research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of a manganese(I) and a rhenium(I) complex of a bi­pyridine ligand with a non-coordinating benzoic acid moiety

CROSSMARK_Color_square_no_text.svg

aUniversity of Wisconsin Oshkosh Department of Chemistry, 800 Algoma Blvd., Oshkosh, WI 54902, USA, and bDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
*Correspondence e-mail: lenses@uwosh.edu, iguzei@chem.wisc.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 April 2018; accepted 19 April 2018; online 27 April 2018)

The structures of two facially coordinated Group VII metal complexes are reported, namely: fac-bromido­[2-(2,2′-bipyridin-6-yl)benzoic acid-κ2N,N′]tricarbonyl­manganese(I) tetra­hydro­furan monosolvate, [MnBr(C17H12N2O2)(CO)3]·C4H8O, I, and fac-[2-(2,2′-bipyridin-6-yl)benzoic acid-κ2N,N′]tricarbonyl­chlorido­rhenium(I) tetra­hydro­furan monosolvate, [ReCl(C17H12N2O2)(CO)3]·C4H8O, II. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ion, and a 2-(2,2′-bipyridin-6-yl)benzoic acid ligand, in a distorted octa­hedral geometry. In manganese complex I, the tetra­hydro­furan (THF) solvent mol­ecule could not be refined due to disorder. The benzoic acid fragment is also disordered over two positions, such that the carb­oxy­lic acid group is either positioned near to the bromide ligand or to the axial carbonyl ligand. In the crystal of I, the complex mol­ecules are linked by a pair of C—H⋯Br hydrogen bonds, forming inversion dimers that stack up the a-axis direction. In the rhenium complex II, there is hydrogen bonding between the benzoic acid moiety and a disordered co-crystallized THF mol­ecule. In the crystal, the mol­ecules are linked by C—H⋯Cl hydrogen bonds, forming layers parallel to (100) separated by layers of THF solvent mol­ecules.

1. Chemical context

Crystal structures of fac-[M(2,2′-bipyrid­yl)(CO)3X]n+ (M = MnI or ReI, X = monoanionic ligand, n = 0 or X = neutral ligand, n = 1) complexes have been reported for complexes bearing many different bipyridyl derivatives. Among the numerous examples are structures reported by Chen et al. (2005[Chen, Y. D., Zhang, L. Y. & Chen, Z. N. (2005). Acta Cryst. E61, m121-m122.]), Gerlits & Coppens (2001[Gerlits, O. O. & Coppens, P. (2001). Acta Cryst. E57, m164-m166.]), and Horn et al. (1987[Horn, E., Snow, M. R. & Tiekink, E. R. T. (1987). Acta Cryst. C43, 792-794.]). Complexes of the type fac-[Re(2,2′-bipyrid­yl)(CO)3X]n+ and fac-[Mn(2,2′-bipyrid­yl)(CO)3X]n+, are of particular inter­est as selective catalysts for the reduction of CO2 to CO (Bourrez et al., 2011[Bourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. (2011). Angew. Chem. Int. Ed. 50, 9903-9906.]; Hawecker et al., 1986[Hawecker, J., Lehn, J.-M. & Ziessel, R. (1986). Helv. Chim. Acta, 69, 1990-2012.]; Smieja et al., 2013[Smieja, J. M., Sampson, M. D., Grice, K. A., Benson, E. E., Froehlich, J. D. & Kubiak, C. P. (2013). Inorg. Chem. 52, 2484-2491.]; Sampson et al., 2014[Sampson, M. D., Nguyen, A. D., Grice, K. A., Moore, C. E., Rheingold, A. L. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 5460-5471.]; Machan et al., 2014[Machan, C. W., Chabolla, S. A., Yin, J., Gilson, M. K., Tezcan, F. A. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 14598-14607.]; Smieja & Kubiak, 2010[Smieja, J. M. & Kubiak, C. P. (2010). Inorg. Chem. 49, 9283-9289.]). The addition of weak Brønsted acids such as water or methanol are necessary for the catalytic turnover of Mn complexes (Smieja et al., 2013[Smieja, J. M., Sampson, M. D., Grice, K. A., Benson, E. E., Froehlich, J. D. & Kubiak, C. P. (2013). Inorg. Chem. 52, 2484-2491.]) and they also significantly increase the catalytic rate of Re complexes (Smieja et al., 2012[Smieja, J. M., Benson, E. E., Kumar, B., Grice, K. A., Seu, C. S., Miller, A. J. M., Mayer, J. M. & Kubiak, C. P. (2012). Proc. Natl Acad. Sci. USA, 109, 15646-15650.]). Moreover, the use of bipyridyl ligands in these complexes containing phenolic functional groups positioned near the CO2 binding site, which can act as intra­molecular proton donors, have been shown to enhance catalytic performance. fac-Tri­carbonyl­bromido[2-(2,2′-bipyridin-6-yl-κ2N,N′)phenol]manganese(I) showed enhanced catalytic activity for the reduction of CO2 to CO compared to fac-tri­carbonyl­bromido­(2,2′-bi­pyridine)­manganese(I) (Agarwal et al., 2015[Agarwal, J., Shaw, T. W., Schaefer, H. F. III & Bocarsly, A. B. (2015). Inorg. Chem. 54, 5285-5294.]). fac-Tri­carbonyl­bromido[2-(4-phenyl-2,2′-bipyridin-6-yl-κ2N,N′)benzene-1,3-diol]man­ganese(I) was found to electrocatalytically reduce CO2 to a mixture of CO and formic acid in the absence of external Brønsted acids (Franco et al., 2014[Franco, F., Cometto, C., Vallana, F. F., Sordello, F., Priola, E., Minero, C., Nervi, C. & Gobetto, R. (2014). Chem. Commun. 50, 14670-14673.]). In the presence of external Brønsted acids, selectivity for formate versus CO was found to depend on acid strength (Franco et al., 2017[Franco, F., Cometto, C., Nencini, L., Barolo, C., Sordello, F., Minero, C., Fiedler, J., Robert, M., Gobetto, R. & Nervi, C. (2017). Chem. Eur. J. 23, 4782-4793.]).

[Scheme 1]

Herein, we report on the syntheses and structural characterizations of two new complexes of the type fac-[M(2,2′-bipyrid­yl)(CO)3X]n+, viz. fac-bromido­[2-(2,2′-bipyridin-6-yl)benzoic acid-κ2N,N′]tri­carbonyl­manganese(I) tetra­hydro­furan monosolvate, I, and fac-[2-(2,2′-bipyridin-6-yl)benzoic acid-κ2N,N′]tri­carbonyl­chlorido­rhenium(I) tetra­hydro­furan monosolvate, II, in which the bipyridyl ligand contains a different type of intra­molecular proton donor positioned near the CO2 binding site. These complexes are the first reported examples of a bipyridyl ligand containing a 2-(2,2′-bipyridin-6-yl)benzoic acid backbone in which the benzoic acid moiety remains protonated and does not coordinate to the metal.

