Rf = 0.67) and formation of product (Rf = 0.38). Lithium chloride solution (30 ml, 5% w/v) was added followed by extraction with CH2Cl2 (3 × 30 ml). The combined organic layers were dried over sodium sulfate and concentrated in vacuo. The product, compound 4, was recrystallized from chloro­form and ethanol yielding colourless prismatic crystals (917 mg, 88%). [α]D26 −15.8° (c 0.90 in CHCl3) [Lit. [α]D −20.7° (c 1.06, DCM) (García-Moreno et al., 2007[García-Moreno, M. I., Mellet, C. O. & García Fernández, J. M. (2007). Tetrahedron, 63, 7879-7884.])]; m.p. 441–444 K; 1H NMR (500 MHz, CDCl3) δ 7.47–7.00 (m, 20 H, ArHs), 5.93 (d, 1H, JH-1,H-2 3.7 Hz, H-1), 4.49 (d, 1H, JH-2,H-1 3.8 Hz, H-2), 4.47 (dd, 1H, JH-4,H-5 9.0 Hz, JH-4,H-3 3.2 Hz, H-4), 4.27 (d, 1H, JBnCH,BnCH′ 11.2 Hz, BnCHH′), 3.85 (ddd, 1 H, JH-5,H-4 8.8 Hz, JH-5,H-6; 5.0 Hz, JH-5,H-6 2.5 Hz, H-5), 3.75 (d, 1 H, JBnCH′,BnCH 11.2 Hz, BnCHH′), 3.53 (d, 1 H, JH-3,H-4 3.1 Hz, H-3), 3.43 (dd, 1 H, JH-6,H-6′ 9.7 Hz, JH-6,H-5 2.3 Hz, H-6), 3.06 (dd, 1 H, JH-6′,H-6 9.7 Hz, JH-6′,H-5 5.1 Hz, H-6′), 1.53, 1.30 (2 × s, 2 ×CH3 acetonide); 13C NMR (125 MHz, CDCl3) δ 143.6 (Cquat trit­yl), 137.1 (ArCquat Bn), 128.9–127.4 (22 × ArC), 112.1 (Cquat acetonide), 105.1 (C1), 87.0 (ArCquat trit­yl), 82.5 (C3), 82.0 (C2), 79.9 (C4), 72.0 (BnCH2), 63.2 (C6), 61.5 (C5), 27.0, 26.6 (2 × CH3 acetonide); νmax (thin film): 3061 (w, ArCH), 2986 (m, alkyl CH), 2097 (s, N3); HRMS (ESI–FT–ICR) m/z calculated for C35H35N3NaO5 [M + Na]+ 600.24689 (100%), found 600.24679 (100%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds, the H atoms were included in calculated positions and treated as riding: C—H = 0.95-1.00 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. The methane­sulfonyl group suffers from thermal disorder but attempts to split all S, O and C atoms did not significantly improve the refined structure.

Table 3
Experimental details

  3 4
Crystal data
Chemical formula C36H38O8S C35H35N3O5
Mr 630.72 577.66
Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121
Temperature (K) 190 150
a, b, c (Å) 10.0069 (5), 10.1898 (7), 32.0045 (14) 10.0943 (1), 10.9625 (1), 27.5392 (2)
V3) 3263.4 (3) 3047.45 (5)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 1.31 0.68
Crystal size (mm) 0.3 × 0.25 × 0.2 0.26 × 0.15 × 0.13
 
Data collection
Diffractometer Rigaku Xcalibur, Sapphire3, Gemini ultra Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.])
Tmin, Tmax 0.840, 1.000 0.676, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20834, 5928, 4263 73112, 6389, 6282
Rint 0.068 0.038
(sin θ/λ)max−1) 0.601 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.351, 1.20 0.029, 0.085, 1.03
No. of reflections 5928 6389
No. of parameters 410 391
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −1.07 0.39, −0.19
Absolute structure Flack x determined using 1367 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 2717 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.004 (10) −0.02 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for (3); CrysAlis PRO (Agilent, 2015) for (4). Cell refinement: CrysAlis PRO (Rigaku OD, 2015) for (3); CrysAlis PRO (Agilent, 2015) for (4). Data reduction: CrysAlis PRO (Rigaku OD, 2015) for (3); CrysAlis PRO (Agilent, 2015) for (4). Program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a) for (3); SIR97 (Altomare et al., 1999) for (4). Program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b) for (3); SHELXL2018 (Sheldrick, 2015b) for (4). For both structures, molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008). Software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b) and publCIF (Westrip, 2010) for (3); SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010) for (4).

1-[(3aR,5R,6S,6aR)-6-Benzyloxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl]-2-(trityloxy)ethyl methanesulfonate (3) top
Crystal data top
C36H38O8SDx = 1.284 Mg m3
Mr = 630.72Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 10052 reflections
a = 10.0069 (5) Åθ = 4.5–70.0°
b = 10.1898 (7) ŵ = 1.31 mm1
c = 32.0045 (14) ÅT = 190 K
V = 3263.4 (3) Å3Block, colourless
Z = 40.3 × 0.25 × 0.2 mm
F(000) = 1336
Data collection top
Rigaku Xcalibur, Sapphire3, Gemini ultra
diffractometer
4263 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tube, Enhance Ultra (Cu) X-ray SourceRint = 0.068