2. Structural commentary

The mol­ecular structures of compounds I and II are illustrated in Figs. 1[link] and 2[link], respectively. Both compounds crystallize as tetra­hydro­furan (THF) monosolvates, THF having been used for the recrystallization of both compounds. The metal atoms exhibit distorted octa­hedral geometries and contain primary coordination spheres similar to those of other fac-[Re(α-di­imine)(CO)3Cl] and fac-[Mn(α-di­imine)(CO)3Br] complexes; including fac-tri­carbonyl­chlorido­(4,4′-dihy­droxy-2,2′-bi­pyri­dine)­rhenium(I) (III; Manbeck et al., 2015[Manbeck, G. F., Muckerman, J. T., Szalda, D. J., Himeda, Y. & Fujita, E. (2015). J. Phys. Chem. B, 119, 7457-7466.]), fac-tri­carbonyl­iodido­(2,2′-bi­pyridine)­manganese(I) (IV; Stor et al., 1995[Stor, G. J., Stufkens, D. J., Vernooijs, P., Baerends, E. J., Fraanje, J. & Goubitz, K. (1995). Inorg. Chem. 34, 1588-1594.]), and fac-tri­carbonyl­bromido­[2-(2,2′-bipyridin-6-yl-κ2N,N′)phenol]manganese(I) (V; Agarwal et al., 2015[Agarwal, J., Shaw, T. W., Schaefer, H. F. III & Bocarsly, A. B. (2015). Inorg. Chem. 54, 5285-5294.]). The metal–ligand bond distances are similar to those previously reported for complexes of this type, for e.g., in I the Mn—N bond distances are 2.029 (2) and 2.082 (2) Å, while in V the Mn—N bond distances are 2.0347 (8) and 2.091 (1) Å.

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with partial atom labeling and 50% probability displacement ellipsoids. Both disorder components of the benzoic acid group are shown (the minor one with dashed lines), and H atoms have been omitted for clarity.
[Figure 2]
Figure 2
A mol­ecular structure of compound II, with atom labeling and 50% probability ellipsoids. The two minor solvent disorder components have been omitted for clarity

In I, the benzoic acid fragment is disordered over two positions (Fig. 1[link]). In the major component, the carb­oxy­lic acid group is positioned near the bromide ligand (see Fig. 3[link]), whereas in the minor component the benzoic acid fragment is rotated such that the carb­oxy­lic acid group is positioned near the axial carbonyl ligand (see Fig. 4[link]). In II, the benzoic acid fragment is not disordered, and the carb­oxy­lic acid group is positioned near the axial carbonyl ligand (Fig. 2[link]).

[Figure 3]
Figure 3
The mol­ecular structure of compound I, with atom labeling and showing the position of the major component of the disordered benzoic acid group. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of compound I, with atom labeling and showing the position of the minor component of the disordered benzoic acid group. Displacement ellipsoids are drawn at the 50% probability level.

Mol­ecules with similar motifs, in which a benzoic acid is bound to a pyridyl ring in the ortho position (Charris-Molina et al., 2017[Charris-Molina, A., Castillo, J.-C., Macías, M. & Portilla, J. (2017). J. Org. Chem. 82, 12674-12681.]) or to a phenyl ring in the ortho position (Dobson & Gerkin, 1998[Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 795-798.]), have been structurally characterized. Compared to the torsion angles between the benzoic acid fragment and the pyridyl or phenyl rings in these structures, the benzoic acid fragment and the pyridyl ring in I and II are closer to being perpendicular to each other, with the N2—C13—C14—C19 torsion angle being −116.4 (3)° in the major component of I and 100.55 (19)° in II. In the minor component of I, the N2—C13—C14A—C19A torsion angle is 85.7 (8)°. In contrast, for the structures reported by Charris-Molina et al. (2017[Charris-Molina, A., Castillo, J.-C., Macías, M. & Portilla, J. (2017). J. Org. Chem. 82, 12674-12681.]) the analogous torsion angles are 52.6 (4), −40.5 (3), −51.5 (5) and 48.8 (3)°. In the structure of biphenyl-2-carb­oxy­lic acid itself (Dobson & Gerkin, 1998[Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 795-798.]), the analogous torsion angles of the four mol­ecules of the asymmetric unit are −46.7 (4), −52.3 (4), 48.2 (4) and 52.3 (4)°. Smaller absolute values of the torsion angles for I and II would result in closer contacts between the atoms of the benzoic acid fragment and the ancillary ligands around the metal, which may explain the more perpendicular torsion angles found in I and II.

3. Supra­molecular features

In compound I, the THF solvate mol­ecule is disordered over several positions and probably forms inter­molecular hydrogen bonds. In the crystal, complex mol­ecules are linked by pairs of C—H⋯Br hydrogen bonds, forming inversion dimers (Table 1[link]). A view of the crystal packing is given in Fig. 5[link] and shows the voids occupied by the disordered THF solvent mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Br1i 0.95 2.87 3.685 (3) 144
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
A view along the a axis of the crystal packing of compound I. The C—H⋯Br hydrogen bonds (Table 1[link]) are shown as dashed lines and the regions occupied by the disordered THF solvent mol­ecules as yellow/brown cavities (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). Only the major component of the disordered benzoic acid group is shown.

In compound II, there is hydrogen bonding between the benzoic acid group and the oxygen atom of the disordered THF mol­ecule (Table 2[link]). In the crystal, the complex mol­ecules are linked by C—H⋯Cl hydrogen bonds, forming layers lying parallel to the bc plane (Table 2[link] and Fig. 6[link]), which are separated by layers of THF solvent mol­ecules.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O6 0.90 (3) 1.74 (4) 2.615 (4) 164 (3)
O5—H5⋯O6A 0.90 (3) 1.68 (4) 2.516 (15) 154 (3)
O5—H5⋯O6B 0.90 (3) 1.83 (4) 2.642 (9) 150 (3)
C5—H5A⋯Cl1i 0.95 2.80 3.371 (2) 120
C10—H10⋯Cl1ii 0.95 2.70 3.552 (2) 149
C12—H12⋯Cl1iii 0.95 2.76 3.524 (2) 138
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 6]
Figure 6
A view along the c axis of the crystal packing of compound II. The O—H⋯O and C—H⋯Cl hydrogen bonds are shown as dashed lines (Table 2[link]). Only the major component of the disordered THF mol­ecule is shown and H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes containing a polypyridine ligand with an o-benzoate substituent in the 6-position of the polypyridine moiety gave two hits, viz. [2-(2,2′:4′,2′′-terpyridin-6′-yl-κ2N1,N1′)benzoato-κO]manganese(II) trihydrate (CSD refcode MEWBAT; Liu, 2013[Liu, X. (2013). Acta Cryst. E69, m204.]) and {[dimeth­yl(phen­yl)sil­yl]acetato}-[N-(3,5-di-t-butyl­phen­yl)-2-{6-[3,5-di-t-butyl-2-({[tris­(penta­fluoro­phen­yl)-λ5-boran­yl]­oxy}carbon­yl)phen­yl]pyridin-2-yl}quinolin-8-amine]­scandium toluene solvate (RIPLOT; LeBlanc et al., 2014[LeBlanc, F. A., Piers, W. E. & Parvez, M. (2014). Angew. Chem. Int. Ed. 53, 789-792.]). Unlike in I and II, the benzoate substituent in these complexes is deprotonated and coordinates to the metal forming a seven-membered chelate ring. The reaction conditions and the low oxidation number of the metals in I and II would be expected to disfavor deprotonation of the benzoic acid substituent and its coordination to the metal.

5. Electrochemistry

In order to determine whether I and II could act as pre-catalysts for the reduction of CO2, cyclic voltammetry experiments were performed. These studies were conducted in aceto­nitrile containing 1 mM I or II and 0.1 M tetra­butyl­ammonium hexa­fluoro­phosphate using a glassy carbon working electrode, a platinum wire auxiliary electrode, and an Ag/Ag+ non-aqueous reference electrode. Ferrocene was used as an inter­nal standard. In order to determine whether a catalytic current enhancement was observed in the presence of the substrate, the current response was measured under an inert gas atmosphere, after bubbling CO2 through the solution, and after bubbling CO2 through the solution in the presence of an external Brønsted acid (5% water by volume). In the presence of CO2 and water, similar complexes have shown a catalytic current enhancement at the potential at which the complexes undergo a second one-electron reduction (Bourrez et al., 2011[Bourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. (2011). Angew. Chem. Int. Ed. 50, 9903-9906.]; Agarwal et al., 2015[Agarwal, J., Shaw, T. W., Schaefer, H. F. III & Bocarsly, A. B. (2015). Inorg. Chem. 54, 5285-5294.]; Smieja & Kubiak, 2010[Smieja, J. M. & Kubiak, C. P. (2010). Inorg. Chem. 49, 9283-9289.]). Inter­estingly, neither complex presented here showed electrocatalytic activity for the reduction of CO2 at or near this potential, even in the presence of an external Brønsted acid (5% water by volume). In order to probe whether catalysis was inhibited specifically by the intra­molecular nature of the benzoic acid substituent, the cyclic voltammetry of fac-[Mn(2,2′-bipyrid­yl)(CO)3Br] was performed in the presence of CO2, 5% water, and up to 50 molar equivalents of benzoic acid. Even in the presence of 50 molar equivalents of benzoic acid, the current enhancement was similar to that in the presence of only CO2 and 5% water (Bourrez et al., 2011[Bourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. (2011). Angew. Chem. Int. Ed. 50, 9903-9906.]), indicating that it is the presence of the benzoic acid substituent in an intra­molecular fashion that inhibits catalysis.

6. Synthesis and crystallization

Toluene, ethanol, and aceto­nitrile used in syntheses were degassed by sparging with N2. THF, hexane, and pentane were dried over mol­ecular sieves and degassed using the freeze-pump-thaw method when used for recrystallization. All other reagents and solvents were purchased commercially and used as received. Metallated complexes were manipulated and stored in the dark to minimize exposure to light.

Synthesis of methyl 2-(2,2′-bipyridin-6-yl)benzoate: The reagents 6-bromo-2,2′-bi­pyridine (0.500 g, 2.13 mmol) and 2-meth­oxy­carbonyl­phenyl­boronic acid, pinacol ester (0.715 g, 2.73 mmol) and the catalyst tetra­kis­(tri­phenyl­phosphine)palladium(0) (0.11 g, 0.095 mmol) were placed in a Kjedahl-shaped Schlenk flask. The flask was then evacuated and refilled with nitro­gen three times, ending with the flask under nitro­gen. Toluene (26 ml), ethanol (2.6 ml), and 2 M aqueous K2CO3 (2.1 ml) were added to the flask, which was then heated at 368 K under nitro­gen under stirring for 41 h. The reaction mixture was cooled to room temperature, and then saturated aqueous ammonium chloride (26 ml) and deionized water (26 ml) were added to the reaction flask. The product mixture was then extracted with di­chloro­methane three times (42 ml, 30 ml, 25 ml). The combined organic layers were dried over magnesium sulfate and then filtered. The solvent was removed under vacuum. The product was purified by column chromatography using silica gel 60 as the solid phase and diethyl ether as the eluant (Rf = 0.60). (yield 0.395 g, 63.9%) 1H NMR (270 MHz, CDCl3) (ppm): δ8.69 (d, 1H, J = 4.7 Hz), δ8.51–8.48 (m, 2H), δ7.95–7.84 (m, 2H), δ7.77 (dd, 1H, J = 7.5 Hz, J = 1.3 Hz), δ7.69–7.45 (m, 4H), δ7.34 (poorly resolved multiplet, 1H), δ3.53 (s, 3H). MS (ES–API): found m/z = 291.1 [M + H]+; {C18H15N2O2+} requires 291.1.

Synthesis of 2-(2,2′-bipyridin-6-yl)benzoic acid: Water (7.7 ml) containing 0.77 g (19 mmol) of dissolved sodium hydroxide was added to methyl 2-(2,2′-bipyridin-6-yl)benzoate (0.175 g, 0.60 mmol). The reaction mixture was refluxed for 3 h under stirring. The reaction was then cooled to room temperature. Aqueous hydro­chloric acid (2 N) was added dropwise until the pH was approximately 4. The white precipitate that appeared was collected on a Büchner funnel by vacuum filtration. The precipitate was washed with 4 ml deionized water and then dried in vacuo (yield 0.167g, 100%). 1H NMR (270 MHz, D2O containing 1M NaOH) (ppm): δ8.84 (d, 1H, J = 4.6 Hz), δ8.46 (d, 1H, J = 8.1 Hz), δ8.21–8.29 (m, 3H), δ7.88–9.95 (m, 2H), δ7.71–7.81 (m, 4H).