ω scansθmax = 68.0°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1112
Tmin = 0.840, Tmax = 1.000k = 1212
20834 measured reflectionsl = 3338
5928 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.094 w = 1/[σ2(Fo2) + (0.1748P)2 + 6.0087P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.351(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.53 e Å3
5928 reflectionsΔρmin = 1.07 e Å3
410 parametersExtinction correction: (SHELXL-2018/3; Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0044 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1367 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.004 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.5662 (3)0.7854 (3)0.46165 (7)0.0576 (8)
O10.5510 (8)0.6791 (7)0.31101 (19)0.0566 (19)
O20.6330 (10)0.7335 (8)0.2462 (2)0.067 (2)
O30.6539 (9)0.9404 (8)0.2696 (2)0.065 (2)
O40.4019 (8)0.8917 (7)0.3505 (2)0.0550 (18)
O50.7705 (7)0.5716 (7)0.3878 (2)0.0485 (16)
O60.6203 (9)0.7925 (8)0.4151 (2)0.063 (2)
O70.4808 (9)0.6727 (8)0.4660 (2)0.068 (2)
O80.5109 (13)0.9099 (9)0.4710 (3)0.094 (4)
C10.5280 (14)0.7491 (10)0.2743 (3)0.059 (3)
H10.4409970.7232370.2613090.071*
C20.5292 (13)0.8954 (11)0.2854 (3)0.058 (3)
H20.4508150.9445030.2739660.069*
C30.5350 (13)0.8960 (11)0.3333 (3)0.055 (3)
H30.5876190.9719360.3443100.067*
C40.6029 (13)0.7660 (10)0.3421 (3)0.053 (3)
H40.7019720.7747360.3390750.064*
C50.5684 (13)0.7023 (10)0.3837 (3)0.053 (2)
H50.4689400.6986380.3864600.063*
C60.6231 (10)0.5655 (10)0.3885 (3)0.047 (2)
H6A0.5922680.5270180.4152210.056*
H6B0.5906660.5092750.3653890.056*
C70.6830 (14)0.8585 (12)0.2349 (3)0.064 (3)
C80.8334 (18)0.850 (2)0.2300 (6)0.110 (6)
H8A0.8554930.7777770.2108710.166*
H8B0.8742310.8327930.2573380.166*
H8C0.8675750.9324180.2187390.166*
C90.613 (2)0.9036 (15)0.1955 (4)0.094 (5)
H9A0.6411650.9931130.1886670.141*
H9B0.5158710.9021730.1999470.141*
H9C0.6357740.8447260.1723740.141*
C100.3419 (15)1.0193 (11)0.3553 (4)0.065 (3)
H10A0.3326711.0623160.3277180.077*
H10B0.3987221.0752980.3732600.077*
C110.2042 (14)1.0014 (11)0.3753 (3)0.061 (3)
C120.1939 (17)1.0081 (14)0.4184 (4)0.073 (4)
H120.2705761.0218120.4353730.088*
C130.067 (2)0.9940 (17)0.4362 (5)0.103 (6)
H130.0563330.9985170.4657000.123*
C140.043 (2)0.9736 (17)0.4108 (7)0.104 (6)
H140.1288970.9658060.4230790.125*
C150.0304 (19)0.9644 (15)0.3689 (5)0.091 (5)
H150.1063760.9484420.3518060.109*
C160.0966 (17)0.9787 (13)0.3510 (4)0.078 (4)
H160.1069290.9724300.3215860.093*
C170.8331 (11)0.4437 (10)0.3839 (3)0.048 (2)
C180.8224 (12)0.3951 (11)0.3388 (3)0.054 (3)
C190.8348 (13)0.2635 (11)0.3285 (3)0.061 (3)
H190.8442590.2000260.3500750.074*
C200.8336 (15)0.2237 (14)0.2869 (4)0.073 (3)
H200.8447300.1335310.2802250.088*
C210.8166 (15)0.3136 (14)0.2555 (3)0.073 (4)
H210.8125250.2857690.2272170.087*
C220.8054 (14)0.4445 (13)0.2654 (3)0.065 (3)
H220.7958420.5079150.2437960.078*
C230.8081 (12)0.4834 (13)0.3065 (3)0.059 (3)
H230.7998350.5741190.3128410.071*
C240.9853 (12)0.4693 (9)0.3914 (3)0.049 (2)
C251.0686 (12)0.3622 (10)0.3967 (3)0.054 (3)
H251.0332000.2759440.3948300.065*
C261.2063 (13)0.3806 (12)0.4050 (3)0.061 (3)
H261.2634700.3071760.4088600.073*
C271.2568 (14)0.5071 (14)0.4073 (4)0.068 (3)
H271.3486330.5207650.4133570.081*
C281.1724 (15)0.6145 (13)0.4007 (4)0.074 (3)
H281.2078340.7010040.4012580.089*
C291.0347 (13)0.5951 (12)0.3931 (4)0.063 (3)
H290.9768900.6680860.3892620.075*
C300.7800 (13)0.3519 (11)0.4171 (3)0.056 (3)
C310.8290 (14)0.3567 (11)0.4578 (3)0.062 (3)
H310.8995950.4153960.4644530.074*
C320.7762 (16)0.2769 (14)0.4887 (3)0.073 (4)
H320.8122620.2814110.5161400.088*
C330.6711 (16)0.1897 (14)0.4807 (4)0.078 (4)
H330.6360790.1346700.5019640.093*
C340.6204 (16)0.1868 (14)0.4406 (4)0.075 (4)
H340.5487020.1289220.4343860.090*
C350.6703 (13)0.2649 (11)0.4096 (3)0.062 (3)
H350.6313870.2613480.3825750.075*
C360.7142 (14)0.763 (2)0.4884 (5)0.115 (7)
H36A0.6968950.7661010.5185750.173*
H36B0.7770680.8330030.4809160.173*
H36C0.7526160.6777980.4810730.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0813 (18)0.0600 (15)0.0316 (11)0.0056 (14)0.0007 (12)0.0015 (10)
O10.084 (5)0.053 (4)0.033 (3)0.001 (4)0.000 (3)0.001 (3)
O20.100 (6)0.057 (4)0.044 (4)0.005 (4)0.019 (4)0.002 (3)
O30.087 (6)0.060 (4)0.050 (4)0.006 (4)0.024 (4)0.004 (3)
O40.077 (5)0.047 (4)0.041 (3)0.004 (4)0.007 (3)0.002 (3)
O50.052 (4)0.052 (4)0.042 (3)0.004 (3)0.001 (3)0.001 (3)