Synthesis of compound I: Bromo­penta­carbonyl­manganese(I) (0.0525 g, 0.191 mmol) and 2-(2,2′-bipyridin-6-yl)benzoic acid (0.0500 g, 0.181 mmol) were placed in a Schlenk flask, which was then evacuated and refilled with nitro­gen three times, ending with the flask under nitro­gen. Aceto­nitrile (9.4 ml) was added to the flask, which was then covered with aluminium foil. The reaction was heated to 333 K and stirred under a nitro­gen atmosphere for 12 h. The reaction was cooled to room temperature and the solvent then removed under vacuum. The crude product was dissolved in a minimal amount of THF and recrystallized by slow diffusion of hexane into the solution. These recrystallization conditions performed on a smaller scale produced the yellow needle-like crystals used for X-ray crystallographic analysis. IR νCO (KBr pellet, cm−1): 2019(s), 1933(s), 1912(s).

Synthesis of compound II: Penta­carbonyl­chloro­rhenium(I) (0.0273 g, 0.0755 mmol) and 2-(2,2′-bipyridin-6-yl)benzoic acid (0.0207 g, 0.0749 mmol) were placed in a Schlenk flask, which was then evacuated and refilled with nitro­gen three times, ending with the flask under nitro­gen. Aceto­nitrile (3.5 ml) was added to the flask, which was then covered with aluminium foil. The reaction was heated to 333 K and stirred under a nitro­gen atmosphere for 12 h. The reaction was cooled to room temperature and the solvent then removed under vacuum. The crude product was dissolved in a minimal amount of THF and recrystallized by slow diffusion of pentane into the solution. These recrystallization conditions performed on a smaller scale produced the yellow block-like crystals used for X-ray crystallographic analysis. IR νCO (KBr pellet, cm−1): 2072(s), 1977(s), 1936(s).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds the C-bound H atoms were included in idealized positions and allowed to ride on the parent atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). In compound II, the carb­oxy­lic H atom was located in a difference-Fourier map and freely refined.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [MnBr(C17H12N2O2)(CO)3]·C4H8O [ReCl(C17H12N2O2)(CO)3]·C4H8O
Mr 495.17 654.07
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 10.525 (3), 18.187 (5), 12.459 (4) 15.462 (4), 11.370 (3), 13.370 (3)
β (°) 105.928 (13) 98.023 (10)
V3) 2293.2 (12) 2327.4 (10)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.35 5.38
Crystal size (mm) 0.21 × 0.04 × 0.03 0.28 × 0.24 × 0.22
 
Data collection
Diffractometer Bruker SMART APEXIII area detector Bruker SMART APEXIII area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Analytical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.673, 0.802 0.285, 0.526
No. of measured, independent and observed [I > 2σ(I)] reflections 51901, 6992, 5393 70522, 7944, 7361
Rint 0.048 0.027
(sin θ/λ)max−1) 0.716 0.742
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.01 0.016, 0.039, 1.03
No. of reflections 6992 7944
No. of parameters 346 342
No. of restraints 149 27
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.77 1.63, −1.64
Computer programs: APEX3 and SAINT-Plus (Bruker, 2015[Bruker (2015). APEX3 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

In compound I, the benzoic acid fragment is disordered over two positions with the major component contribution of 74.8 (3)%. The disordered fragment was refined with restraints. The solvent THF mol­ecule is disordered over at least three positions. Bond-length restraints were applied to model the mol­ecules but the resulting isotropic displacement coefficients suggested they were mobile. In addition, the refinement was computationally unstable. Finally the option SQUEEZE of the program PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) was used to correct the diffraction data for diffuse scattering effects and to identify the solvate mol­ecule. PLATON calculated the upper limit of volume that can be occupied by the solvent to be 475 Å3, or 21% of the unit-cell volume. The program calculated 153 electrons in the unit cell for the diffuse species. This closely corresponds to four mol­ecules of THF (160 electrons) per unit cell, or one THF mol­ecule per MnI complex (I). Their formula mass and unit-cell characteristics were not taken into account during refinement. It is very likely that this solvate mol­ecule, which is disordered over several positions, could form hydrogen bonds.

In compound II, the THF mol­ecule is disordered over three positions in a 0.672 (3):0.202 (2):0.126 (3) ratio. The disordered mol­ecules were refined with restraints and constraints (Guzei, 2014[Guzei, I. A. (2014). J. Appl. Cryst. 47, 806-809.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2015); cell refinement: SAINT-Plus (Bruker, 2015); data reduction: SAINT-Plus (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

fac-Bromido[2-(2,2'-bipyridin-6-yl)benzoic acid-κ2N,N']tricarbonylmanganese(I) tetrahydrofuran monosolvate (I) top
Crystal data top
[MnBr(C17H12N2O2)(CO)3]·C4H8OF(000) = 984
Mr = 495.17Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.525 (3) ÅCell parameters from 9894 reflections
b = 18.187 (5) Åθ = 2.2–28.9°
c = 12.459 (4) ŵ = 2.35 mm1
β = 105.928 (13)°T = 100 K
V = 2293.2 (12) Å3Needle, yellow
Z = 40.21 × 0.04 × 0.03 mm
Data collection top
Bruker SMART APEXIII area detector
diffractometer
6992 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs5393 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.048
Detector resolution: 7.9 pixels mm-1θmax = 30.6°, θmin = 2.0°
0.5° ω and 0.5° φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2625
Tmin = 0.673, Tmax = 0.802l = 1717
51901 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0415P)2 + 3.4283P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
6992 reflectionsΔρmax = 0.59 e Å3
346 parametersΔρmin = 0.76 e Å3
149 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.81210 (3)0.58497 (2)0.67241 (2)0.03094 (8)
Mn10.79215 (3)0.67459 (2)0.51236 (3)0.02312 (9)
O10.8538 (2)0.79491 (12)0.6780 (2)0.0465 (6)
O21.08314 (18)0.67387 (11)0.57136 (18)0.0358 (4)
O30.7716 (2)0.77396 (12)0.32364 (19)0.0422 (5)
N10.7657 (2)0.58451 (10)0.41253 (18)0.0250 (4)
N20.58835 (19)0.66090 (10)0.47642 (18)0.0231 (4)
C10.8213 (2)0.74942 (14)0.6135 (2)0.0312 (6)
C20.9700 (2)0.67300 (13)0.5454 (2)0.0276 (5)
C30.7791 (2)0.73615 (14)0.3956 (3)0.0319 (6)
C40.8611 (3)0.55066 (14)0.3774 (2)0.0320 (6)
H40.94610.57270.39380.038*
C50.8408 (3)0.48547 (15)0.3187 (2)0.0365 (6)
H50.91050.46280.29600.044*
C60.7168 (3)0.45389 (15)0.2939 (3)0.0399 (7)
H60.70000.40890.25380.048*
C70.6172 (3)0.48852 (15)0.3280 (3)0.0361 (6)
H70.53130.46760.31130.043*
C80.6446 (2)0.55402 (13)0.3867 (2)0.0265 (5)
C90.5448 (2)0.59597 (12)0.4244 (2)0.0247 (5)
C100.4168 (3)0.57149 (15)0.4078 (3)0.0352 (6)
H100.38970.52590.37140.042*
C110.3283 (3)0.61409 (16)0.4449 (3)0.0415 (7)
H110.24080.59730.43700.050*
C120.3689 (3)0.68058 (15)0.4929 (3)0.0365 (6)
H120.30880.71140.51660.044*
C130.4982 (2)0.70278 (13)0.5069 (2)0.0276 (5)
O40.5438 (3)0.69265 (14)0.7265 (2)0.0426 (7)0.748 (3)
H4A0.54530.67050.78600.064*0.748 (3)
O50.5472 (3)0.79126 (15)0.8336 (2)0.0375 (7)0.748 (3)
C140.5363 (3)0.78182 (19)0.5386 (3)0.0255 (7)0.748 (3)
C150.5461 (5)0.8292 (2)0.4543 (4)0.0335 (10)0.748 (3)
H150.53300.81080.38070.040*0.748 (3)
C160.5748 (5)0.9035 (2)0.4753 (4)0.0411 (9)0.748 (3)
H160.58470.93510.41740.049*0.748 (3)
C170.5889 (4)0.9309 (2)0.5823 (4)0.0393 (9)0.748 (3)
H170.60670.98160.59750.047*0.748 (3)
C180.5768 (4)0.8846 (2)0.6650 (4)0.0300 (9)0.748 (3)
H180.58730.90370.73790.036*0.748 (3)
C190.5495 (3)0.80940 (17)0.6456 (3)0.0260 (7)0.748 (3)
C200.5467 (5)0.7646 (2)0.7440 (4)0.0277 (8)0.748 (3)
O4A0.4563 (8)0.8099 (4)0.3602 (6)0.0343 (19)0.252 (3)
H4AA0.41040.83580.30800.051*0.252 (3)
O5A0.5901 (11)0.9062 (5)0.3988 (8)0.053 (3)0.252 (3)
C14A0.5335 (9)0.7683 (5)0.5909 (9)0.024 (2)0.252 (3)
C15A0.5520 (14)0.7576 (7)0.7034 (10)0.027 (3)0.252 (3)
H15A0.54460.70980.73190.033*0.252 (3)
C16A0.5818 (10)0.8179 (5)0.7748 (8)0.028 (2)0.252 (3)
H16A0.59140.81270.85250.034*0.252 (3)
C17A0.5970 (11)0.8861 (5)0.7292 (9)0.029 (2)0.252 (3)
H17A0.61210.92770.77720.035*0.252 (3)
C18A0.5916 (11)0.8967 (6)0.6210 (9)0.024 (2)0.252 (3)
H18A0.61250.94290.59470.029*0.252 (3)
C19A0.5536 (8)0.8360 (4)0.5484 (7)0.0224 (18)0.252 (3)
C20A0.5423 (17)0.8528 (7)0.4324 (10)0.034 (3)0.252 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02879 (13)0.02479 (12)0.04266 (16)0.00564 (9)0.01555 (11)0.00050 (10)
Mn10.02055 (17)0.01701 (15)0.0360 (2)0.00424 (12)0.01480 (15)0.00188 (14)
O10.0328 (10)0.0387 (11)0.0734 (16)0.0104 (9)0.0234 (11)0.0271 (11)
O20.0229 (9)0.0385 (10)0.0490 (12)0.0039 (7)0.0148 (8)0.0071 (9)
O30.0390 (11)0.0416 (11)0.0484 (13)0.0009 (9)0.0160 (10)0.0083 (10)
N10.0253 (10)0.0208 (9)0.0327 (11)0.0001 (7)0.0144 (9)0.0007 (8)
N20.0218 (9)0.0171 (8)0.0340 (11)0.0034 (7)0.0139 (8)0.0027 (8)
C10.0220 (11)0.0286 (12)0.0481 (16)0.0055 (9)0.0183 (11)0.0071 (11)