O60.094 (6)0.063 (4)0.031 (3)0.007 (4)0.000 (3)0.003 (3)
O70.097 (6)0.061 (4)0.046 (4)0.024 (4)0.012 (4)0.002 (3)
O80.145 (10)0.067 (5)0.072 (6)0.009 (6)0.041 (6)0.010 (4)
C10.090 (8)0.055 (6)0.032 (4)0.001 (6)0.007 (5)0.002 (4)
C20.082 (8)0.063 (6)0.029 (4)0.000 (6)0.004 (5)0.006 (4)
C30.082 (8)0.052 (6)0.032 (4)0.002 (6)0.011 (5)0.000 (4)
C40.077 (7)0.052 (6)0.031 (4)0.003 (5)0.001 (4)0.005 (4)
C50.078 (7)0.048 (5)0.032 (4)0.015 (5)0.003 (5)0.002 (4)
C60.048 (5)0.057 (6)0.036 (4)0.002 (4)0.005 (4)0.006 (4)
C70.078 (8)0.069 (7)0.044 (5)0.006 (6)0.023 (5)0.005 (5)
C80.095 (12)0.132 (15)0.104 (12)0.016 (12)0.041 (10)0.009 (11)
C90.149 (15)0.087 (10)0.047 (6)0.030 (10)0.023 (8)0.012 (6)
C100.094 (9)0.045 (6)0.055 (6)0.003 (6)0.003 (6)0.004 (5)
C110.087 (9)0.051 (6)0.044 (5)0.010 (6)0.019 (6)0.000 (5)
C120.097 (10)0.071 (8)0.053 (6)0.012 (7)0.012 (7)0.003 (6)
C130.145 (17)0.094 (11)0.069 (8)0.038 (12)0.053 (11)0.025 (8)
C140.097 (13)0.088 (11)0.127 (14)0.010 (10)0.055 (12)0.030 (10)
C150.101 (12)0.070 (9)0.102 (11)0.003 (8)0.024 (10)0.008 (8)
C160.113 (12)0.068 (8)0.052 (6)0.019 (8)0.003 (7)0.004 (6)
C170.060 (6)0.049 (5)0.035 (4)0.003 (5)0.009 (4)0.004 (4)
C180.068 (7)0.060 (6)0.033 (4)0.007 (5)0.001 (4)0.001 (4)
C190.081 (8)0.058 (7)0.044 (5)0.007 (6)0.003 (5)0.001 (5)
C200.096 (10)0.069 (7)0.054 (6)0.005 (7)0.004 (6)0.020 (6)
C210.084 (9)0.095 (10)0.039 (5)0.001 (8)0.008 (6)0.011 (6)
C220.078 (8)0.079 (8)0.038 (5)0.019 (7)0.006 (5)0.002 (5)
C230.067 (7)0.070 (7)0.040 (5)0.008 (6)0.007 (5)0.003 (5)
C240.070 (7)0.045 (5)0.031 (4)0.005 (5)0.005 (4)0.006 (4)
C250.076 (7)0.048 (5)0.039 (5)0.005 (5)0.009 (5)0.005 (4)
C260.078 (8)0.069 (7)0.037 (5)0.001 (6)0.009 (5)0.003 (5)
C270.069 (8)0.082 (8)0.053 (6)0.009 (7)0.010 (6)0.002 (6)
C280.085 (9)0.060 (7)0.076 (8)0.011 (7)0.011 (7)0.002 (6)
C290.069 (7)0.057 (6)0.063 (7)0.007 (6)0.011 (6)0.000 (5)
C300.083 (8)0.049 (6)0.036 (5)0.003 (5)0.001 (5)0.002 (4)
C310.086 (8)0.059 (6)0.040 (5)0.005 (6)0.001 (5)0.004 (5)
C320.102 (10)0.083 (8)0.035 (5)0.010 (8)0.002 (6)0.004 (5)
C330.101 (11)0.084 (9)0.048 (6)0.022 (8)0.010 (6)0.008 (6)
C340.092 (10)0.076 (8)0.055 (6)0.011 (7)0.008 (6)0.011 (6)
C350.080 (8)0.058 (6)0.050 (5)0.016 (6)0.018 (5)0.010 (5)
C360.055 (8)0.22 (2)0.075 (9)0.033 (11)0.040 (7)0.051 (12)
Geometric parameters (Å, º) top
S1—O81.416 (10)C14—C151.35 (2)
S1—O71.438 (8)C14—H140.9500
S1—O61.587 (7)C15—C161.40 (2)
S1—C361.726 (12)C15—H150.9500
O1—C11.394 (11)C16—H160.9500
O1—C41.429 (12)C17—C301.512 (14)
O2—C11.392 (14)C17—C181.528 (13)
O2—C71.415 (14)C17—C241.564 (16)
O3—C71.419 (13)C18—C231.378 (15)
O3—C21.423 (14)C18—C191.386 (16)
O4—C101.441 (13)C19—C201.393 (15)
O4—C31.441 (14)C19—H190.9500
O5—C171.452 (12)C20—C211.370 (18)
O5—C61.477 (12)C20—H200.9500
O6—C51.457 (12)C21—C221.375 (18)
C1—C21.533 (16)C21—H210.9500
C1—H11.0000C22—C231.375 (14)
C2—C31.533 (12)C22—H220.9500
C2—H21.0000C23—H230.9500
C3—C41.515 (15)C24—C291.375 (15)
C3—H31.0000C24—C251.383 (15)
C4—C51.521 (12)C25—C261.416 (17)
C4—H41.0000C25—H250.9500
C5—C61.506 (14)C26—C271.386 (18)
C5—H51.0000C26—H260.9500
C6—H6A0.9900C27—C281.40 (2)
C6—H6B0.9900C27—H270.9500
C7—C81.52 (2)C28—C291.413 (19)
C7—C91.515 (19)C28—H280.9500
C8—H8A0.9800C29—H290.9500
C8—H8B0.9800C30—C311.394 (15)
C8—H8C0.9800C30—C351.431 (16)
C9—H9A0.9800C31—C321.386 (16)
C9—H9B0.9800C31—H310.9500
C9—H9C0.9800C32—C331.401 (19)
C10—C111.530 (18)C32—H320.9500
C10—H10A0.9900C33—C341.379 (17)
C10—H10B0.9900C33—H330.9500
C11—C161.35 (2)C34—C351.366 (17)
C11—C121.385 (15)C34—H340.9500
C12—C131.40 (2)C35—H350.9500
C12—H120.9500C36—H36A0.9800
C13—C141.38 (3)C36—H36B0.9800
C13—H130.9500C36—H36C0.9800
O8—S1—O7117.5 (6)C14—C13—C12119.8 (14)
O8—S1—O6106.9 (5)C14—C13—H13120.1
O7—S1—O6109.3 (4)C12—C13—H13120.1
O8—S1—C36110.3 (10)C15—C14—C13121.5 (16)
O7—S1—C36110.9 (8)C15—C14—H14119.3
O6—S1—C36100.4 (7)C13—C14—H14119.3
C1—O1—C4109.3 (8)C14—C15—C16118.8 (18)
C1—O2—C7109.2 (8)C14—C15—H15120.6
C7—O3—C2105.6 (9)C16—C15—H15120.6
C10—O4—C3113.5 (8)C11—C16—C15120.5 (13)
C17—O5—C6113.2 (8)C11—C16—H16119.8
C5—O6—S1119.7 (7)C15—C16—H16119.8
O2—C1—O1111.2 (10)O5—C17—C30110.0 (8)
O2—C1—C2104.8 (9)O5—C17—C18110.0 (8)
O1—C1—C2107.4 (8)C30—C17—C18116.0 (9)
O2—C1—H1111.1O5—C17—C24104.9 (8)
O1—C1—H1111.1C30—C17—C24109.8 (8)
C2—C1—H1111.1C18—C17—C24105.5 (8)
O3—C2—C3108.8 (9)C23—C18—C19117.6 (9)
O3—C2—C1103.7 (10)C23—C18—C17120.3 (10)
C3—C2—C1103.7 (8)C19—C18—C17122.0 (9)
O3—C2—H2113.3C18—C19—C20120.5 (11)
C3—C2—H2113.3C18—C19—H19119.7
C1—C2—H2113.3C20—C19—H19119.7
O4—C3—C4108.5 (9)C21—C20—C19120.5 (12)
O4—C3—C2110.2 (10)C21—C20—H20119.7
C4—C3—C2101.5 (8)C19—C20—H20119.7
O4—C3—H3112.0C20—C21—C22119.4 (10)
C4—C3—H3112.0C20—C21—H21120.3
C2—C3—H3112.0C22—C21—H21120.3
O1—C4—C3104.4 (8)C23—C22—C21119.8 (11)
O1—C4—C5105.3 (8)C23—C22—H22120.1
C3—C4—C5115.7 (9)C21—C22—H22120.1
O1—C4—H4110.4C22—C23—C18122.2 (11)
C3—C4—H4110.4C22—C23—H23118.9
C5—C4—H4110.4C18—C23—H23118.9
O6—C5—C6112.7 (8)C29—C24—C25120.9 (11)
O6—C5—C4104.7 (8)C29—C24—C17120.8 (10)
C6—C5—C4113.6 (8)C25—C24—C17118.3 (9)
O6—C5—H5108.6C24—C25—C26120.4 (10)
C6—C5—H5108.6C24—C25—H25119.8
C4—C5—H5108.6C26—C25—H25119.8
O5—C6—C5108.8 (9)C27—C26—C25119.2 (12)
O5—C6—H6A109.9C27—C26—H26120.4
C5—C6—H6A109.9C25—C26—H26120.4
O5—C6—H6B109.9C26—C27—C28120.0 (13)
C5—C6—H6B109.9C26—C27—H27120.0
H6A—C6—H6B108.3C28—C27—H27120.0
O2—C7—O3104.9 (8)C27—C28—C29120.3 (12)
O2—C7—C8108.9 (12)C27—C28—H28119.8
O3—C7—C8108.6 (12)C29—C28—H28119.8
O2—C7—C9108.7 (12)C24—C29—C28119.2 (12)
O3—C7—C9112.1 (10)C24—C29—H29120.4
C8—C7—C9113.2 (12)C28—C29—H29120.4
C7—C8—H8A109.5C31—C30—C35116.5 (10)
C7—C8—H8B109.5C31—C30—C17120.8 (11)
H8A—C8—H8B109.5C35—C30—C17122.4 (9)
C7—C8—H8C109.5C32—C31—C30120.9 (12)
H8A—C8—H8C109.5C32—C31—H31119.5
H8B—C8—H8C109.5C30—C31—H31119.5
C7—C9—H9A109.5C31—C32—C33121.8 (11)
C7—C9—H9B109.5C31—C32—H32119.1
H9A—C9—H9B109.5C33—C32—H32119.1
C7—C9—H9C109.5C34—C33—C32117.5 (11)
H9A—C9—H9C109.5C34—C33—H33121.3
H9B—C9—H9C109.5C32—C33—H33121.3
O4—C10—C11108.3 (9)C35—C34—C33121.9 (13)
O4—C10—H10A110.0C35—C34—H34119.1
C11—C10—H10A110.0C33—C34—H34119.1
O4—C10—H10B110.0C34—C35—C30121.4 (11)
C11—C10—H10B110.0C34—C35—H35119.3
H10A—C10—H10B108.4C30—C35—H35119.3
C16—C11—C12121.6 (13)S1—C36—H36A109.5
C16—C11—C10119.8 (10)S1—C36—H36B109.5
C12—C11—C10118.6 (13)H36A—C36—H36B109.5
C11—C12—C13117.9 (16)S1—C36—H36C109.5
C11—C12—H12121.0H36A—C36—H36C109.5
C13—C12—H12121.0H36B—C36—H36C109.5
O8—S1—O6—C5121.0 (9)C12—C11—C16—C152 (2)
O7—S1—O6—C57.2 (10)C10—C11—C16—C15178.9 (12)
C36—S1—O6—C5123.9 (11)C14—C15—C16—C110 (2)
C7—O2—C1—O1124.4 (10)C6—O5—C17—C3052.7 (10)
C7—O2—C1—C28.6 (12)C6—O5—C17—C1876.3 (10)
C4—O1—C1—O298.3 (10)C6—O5—C17—C24170.7 (7)
C4—O1—C1—C215.9 (13)O5—C17—C18—C2324.5 (15)
C7—O3—C2—C3139.1 (9)C30—C17—C18—C23150.2 (11)
C7—O3—C2—C129.2 (10)C24—C17—C18—C2388.1 (12)
O2—C1—C2—O312.7 (10)O5—C17—C18—C19159.6 (11)
O1—C1—C2—O3105.7 (10)C30—C17—C18—C1933.9 (16)
O2—C1—C2—C3126.4 (9)C24—C17—C18—C1987.8 (13)
O1—C1—C2—C37.9 (14)C23—C18—C19—C200 (2)
C10—O4—C3—C4162.6 (8)C17—C18—C19—C20175.6 (12)
C10—O4—C3—C287.1 (11)C18—C19—C20—C212 (2)
O3—C2—C3—O4161.9 (8)C19—C20—C21—C222 (2)
C1—C2—C3—O488.1 (11)C20—C21—C22—C232 (2)
O3—C2—C3—C483.3 (11)C21—C22—C23—C180 (2)
C1—C2—C3—C426.6 (12)C19—C18—C23—C220.3 (19)
C1—O1—C4—C333.7 (12)C17—C18—C23—C22176.4 (12)
C1—O1—C4—C5156.0 (9)O5—C17—C24—C2910.1 (12)
O4—C3—C4—O179.5 (9)C30—C17—C24—C29128.3 (10)
C2—C3—C4—O136.6 (11)C18—C17—C24—C29106.0 (11)
O4—C3—C4—C535.7 (12)O5—C17—C24—C25169.0 (8)
C2—C3—C4—C5151.8 (10)C30—C17—C24—C2550.9 (11)
S1—O6—C5—C675.2 (11)C18—C17—C24—C2574.8 (10)
S1—O6—C5—C4160.9 (8)C29—C24—C25—C261.3 (15)
O1—C4—C5—O6179.3 (9)C17—C24—C25—C26177.9 (9)
C3—C4—C5—O664.6 (12)C24—C25—C26—C270.5 (15)
O1—C4—C5—C657.4 (12)C25—C26—C27—C281.3 (17)
C3—C4—C5—C6172.1 (9)C26—C27—C28—C292.3 (19)
C17—O5—C6—C5168.5 (7)C25—C24—C29—C280.3 (17)
O6—C5—C6—O555.3 (11)C17—C24—C29—C28178.9 (10)
C4—C5—C6—O563.5 (11)C27—C28—C29—C241.5 (19)
C1—O2—C7—O327.1 (13)O5—C17—C30—C3180.3 (13)
C1—O2—C7—C8143.2 (11)C18—C17—C30—C31154.0 (11)
C1—O2—C7—C993.0 (11)C24—C17—C30—C3134.7 (14)
C2—O3—C7—O235.1 (12)O5—C17—C30—C3594.1 (12)
C2—O3—C7—C8151.5 (12)C18—C17—C30—C3531.6 (16)
C2—O3—C7—C982.7 (13)C24—C17—C30—C35151.0 (11)
C3—O4—C10—C11177.7 (9)C35—C30—C31—C322.3 (19)
O4—C10—C11—C1687.3 (13)C17—C30—C31—C32177.0 (12)
O4—C10—C11—C1292.2 (13)C30—C31—C32—C331 (2)
C16—C11—C12—C132 (2)C31—C32—C33—C341 (2)
C10—C11—C12—C13178.8 (12)C32—C33—C34—C350 (2)
C11—C12—C13—C140 (2)C33—C34—C35—C301 (2)
C12—C13—C14—C151 (3)C31—C30—C35—C342.6 (19)
C13—C14—C15—C161 (3)C17—C30—C35—C34177.2 (12)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C34—H34···O8i0.952.553.179 (17)124
C25—H25···Cg3ii0.952.993.830 (12)149
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z.