C20.0281 (12)0.0219 (10)0.0378 (14)0.0031 (9)0.0172 (11)0.0031 (10)
C30.0239 (12)0.0224 (11)0.0532 (17)0.0046 (9)0.0173 (12)0.0046 (11)
C40.0303 (13)0.0305 (12)0.0402 (15)0.0029 (10)0.0182 (12)0.0009 (11)
C50.0420 (15)0.0334 (13)0.0394 (15)0.0132 (11)0.0200 (13)0.0015 (11)
C60.0484 (17)0.0271 (13)0.0469 (17)0.0033 (12)0.0178 (14)0.0119 (12)
C70.0363 (14)0.0267 (12)0.0473 (17)0.0057 (10)0.0151 (13)0.0132 (11)
C80.0287 (12)0.0197 (10)0.0347 (13)0.0025 (9)0.0150 (10)0.0049 (9)
C90.0247 (11)0.0197 (10)0.0330 (13)0.0044 (8)0.0134 (10)0.0038 (9)
C100.0296 (13)0.0276 (12)0.0539 (18)0.0117 (10)0.0206 (13)0.0121 (12)
C110.0260 (13)0.0384 (14)0.068 (2)0.0138 (11)0.0261 (14)0.0121 (14)
C120.0284 (13)0.0325 (13)0.0559 (18)0.0017 (10)0.0237 (13)0.0102 (12)
C130.0257 (11)0.0217 (10)0.0387 (14)0.0012 (9)0.0143 (10)0.0060 (10)
O40.068 (2)0.0295 (13)0.0364 (15)0.0106 (12)0.0239 (15)0.0043 (11)
O50.0448 (16)0.0388 (14)0.0356 (15)0.0106 (12)0.0223 (12)0.0067 (11)
C140.0217 (15)0.0238 (16)0.0346 (19)0.0003 (12)0.0137 (15)0.0061 (14)
C150.041 (2)0.026 (2)0.036 (2)0.0005 (17)0.0158 (19)0.0044 (16)
C160.056 (3)0.0269 (17)0.043 (2)0.0034 (16)0.0183 (19)0.0004 (15)
C170.055 (3)0.0223 (17)0.044 (2)0.0020 (16)0.0189 (19)0.0034 (16)
C180.034 (2)0.0257 (17)0.034 (2)0.0016 (14)0.016 (2)0.0077 (17)
C190.0243 (15)0.0233 (14)0.0327 (17)0.0036 (11)0.0117 (13)0.0038 (13)
C200.0226 (17)0.0299 (18)0.034 (2)0.0031 (13)0.0132 (18)0.0016 (16)
O4A0.047 (4)0.030 (3)0.021 (3)0.016 (3)0.002 (3)0.004 (3)
O5A0.076 (7)0.043 (4)0.038 (5)0.033 (4)0.015 (4)0.007 (4)
C14A0.022 (4)0.022 (4)0.035 (5)0.004 (3)0.017 (4)0.000 (3)
C15A0.023 (5)0.028 (4)0.036 (5)0.003 (3)0.017 (4)0.007 (4)
C16A0.033 (5)0.024 (4)0.031 (4)0.002 (3)0.014 (4)0.003 (3)
C17A0.039 (6)0.019 (4)0.037 (5)0.001 (3)0.021 (5)0.006 (3)
C18A0.027 (5)0.017 (4)0.031 (5)0.003 (3)0.014 (4)0.001 (3)
C19A0.025 (4)0.018 (3)0.029 (4)0.004 (3)0.014 (3)0.000 (3)
C20A0.046 (7)0.033 (6)0.026 (4)0.017 (5)0.015 (4)0.001 (3)
Geometric parameters (Å, º) top
Br1—Mn12.5391 (7)C13—C14A1.562 (10)
Mn1—N12.029 (2)O4—H4A0.8400
Mn1—N22.082 (2)O4—C201.326 (5)
Mn1—C11.822 (3)O5—C201.215 (5)
Mn1—C21.803 (3)C14—C151.384 (6)
Mn1—C31.810 (3)C14—C191.395 (5)
O1—C11.139 (3)C15—H150.9500
O2—C21.145 (3)C15—C161.394 (5)
O3—C31.116 (3)C16—H160.9500
N1—C41.349 (3)C16—C171.392 (6)
N1—C81.345 (3)C17—H170.9500
N2—C91.364 (3)C17—C181.364 (6)
N2—C131.350 (3)C18—H180.9500
C4—H40.9500C18—C191.405 (5)
C4—C51.378 (4)C19—C201.479 (5)
C5—H50.9500O4A—H4AA0.8400
C5—C61.381 (4)O4A—C20A1.338 (13)
C6—H60.9500O5A—C20A1.220 (12)
C6—C71.386 (4)C14A—C15A1.375 (13)
C7—H70.9500C14A—C19A1.378 (10)
C7—C81.386 (3)C15A—H15A0.9500
C8—C91.476 (3)C15A—C16A1.393 (12)
C9—C101.379 (3)C16A—H16A0.9500
C10—H100.9500C16A—C17A1.391 (12)
C10—C111.384 (4)C17A—H17A0.9500
C11—H110.9500C17A—C18A1.346 (12)
C11—C121.365 (4)C18A—H18A0.9500
C12—H120.9500C18A—C19A1.414 (11)
C12—C131.384 (4)C19A—C20A1.449 (12)
C13—C141.515 (4)
N1—Mn1—Br186.05 (6)C13—C12—H12120.3
N1—Mn1—N279.15 (8)N2—C13—C12122.9 (2)
N2—Mn1—Br187.16 (6)N2—C13—C14117.0 (2)
C1—Mn1—Br188.54 (9)N2—C13—C14A124.3 (4)
C1—Mn1—N1174.43 (11)C12—C13—C14119.3 (2)
C1—Mn1—N2101.88 (9)C12—C13—C14A110.6 (4)
C2—Mn1—Br187.32 (8)C20—O4—H4A109.5
C2—Mn1—N194.95 (10)C15—C14—C13117.5 (3)
C2—Mn1—N2172.18 (9)C15—C14—C19119.5 (3)
C2—Mn1—C183.50 (11)C19—C14—C13122.7 (3)
C3—Mn1—Br1178.20 (8)C14—C15—H15119.4
C3—Mn1—N192.27 (11)C14—C15—C16121.3 (4)
C3—Mn1—N293.14 (10)C16—C15—H15119.4
C3—Mn1—C193.13 (13)C15—C16—H16120.4
C3—Mn1—C292.21 (11)C15—C16—C17119.2 (4)
C4—N1—Mn1125.32 (18)C17—C16—H16120.4
C8—N1—Mn1116.16 (16)C16—C17—H17120.2
C8—N1—C4118.3 (2)C18—C17—C16119.7 (4)
C9—N2—Mn1113.44 (15)C18—C17—H17120.2
C13—N2—Mn1129.34 (16)C17—C18—H18119.1
C13—N2—C9116.8 (2)C17—C18—C19121.9 (4)
O1—C1—Mn1172.5 (2)C19—C18—H18119.1
O2—C2—Mn1176.5 (2)C14—C19—C18118.5 (4)
O3—C3—Mn1179.7 (3)C14—C19—C20125.1 (3)
N1—C4—H4118.5C18—C19—C20116.3 (4)
N1—C4—C5122.9 (3)O4—C20—C19114.3 (4)
C5—C4—H4118.5O5—C20—O4122.6 (4)
C4—C5—H5120.8O5—C20—C19123.1 (4)
C4—C5—C6118.5 (2)C20A—O4A—H4AA109.5
C6—C5—H5120.8C15A—C14A—C13121.1 (8)
C5—C6—H6120.3C15A—C14A—C19A121.6 (9)
C5—C6—C7119.3 (3)C19A—C14A—C13117.2 (8)
C7—C6—H6120.3C14A—C15A—H15A120.5