\ (3aR,5S,6S,6aR)-5-[1-Azido-2-(trityloxy)ethyl]-6-\ benzyloxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxole (4) top
Crystal data top
C35H35N3O5Dx = 1.259 Mg m3
Mr = 577.66Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 46634 reflections
a = 10.0943 (1) Åθ = 4.3–76.0°
b = 10.9625 (1) ŵ = 0.68 mm1
c = 27.5392 (2) ÅT = 150 K
V = 3047.45 (5) Å3Prismatic fragment, colourless
Z = 40.26 × 0.15 × 0.13 mm
F(000) = 1224
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
6389 independent reflections
Radiation source: SuperNova (Cu) X-ray Source6282 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.5861 pixels mm-1θmax = 76.5°, θmin = 3.2°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1313
Tmin = 0.676, Tmax = 1.000l = 3334
73112 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.2613P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.39 e Å3
6389 reflectionsΔρmin = 0.18 e Å3
391 parametersExtinction correction: (SHELXL2018; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0007 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 2717 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18408 (10)0.60187 (9)0.10645 (4)0.0270 (2)
O20.00591 (11)0.70764 (11)0.13994 (4)0.0328 (3)
O30.13375 (11)0.56706 (10)0.10832 (4)0.0296 (2)
O40.10606 (11)0.44527 (11)0.02350 (4)0.0291 (2)
O50.15534 (10)0.23286 (9)0.13663 (4)0.0246 (2)
N10.35781 (13)0.41981 (12)0.14726 (5)0.0300 (3)
N20.43200 (15)0.50814 (14)0.14439 (5)0.0354 (3)
N30.5025 (2)0.58666 (18)0.14562 (9)0.0598 (5)
C10.06810 (15)0.66879 (13)0.09676 (6)0.0268 (3)
H10.0869330.7394080.0748340.032*
C20.03197 (15)0.58033 (13)0.07341 (5)0.0261 (3)
H20.0657040.6101240.0413930.031*
C30.04319 (15)0.45956 (13)0.06926 (5)0.0248 (3)
H40.0162450.3888520.0764520.030*
C40.14788 (14)0.47460 (12)0.10874 (5)0.0236 (3)
H50.1069240.4572260.1410730.028*
C50.27373 (14)0.39970 (13)0.10348 (5)0.0246 (3)
H60.3230170.4276140.0740100.030*
C60.24742 (14)0.26381 (13)0.09944 (5)0.0255 (3)
H6A0.2101610.2441240.0671200.031*
H6B0.3307590.2174420.1037200.031*
C70.13035 (16)0.67123 (14)0.13941 (6)0.0284 (3)
C80.16999 (18)0.6312 (2)0.18961 (6)0.0403 (4)
H8A0.2610460.6002520.1889550.060*
H8B0.1645740.7007620.2118830.060*
H8C0.1101560.5665560.2007040.060*
C90.21657 (19)0.77199 (16)0.11883 (7)0.0397 (4)
H9A0.1868800.7919900.0859020.060*
H9B0.2096280.8445280.1394740.060*
H9C0.3089360.7445730.1178240.060*
C100.01360 (17)0.42805 (18)0.01546 (6)0.0383 (4)
H10A0.0128600.5081240.0289620.046*
H10B0.0668700.3865670.0032300.046*
C110.07737 (15)0.35211 (16)0.05432 (6)0.0302 (3)
C120.11051 (18)0.23157 (16)0.04514 (6)0.0354 (4)
H120.0933050.1976810.0140290.042*
C130.16831 (19)0.15995 (16)0.08068 (7)0.0382 (4)
H130.1908120.0775290.0739320.046*
C140.19326 (18)0.20894 (18)0.12618 (6)0.0374 (4)
H140.2330780.1599880.1506140.045*
C150.16047 (17)0.32848 (18)0.13608 (6)0.0370 (4)
H150.1773320.3616370.1673470.044*
C160.10255 (16)0.40072 (16)0.10021 (6)0.0338 (3)
H160.0802180.4831380.1070310.041*
C170.13412 (14)0.10522 (12)0.14551 (5)0.0221 (3)
C180.25661 (14)0.04939 (14)0.17016 (5)0.0247 (3)
C190.33940 (15)0.12422 (15)0.19749 (5)0.0295 (3)
H190.3232320.2095440.1986060.035*
C200.44561 (17)0.07539 (18)0.22319 (6)0.0380 (4)
H200.5011200.1276780.2416970.046*
C210.47113 (18)0.04860 (19)0.22204 (7)0.0425 (4)
H210.5439240.0815460.2395320.051*
C220.38886 (18)0.12450 (17)0.19494 (7)0.0393 (4)
H220.4057650.2097060.1938100.047*
C230.28199 (16)0.07606 (15)0.16951 (6)0.0305 (3)
H230.2256560.1287360.1515090.037*
C240.09417 (14)0.04392 (13)0.09745 (5)0.0239 (3)
C250.18732 (16)0.01114 (14)0.06702 (5)0.0280 (3)
H250.2772930.0158470.0769680.034*
C260.14980 (18)0.05930 (15)0.02220 (6)0.0332 (3)
H260.2141260.0969420.0019670.040*
C270.0192 (2)0.05246 (16)0.00708 (6)0.0359 (4)
H270.0066600.0870820.0230880.043*
C280.07333 (17)0.00507 (18)0.03617 (6)0.0358 (4)
H280.1625520.0119710.0255430.043*
C290.03610 (16)0.05300 (15)0.08105 (6)0.0301 (3)
H290.1004560.0924090.1007310.036*
C300.02126 (14)0.10232 (13)0.18324 (5)0.0231 (3)
C310.02863 (15)0.20958 (14)0.20323 (5)0.0260 (3)
H310.0030670.2861320.1919840.031*
C320.12446 (16)0.20572 (15)0.23951 (6)0.0298 (3)
H320.1574220.2795730.2529190.036*
C330.17216 (15)0.09483 (16)0.25623 (5)0.0298 (3)
H330.2365500.0922430.2813690.036*
C340.12473 (16)0.01243 (15)0.23581 (6)0.0293 (3)
H340.1581700.0887210.2466470.035*
C350.02869 (15)0.00910 (14)0.19965 (5)0.0272 (3)
H350.0031510.0830970.1860060.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0230 (5)0.0237 (5)0.0343 (5)0.0036 (4)0.0021 (4)0.0010 (4)
O20.0263 (5)0.0339 (6)0.0380 (6)0.0031 (5)0.0022 (4)0.0108 (5)
O30.0262 (5)0.0293 (5)0.0332 (6)0.0044 (4)0.0042 (4)0.0081 (4)
O40.0251 (5)0.0395 (6)0.0228 (5)0.0016 (5)0.0013 (4)0.0039 (4)
O50.0245 (5)0.0235 (5)0.0259 (5)0.0000 (4)0.0055 (4)0.0011 (4)
N10.0248 (6)0.0338 (7)0.0314 (7)0.0023 (5)0.0049 (5)0.0024 (5)
N20.0290 (7)0.0374 (7)0.0398 (7)0.0013 (6)0.0027 (6)0.0040 (6)
N30.0427 (9)0.0518 (10)0.0849 (15)0.0151 (9)0.0110 (9)0.0058 (10)
C10.0260 (7)0.0247 (6)0.0297 (7)0.0020 (5)0.0027 (6)0.0021 (5)
C20.0232 (6)0.0294 (7)0.0257 (7)0.0013 (5)0.0015 (5)0.0013 (5)
C30.0229 (6)0.0273 (6)0.0240 (7)0.0017 (5)0.0002 (5)0.0024 (5)
C40.0233 (6)0.0233 (6)0.0242 (6)0.0030 (5)0.0000 (5)0.0006 (5)
C50.0227 (6)0.0277 (7)0.0234 (6)0.0022 (5)0.0009 (5)0.0017 (5)
C60.0244 (7)0.0271 (7)0.0250 (6)0.0003 (5)0.0048 (5)0.0016 (5)
C70.0255 (7)0.0280 (7)0.0317 (7)0.0006 (6)0.0017 (6)0.0057 (6)
C80.0345 (8)0.0554 (10)0.0309 (8)0.0002 (8)0.0004 (7)0.0038 (7)
C90.0333 (8)0.0336 (8)0.0522 (10)0.0029 (7)0.0048 (8)0.0029 (7)
C100.0307 (8)0.0541 (10)0.0299 (8)0.0096 (8)0.0066 (6)0.0103 (7)
C110.0233 (7)0.0414 (8)0.0259 (7)0.0015 (6)0.0049 (5)0.0057 (6)
C120.0368 (9)0.0410 (8)0.0284 (7)0.0008 (7)0.0012 (6)0.0025 (6)
C130.0395 (9)0.0361 (8)0.0391 (9)0.0010 (7)0.0035 (7)0.0033 (7)
C140.0302 (8)0.0480 (10)0.0339 (8)0.0024 (7)0.0030 (6)0.0101 (7)
C150.0297 (8)0.0549 (10)0.0263 (7)0.0035 (7)0.0007 (6)0.0039 (7)
C160.0277 (7)0.0407 (8)0.0331 (8)0.0002 (6)0.0046 (6)0.0028 (7)
C170.0206 (6)0.0234 (6)0.0224 (6)0.0002 (5)0.0020 (5)0.0003 (5)
C180.0209 (6)0.0297 (7)0.0234 (6)0.0005 (5)0.0024 (5)0.0030 (5)
C190.0260 (7)0.0357 (8)0.0269 (7)0.0015 (6)0.0002 (6)0.0018 (6)
C200.0276 (8)0.0522 (10)0.0341 (8)0.0047 (8)0.0062 (6)0.0052 (7)
C210.0279 (8)0.0562 (11)0.0433 (9)0.0059 (8)0.0048 (7)0.0146 (8)
C220.0319 (8)0.0381 (8)0.0479 (10)0.0069 (7)0.0017 (7)0.0129 (7)
C230.0267 (7)0.0297 (7)0.0350 (8)0.0015 (6)0.0015 (6)0.0060 (6)
C240.0252 (7)0.0249 (6)0.0217 (6)0.0014 (5)0.0024 (5)0.0017 (5)
C250.0287 (7)0.0283 (7)0.0271 (7)0.0005 (6)0.0045 (6)0.0011 (6)
C260.0417 (9)0.0307 (7)0.0271 (7)0.0005 (7)0.0084 (6)0.0004 (6)
C270.0473 (10)0.0375 (8)0.0230 (7)0.0076 (7)0.0001 (6)0.0003 (6)
C280.0323 (8)0.0484 (9)0.0268 (7)0.0053 (7)0.0027 (6)0.0015 (7)
C290.0262 (7)0.0394 (8)0.0248 (7)0.0007 (6)0.0007 (6)0.0002 (6)
C300.0203 (6)0.0287 (7)0.0201 (6)0.0011 (5)0.0008 (5)0.0003 (5)
C310.0253 (7)0.0284 (7)0.0243 (6)0.0007 (6)0.0004 (6)0.0022 (5)
C320.0287 (7)0.0357 (8)0.0249 (7)0.0022 (6)0.0016 (6)0.0065 (6)
C330.0248 (7)0.0444 (8)0.0201 (6)0.0009 (6)0.0015 (5)0.0004 (6)
C340.0257 (7)0.0353 (7)0.0269 (7)0.0044 (6)0.0013 (6)0.0048 (6)
C350.0251 (7)0.0287 (7)0.0277 (7)0.0013 (6)0.0022 (6)0.0008 (6)
Geometric parameters (Å, º) top
O1—C11.4071 (18)C14—C151.379 (3)
O1—C41.4437 (16)C14—H140.9500
O2—C11.4106 (19)C15—C161.395 (2)
O2—C71.4323 (19)C15—H150.9500
O3—C21.4146 (18)C16—H160.9500
O3—C71.4276 (17)C17—C241.5383 (19)
O4—C31.4197 (17)C17—C181.5376 (19)
O4—C101.4346 (19)C17—C301.5422 (19)
O5—C61.4241 (17)C18—C191.392 (2)
O5—C171.4365 (17)C18—C231.399 (2)
N1—N21.227 (2)C19—C201.392 (2)
N1—C51.4907 (18)C19—H190.9500
N2—N31.118 (2)C20—C211.384 (3)
C1—C21.541 (2)C20—H200.9500
C1—H11.0000C21—C221.392 (3)
C2—C31.530 (2)C21—H210.9500
C2—H21.0000C22—C231.392 (2)
C3—C41.5251 (19)C22—H220.9500
C3—H41.0000C23—H230.9500
C4—C51.519 (2)C24—C291.394 (2)
C4—H51.0000C24—C251.397 (2)
C5—C61.517 (2)C25—C261.395 (2)
C5—H61.0000C25—H250.9500
C6—H6A0.9900C26—C271.384 (3)
C6—H6B0.9900C26—H260.9500
C7—C81.505 (2)C27—C281.383 (3)
C7—C91.516 (2)C27—H270.9500
C8—H8A0.9800C28—C291.395 (2)
C8—H8B0.9800C28—H280.9500
C8—H8C0.9800C29—H290.9500
C9—H9A0.9800C30—C311.393 (2)
C9—H9B0.9800C30—C351.396 (2)
C9—H9C0.9800C31—C321.391 (2)
C10—C111.501 (2)C31—H310.9500
C10—H10A0.9900C32—C331.386 (2)
C10—H10B0.9900C32—H320.9500
C11—C121.386 (2)C33—C341.388 (2)
C11—C161.395 (2)C33—H330.9500
C12—C131.384 (2)C34—C351.390 (2)
C12—H120.9500C34—H340.9500
C13—C141.386 (3)C35—H350.9500
C13—H130.9500
C1—O1—C4107.55 (10)C12—C13—C14119.74 (17)
C1—O2—C7109.54 (11)C12—C13—H13120.1
C2—O3—C7107.93 (11)C14—C13—H13120.1
C3—O4—C10112.81 (12)C15—C14—C13120.23 (17)
C6—O5—C17116.87 (11)C15—C14—H14119.9
N2—N1—C5114.34 (13)C13—C14—H14119.9
N3—N2—N1174.2 (2)C14—C15—C16120.01 (16)
O1—C1—O2111.58 (12)C14—C15—H15120.0
O1—C1—C2107.25 (11)C16—C15—H15120.0
O2—C1—C2104.48 (12)C15—C16—C11120.08 (16)
O1—C1—H1111.1C15—C16—H16120.0
O2—C1—H1111.1C11—C16—H16120.0