C6—C7—H7120.4C14A—C15A—C16A118.9 (11)
C6—C7—C8119.1 (3)C16A—C15A—H15A120.5
C8—C7—H7120.4C15A—C16A—H16A120.9
N1—C8—C7121.8 (2)C17A—C16A—C15A118.2 (9)
N1—C8—C9114.9 (2)C17A—C16A—H16A120.9
C7—C8—C9123.3 (2)C16A—C17A—H17A118.1
N2—C9—C8115.0 (2)C18A—C17A—C16A123.9 (9)
N2—C9—C10122.5 (2)C18A—C17A—H17A118.1
C10—C9—C8122.5 (2)C17A—C18A—H18A121.4
C9—C10—H10120.4C17A—C18A—C19A117.1 (10)
C9—C10—C11119.2 (2)C19A—C18A—H18A121.4
C11—C10—H10120.4C14A—C19A—C18A119.8 (9)
C10—C11—H11120.5C14A—C19A—C20A126.3 (9)
C12—C11—C10118.9 (2)C18A—C19A—C20A113.8 (8)
C12—C11—H11120.5O4A—C20A—C19A113.7 (9)
C11—C12—H12120.3O5A—C20A—O4A120.0 (10)
C11—C12—C13119.5 (2)O5A—C20A—C19A125.6 (11)
Mn1—N1—C4—C5173.4 (2)C12—C13—C14—C1973.9 (4)
Mn1—N1—C8—C7173.9 (2)C12—C13—C14A—C15A72.9 (10)
Mn1—N1—C8—C96.8 (3)C12—C13—C14A—C19A111.1 (7)
Mn1—N2—C9—C89.8 (3)C13—N2—C9—C8176.6 (2)
Mn1—N2—C9—C10170.4 (2)C13—N2—C9—C103.2 (4)
Mn1—N2—C13—C12168.8 (2)C13—C14—C15—C16177.1 (4)
Mn1—N2—C13—C1421.9 (4)C13—C14—C19—C18176.0 (3)
Mn1—N2—C13—C14A7.7 (6)C13—C14—C19—C208.8 (5)
N1—C4—C5—C60.7 (4)C13—C14A—C15A—C16A179.2 (9)
N1—C8—C9—N22.3 (3)C13—C14A—C19A—C18A177.2 (8)
N1—C8—C9—C10178.0 (3)C13—C14A—C19A—C20A1.5 (15)
N2—C9—C10—C110.2 (5)C14—C15—C16—C172.5 (7)
N2—C13—C14—C1569.6 (4)C14—C19—C20—O46.6 (6)
N2—C13—C14—C19116.4 (3)C14—C19—C20—O5173.5 (4)
N2—C13—C14A—C15A90.2 (10)C15—C14—C19—C182.1 (5)
N2—C13—C14A—C19A85.7 (8)C15—C14—C19—C20177.3 (4)
C4—N1—C8—C71.6 (4)C15—C16—C17—C181.2 (7)
C4—N1—C8—C9177.7 (2)C16—C17—C18—C190.5 (7)
C4—C5—C6—C70.2 (5)C17—C18—C19—C140.9 (6)
C5—C6—C7—C80.2 (5)C17—C18—C19—C20176.6 (4)
C6—C7—C8—N10.7 (4)C18—C19—C20—O4168.7 (4)
C6—C7—C8—C9178.5 (3)C18—C19—C20—O511.2 (6)
C7—C8—C9—N2177.1 (3)C19—C14—C15—C162.9 (7)
C7—C8—C9—C102.7 (4)C14A—C15A—C16A—C17A2.7 (17)
C8—N1—C4—C51.7 (4)C14A—C19A—C20A—O4A29 (2)
C8—C9—C10—C11179.6 (3)C14A—C19A—C20A—O5A160.9 (15)
C9—N2—C13—C123.6 (4)C15A—C14A—C19A—C18A1.3 (15)
C9—N2—C13—C14165.7 (3)C15A—C14A—C19A—C20A177.4 (13)
C9—N2—C13—C14A164.7 (5)C15A—C16A—C17A—C18A3.7 (17)
C9—C10—C11—C122.6 (5)C16A—C17A—C18A—C19A7.3 (17)
C10—C11—C12—C132.2 (5)C17A—C18A—C19A—C14A4.8 (15)
C11—C12—C13—N21.0 (5)C17A—C18A—C19A—C20A176.4 (12)
C11—C12—C13—C14168.0 (3)C18A—C19A—C20A—O4A152.6 (12)
C11—C12—C13—C14A164.4 (5)C18A—C19A—C20A—O5A18 (2)
C12—C13—C14—C15100.1 (4)C19A—C14A—C15A—C16A5.0 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Br1i0.952.873.685 (3)144
Symmetry code: (i) x+1, y+1, z+1.
fac-[2-(2,2'-Bipyridin-6-yl)benzoic acid-κ2N,N']tricarbonylchloridorhenium(I) tetrahydrofuran monosolvate (II) top
Crystal data top
[ReCl(C17H12N2O2)(CO)3]·C4H8OF(000) = 1272
Mr = 654.07Dx = 1.867 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.462 (4) ÅCell parameters from 9101 reflections
b = 11.370 (3) Åθ = 2.6–31.8°
c = 13.370 (3) ŵ = 5.38 mm1
β = 98.023 (10)°T = 100 K
V = 2327.4 (10) Å3Block, yellow
Z = 40.28 × 0.24 × 0.22 mm
Data collection top
Bruker SMART APEXIII area detector
diffractometer
7944 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs7361 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.027
Detector resolution: 7.9 pixels mm-1θmax = 31.9°, θmin = 1.3°
0.5° ω and 0.5° φ scansh = 2222
Absorption correction: analytical
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.285, Tmax = 0.526l = 1919
70522 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.039 w = 1/[σ2(Fo2) + (0.0182P)2 + 2.0257P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
7944 reflectionsΔρmax = 1.63 e Å3
342 parametersΔρmin = 1.64 e Å3
27 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.25443 (2)0.56361 (2)0.41243 (2)0.01643 (2)
Cl10.12745 (2)0.69931 (3)0.37941 (3)0.02075 (7)
O10.38542 (11)0.75829 (16)0.48236 (17)0.0571 (5)
O20.31136 (12)0.60610 (14)0.20431 (13)0.0469 (4)
O30.40094 (9)0.38300 (14)0.46361 (13)0.0395 (3)
O40.25774 (8)0.21703 (11)0.31781 (9)0.0263 (2)
O50.31281 (9)0.16759 (12)0.17689 (11)0.0295 (3)
H50.339 (2)0.111 (3)0.218 (2)0.064 (9)*
N10.20926 (9)0.54664 (12)0.55735 (10)0.0189 (2)
N20.15082 (8)0.42971 (10)0.38837 (9)0.0141 (2)
C10.33623 (12)0.68554 (17)0.45436 (17)0.0336 (4)
C20.28734 (13)0.58568 (16)0.28011 (16)0.0295 (4)
C30.34552 (11)0.44986 (15)0.44347 (15)0.0260 (3)
C40.24129 (12)0.60914 (17)0.63982 (14)0.0298 (4)
H40.28910.66060.63590.036*
C50.20740 (15)0.6013 (2)0.72977 (15)0.0386 (5)
H5A0.23210.64560.78700.046*
C60.13710 (14)0.5282 (2)0.73522 (13)0.0365 (5)
H60.11230.52190.79610.044*
C70.10326 (12)0.46437 (17)0.65100 (13)0.0271 (3)
H70.05420.41450.65300.033*
C80.14155 (10)0.47363 (13)0.56311 (11)0.0178 (3)
C90.11021 (9)0.40700 (13)0.47062 (11)0.0163 (2)
C100.04153 (11)0.32791 (14)0.46733 (14)0.0256 (3)
H100.01590.31160.52640.031*
C110.01085 (12)0.27318 (16)0.37729 (17)0.0313 (4)
H110.03740.22070.37290.038*
C120.05092 (11)0.29564 (15)0.29444 (14)0.0272 (3)
H120.03060.25870.23180.033*
C130.12151 (10)0.37260 (13)0.30166 (11)0.0185 (3)
C140.15673 (11)0.39961 (15)0.20576 (12)0.0236 (3)
C150.11602 (16)0.4894 (2)0.14585 (15)0.0413 (5)
H150.07230.53560.17040.050*
C160.13830 (19)0.5124 (2)0.05091 (16)0.0514 (7)
H160.11100.57520.01160.062*
C170.20068 (16)0.4436 (2)0.01340 (14)0.0395 (5)
H170.21600.45890.05180.047*
C180.24041 (12)0.35285 (17)0.07105 (12)0.0274 (3)
H180.28250.30520.04480.033*
C190.21945 (10)0.33025 (14)0.16769 (12)0.0206 (3)
C200.26432 (10)0.23343 (14)0.23004 (13)0.0204 (3)
O60.4105 (3)0.0039 (5)0.2725 (3)0.0444 (9)0.672 (3)
C210.4761 (3)0.0296 (4)0.2093 (3)0.0412 (10)0.672 (3)
H21A0.51110.03900.19310.049*0.672 (3)
H21B0.44920.06740.14580.049*0.672 (3)
C220.5303 (3)0.1156 (4)0.2774 (4)0.0535 (11)0.672 (3)
H22A0.59000.12220.25910.064*0.672 (3)
H22B0.50290.19450.27370.064*0.672 (3)
C230.5321 (2)0.0610 (4)0.3845 (3)0.0523 (11)0.672 (3)
H23A0.53040.12340.43580.063*0.672 (3)
H23B0.58560.01340.40280.063*0.672 (3)
C240.4518 (3)0.0153 (4)0.3778 (3)0.0467 (9)0.672 (3)
H24A0.41220.01260.42490.056*0.672 (3)
H24B0.46780.09810.39400.056*0.672 (3)
O6A0.4080 (11)0.0019 (17)0.2447 (7)0.0339 (13)0.202 (3)
C24A0.4408 (8)0.0269 (14)0.3488 (8)0.0339 (13)0.202 (3)
H24C0.39530.06640.38210.041*0.202 (3)
H24D0.45790.04690.38570.041*0.202 (3)
C23A0.5209 (7)0.1082 (11)0.3488 (8)0.0339 (13)0.202 (3)
H23C0.57630.06390.36320.041*0.202 (3)
H23D0.52070.17310.39810.041*0.202 (3)
C22A0.5060 (8)0.1537 (11)0.2397 (8)0.0339 (13)0.202 (3)
H22C0.56100.18290.21840.041*0.202 (3)
H22D0.46170.21710.23110.041*0.202 (3)
C21A0.4733 (14)0.0426 (17)0.1815 (10)0.0339 (13)0.202 (3)
H21C0.52060.01560.17960.041*0.202 (3)
H21D0.44610.06100.11170.041*0.202 (3)
O6B0.4356 (8)0.0219 (9)0.2593 (10)0.0298 (18)*0.126 (3)
C21B0.4661 (11)0.0418 (14)0.1775 (7)0.0298 (18)*0.126 (3)
H21E0.49670.01190.13590.036*0.126 (3)
H21F0.41640.07830.13380.036*0.126 (3)
C22B0.5288 (9)0.1366 (12)0.2266 (9)0.0298 (18)*0.126 (3)
H22E0.58920.10610.24240.036*0.126 (3)
H22F0.52880.20680.18280.036*0.126 (3)
C23B0.4892 (9)0.1641 (9)0.3233 (9)0.0298 (18)*0.126 (3)
H23E0.43930.21920.30980.036*0.126 (3)
H23F0.53330.19750.37650.036*0.126 (3)
C24B0.4593 (9)0.0416 (11)0.3526 (7)0.0298 (18)*0.126 (3)
H24E0.40850.04800.38990.036*0.126 (3)
H24F0.50710.00070.39590.036*0.126 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01365 (3)0.01547 (3)0.02146 (3)0.00104 (2)0.00704 (2)0.00100 (2)
Cl10.02042 (15)0.01814 (15)0.02561 (17)0.00341 (12)0.00999 (12)0.00509 (13)
O10.0344 (8)0.0381 (9)0.0991 (15)0.0196 (7)0.0102 (9)0.0154 (9)
O20.0676 (11)0.0336 (8)0.0500 (9)0.0017 (7)0.0453 (9)0.0034 (7)
O30.0222 (6)0.0359 (8)0.0597 (10)0.0097 (6)0.0029 (6)0.0023 (7)
O40.0279 (6)0.0249 (6)0.0258 (6)0.0039 (5)0.0025 (5)0.0017 (5)
O50.0250 (6)0.0258 (6)0.0395 (7)0.0063 (5)0.0105 (5)0.0027 (5)
N10.0201 (6)0.0206 (6)0.0159 (5)0.0042 (5)0.0022 (4)0.0032 (4)
N20.0152 (5)0.0137 (5)0.0142 (5)0.0023 (4)0.0046 (4)0.0000 (4)
C10.0223 (8)0.0249 (8)0.0550 (12)0.0057 (7)0.0106 (7)0.0059 (8)
C20.0330 (9)0.0223 (7)0.0385 (10)0.0010 (6)0.0234 (8)0.0013 (7)
C30.0171 (7)0.0261 (8)0.0355 (9)0.0004 (6)0.0062 (6)0.0043 (6)
C40.0297 (8)0.0322 (9)0.0258 (8)0.0064 (7)0.0017 (6)0.0135 (7)
C50.0413 (11)0.0496 (12)0.0227 (8)0.0188 (9)0.0034 (7)0.0165 (8)
C60.0434 (11)0.0513 (12)0.0160 (7)0.0246 (10)0.0085 (7)0.0002 (7)
C70.0334 (9)0.0310 (8)0.0196 (7)0.0122 (7)0.0128 (6)0.0070 (6)
C80.0215 (6)0.0177 (6)0.0151 (6)0.0060 (5)0.0061 (5)0.0019 (5)
C90.0169 (6)0.0148 (6)0.0185 (6)0.0019 (5)0.0069 (5)0.0013 (5)
C100.0230 (7)0.0198 (7)0.0370 