C2—C1—H1111.1O5—C17—C24108.54 (11)
O3—C2—C3108.77 (12)O5—C17—C18110.07 (11)
O3—C2—C1104.90 (11)C24—C17—C18114.63 (12)
C3—C2—C1104.51 (12)O5—C17—C30104.18 (11)
O3—C2—H2112.7C24—C17—C30112.15 (11)
C3—C2—H2112.7C18—C17—C30106.76 (11)
C1—C2—H2112.7C19—C18—C23118.44 (14)
O4—C3—C4109.57 (12)C19—C18—C17119.13 (13)
O4—C3—C2112.54 (12)C23—C18—C17122.20 (13)
C4—C3—C2101.35 (11)C18—C19—C20120.71 (16)
O4—C3—H4111.0C18—C19—H19119.6
C4—C3—H4111.0C20—C19—H19119.6
C2—C3—H4111.0C21—C20—C19120.64 (17)
O1—C4—C5107.85 (11)C21—C20—H20119.7
O1—C4—C3104.40 (11)C19—C20—H20119.7
C5—C4—C3116.94 (12)C20—C21—C22119.22 (17)
O1—C4—H5109.1C20—C21—H21120.4
C5—C4—H5109.1C22—C21—H21120.4
C3—C4—H5109.1C23—C22—C21120.27 (17)
N1—C5—C4108.60 (12)C23—C22—H22119.9
N1—C5—C6107.72 (12)C21—C22—H22119.9
C4—C5—C6113.03 (12)C22—C23—C18120.71 (16)
N1—C5—H6109.1C22—C23—H23119.6
C4—C5—H6109.1C18—C23—H23119.6
C6—C5—H6109.1C29—C24—C25118.14 (14)
O5—C6—C5107.18 (12)C29—C24—C17119.66 (13)
O5—C6—H6A110.3C25—C24—C17121.91 (13)
C5—C6—H6A110.3C24—C25—C26120.77 (15)
O5—C6—H6B110.3C24—C25—H25119.6
C5—C6—H6B110.3C26—C25—H25119.6
H6A—C6—H6B108.5C27—C26—C25120.28 (15)
O3—C7—O2104.61 (12)C27—C26—H26119.9
O3—C7—C8108.15 (13)C25—C26—H26119.9
O2—C7—C8109.10 (13)C28—C27—C26119.58 (15)
O3—C7—C9110.17 (13)C28—C27—H27120.2
O2—C7—C9110.61 (13)C26—C27—H27120.2
C8—C7—C9113.78 (15)C27—C28—C29120.21 (16)
C7—C8—H8A109.5C27—C28—H28119.9
C7—C8—H8B109.5C29—C28—H28119.9
H8A—C8—H8B109.5C28—C29—C24120.96 (15)
C7—C8—H8C109.5C28—C29—H29119.5
H8A—C8—H8C109.5C24—C29—H29119.5
H8B—C8—H8C109.5C31—C30—C35118.69 (13)
C7—C9—H9A109.5C31—C30—C17121.06 (13)
C7—C9—H9B109.5C35—C30—C17120.18 (13)
H9A—C9—H9B109.5C32—C31—C30120.64 (14)
C7—C9—H9C109.5C32—C31—H31119.7
H9A—C9—H9C109.5C30—C31—H31119.7
H9B—C9—H9C109.5C33—C32—C31120.44 (14)
O4—C10—C11109.10 (13)C33—C32—H32119.8
O4—C10—H10A109.9C31—C32—H32119.8
C11—C10—H10A109.9C32—C33—C34119.23 (14)
O4—C10—H10B109.9C32—C33—H33120.4
C11—C10—H10B109.9C34—C33—H33120.4
H10A—C10—H10B108.3C35—C34—C33120.55 (15)
C12—C11—C16119.04 (15)C35—C34—H34119.7
C12—C11—C10120.14 (15)C33—C34—H34119.7
C16—C11—C10120.81 (16)C34—C35—C30120.43 (15)
C13—C12—C11120.90 (16)C34—C35—H35119.8
C13—C12—H12119.5C30—C35—H35119.8
C11—C12—H12119.5
C4—O1—C1—O292.03 (13)C10—C11—C16—C15179.25 (15)
C4—O1—C1—C221.82 (15)C6—O5—C17—C2454.81 (15)
C7—O2—C1—O1127.43 (12)C6—O5—C17—C1871.38 (15)
C7—O2—C1—C211.87 (15)C6—O5—C17—C30174.48 (11)
C7—O3—C2—C3134.00 (12)O5—C17—C18—C1925.84 (17)
C7—O3—C2—C122.64 (15)C24—C17—C18—C19148.52 (13)
O1—C1—C2—O3111.98 (13)C30—C17—C18—C1986.65 (15)
O2—C1—C2—O36.57 (15)O5—C17—C18—C23159.64 (13)
O1—C1—C2—C32.41 (15)C24—C17—C18—C2336.96 (19)
O2—C1—C2—C3120.95 (12)C30—C17—C18—C2387.87 (16)
C10—O4—C3—C4178.79 (13)C23—C18—C19—C200.6 (2)
C10—O4—C3—C269.26 (16)C17—C18—C19—C20175.29 (14)
O3—C2—C3—O4155.11 (12)C18—C19—C20—C210.1 (3)
C1—C2—C3—O493.26 (14)C19—C20—C21—C220.2 (3)
O3—C2—C3—C487.93 (13)C20—C21—C22—C230.3 (3)
C1—C2—C3—C423.70 (14)C21—C22—C23—C180.9 (3)
C1—O1—C4—C5162.76 (12)C19—C18—C23—C221.1 (2)
C1—O1—C4—C337.73 (14)C17—C18—C23—C22175.62 (14)
O4—C3—C4—O181.90 (13)O5—C17—C24—C2980.11 (16)
C2—C3—C4—O137.20 (13)C18—C17—C24—C29156.39 (13)
O4—C3—C4—C537.14 (16)C30—C17—C24—C2934.45 (18)
C2—C3—C4—C5156.24 (12)O5—C17—C24—C2593.58 (15)
N2—N1—C5—C487.25 (16)C18—C17—C24—C2529.91 (19)
N2—N1—C5—C6150.02 (14)C30—C17—C24—C25151.86 (13)
O1—C4—C5—N167.21 (14)C29—C24—C25—C262.1 (2)
C3—C4—C5—N1175.62 (12)C17—C24—C25—C26175.92 (13)
O1—C4—C5—C6173.32 (11)C24—C25—C26—C270.4 (2)
C3—C4—C5—C656.15 (16)C25—C26—C27—C281.6 (3)
C17—O5—C6—C5168.94 (11)C26—C27—C28—C291.7 (3)
N1—C5—C6—O573.10 (14)C27—C28—C29—C240.1 (3)
C4—C5—C6—O546.88 (16)C25—C24—C29—C282.0 (2)
C2—O3—C7—O230.07 (16)C17—C24—C29—C28175.90 (14)
C2—O3—C7—C8146.25 (13)O5—C17—C30—C314.74 (17)
C2—O3—C7—C988.83 (15)C24—C17—C30—C31121.94 (14)
C1—O2—C7—O325.84 (16)C18—C17—C30—C31111.73 (15)
C1—O2—C7—C8141.36 (14)O5—C17—C30—C35178.22 (12)
C1—O2—C7—C992.76 (15)C24—C17—C30—C3561.02 (17)
C3—O4—C10—C11150.62 (14)C18—C17—C30—C3565.31 (16)
O4—C10—C11—C1266.0 (2)C35—C30—C31—C321.3 (2)
O4—C10—C11—C16114.86 (17)C17—C30—C31—C32175.82 (13)
C16—C11—C12—C130.3 (3)C30—C31—C32—C330.2 (2)
C10—C11—C12—C13179.44 (16)C31—C32—C33—C341.0 (2)
C11—C12—C13—C140.2 (3)C32—C33—C34—C351.2 (2)
C12—C13—C14—C150.1 (3)C33—C34—C35—C300.2 (2)
C13—C14—C15—C160.3 (3)C31—C30—C35—C341.1 (2)
C14—C15—C16—C110.2 (3)C17—C30—C35—C34176.04 (13)
C12—C11—C16—C150.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C24–C29 and C30–C35 rings.
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.952.563.281 (2)133
C1—H1···Cg5ii1.002.903.8014 (16)150
C8—H8C···Cg6iii0.982.913.5435 (18)123
C12—H12···Cg50.952.883.7503 (18)153
C15—H15···Cg6i0.952.913.6050 (18)131
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

Data for compound 3 were collected by Associate Professor Jack Clegg at the School of Chemistry and Mol­ecular Biosciences, University of Queensland, and the data for compound 4 were collected at the School of Chemistry, University of Sydney.

Funding information

Funding for this work was provided to MIS by the University of Newcastle Priority Research Centre for Chemical Biology & Clinical Pharmacology and by the Faculty of Science.

References

First citationAdiwidjaja, G., Brunck, J.-S., Polchow, K. & Voss, J. (2000). Carbohydr. Res. 325, 237–244.  CrossRef Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArmishaw, O. A., Cox, P. J., Hassan, A. K. & Wardell, J. L. (1996). J. Chem. Crystallogr. 26, 701–705.  CrossRef Google Scholar
First citationBrown, J. H., Cook, S. J., Jones, R. H. & Khan, R. (1986). Tetrahedron, 42, 5089–5096.  CrossRef Google Scholar
First citationBuchanan, J. G. & Oakes, E. M. (1965). Carbohydr. Res. 1, 242–253.  CrossRef Google Scholar
First citationChheda, J. N., Román-Leshkov, Y. & Dumesic, J. A. (2007). Green Chem. 9, 342–350.  CrossRef Google Scholar
First citationChuntanapum, A. & Matsumura, Y. (2010). Ind. Eng. Chem. Res. 49, 4055–4062.  CrossRef Google Scholar
First citationCraythorne, S. J., Pollock, C. L., Blake, A. J., Nieuwenhuyzen, M., Marr, A. C. & Marr, P. C. (2009). New J. Chem. 33, 479–483.  CrossRef Google Scholar
First citationGarcía-Moreno, M. I., Mellet, C. O. & García Fernández, J. M. (2007). Tetrahedron, 63, 7879–7884.  Google Scholar
First citationGramera, R. E., Ingle, T. R. & Whistler, R. L. (1964a). J. Org. Chem. 29, 1083–1086.  CrossRef Google Scholar
First citationGramera, R. E., Ingle, T. R. & Whistler, R. L. (1964b). J. Org. Chem. 29, 2074–2075.  CrossRef Google Scholar
First citationHasegawa, A., Goto, M. & Kiso, M. (1985). J. Carbohydr. Chem. 4, 627–638.  CrossRef Google Scholar
First citationHayase, F., Takahashi, Y., Sasaki, S., Shizuuchi, S. & Watanabe, H. (2002). Int. Congr. Ser. 1245, 217–221.  CrossRef Google Scholar
First citationJin, F., Yun, J., Li, G., Kishita, A., Tohji, K. & Enomoto, H. (2008). Green Chem. 10, 612–615.  CrossRef Google Scholar
First citationKarpiesiuk, W., Banaszek, A. & Zamojski, A. N. (1989). Carbohydr. Res. 186, 156–162.  CrossRef Google Scholar
First citationKrajewski, J. W., Gluziński, P. & Banaszek, A. (1992). Carbohydr. Res. 225, 1–9.  CrossRef Google Scholar
First citationKroh, L. W., Fiedler, T. & Wagner, J. (2008). Ann. N. Y. Acad. Sci. 1126, 210–215.  CrossRef Google Scholar
First citationLatham, K., Simone, M. I., Dose, W., Allen, J. & Donne, S. (2017). Carbon, 114, 566–578.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMamat, C., Peppel, T. & Köckerling, M. (2012). Crystals, 2, 105–109.  CrossRef Google Scholar
First citationMonnier, V. M., Sell, D. R., Dai, Z., Nemet, I., Collard, F. & Zhang, J. (2008). Ann. N. Y. Acad. Sci. 1126, 81–88.  CrossRef Google Scholar
First citationMulard, L. A., Kováč, P. & Glaudemans, C. P. J. (1994). Carbohydr. Res. 259, 21–34.  CrossRef Google Scholar
First citationNoyce, D. S. & Virgilio, J. A. (1972). J. Org. Chem. 37, 2643–2647.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReed, J. H., Turner, P., Kato, A., Houston, T. A. & Simone, M. I. (2013). Acta Cryst. E69, o1069–o1070.  CrossRef IUCr Journals Google Scholar
First citationReza, M. T., Andert, J., Wirth, B., Busch, D., Pielert, J., Lynam, J. G. & Mumme, J. (2014). Appl. Bioenergy, 1, 11–29.  CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.  Google Scholar
First citationSaeki, H., Iwashige, T. & Ohki, E. (1968). Chem. Pharm. Bull. 16, 1040–1047.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimone, M., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, o1088–o1090.  CrossRef IUCr Journals Google Scholar
First citationSimone, M. I., Soengas, R. G., Jenkinson, S. F., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2012). Tetrahedron Asymmetry, 23, 401–408.  Web of Science CrossRef CAS Google Scholar
First citationSoengas, R. G., Simone, M. I., Hunter, S., Nash, R. J., Evinson, E. L. & Fleet, G. W. J. (2012). Eur. J. Org. Chem. pp. 2394–2402.  CrossRef Google Scholar
First citationSofian, A. S. M., Lee, C. K. & Linden, A. (2002). Carbohydr. Res. 337, 2377–2381.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrokol, Z., Bouche, A.-G., van Estrik, A., Strik, R. C. J., Maschmeyer, T. & Peters, J. A. (2004). Carbohydr. Res. 339, 1717–1726.  CrossRef Google Scholar
First citationStemann, J., Erlach, B. & Ziegler, F. (2013). Waste Biomass Valor. 4, 441–454.  CrossRef Google Scholar
First citationTsuchiya, T. (1990). Adv. Carbohydr. Chem. 48, 91–277.  Google Scholar
First citationTsuchiya, T., Takahashi, Y., Endo, M., Umezawa, S. & Umezawa, H. (1985). J. Carbohydr. Chem. 4, 587–611.  CrossRef Google Scholar
First citationVos, J. N., Van Boom, J. H., van Boeckel, C. A. A. & Beetz, T. (1984). J. Carbohydr. Chem. 3, 117–124.  CrossRef Google Scholar
First citationVoss, J., Polchow-Stein, K. & Adiwidjaja, G. (2016). Z. Naturforsch. Teil B, 71, 789–793.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamashita, M., Kawai, Y., Uchida, I., Komori, T., Kohsaka, M., Imanaka, H., Sakane, K., Setoi, H. & Teraji, T. (1984). Tetrahedron Lett. 25, 4689–4692.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds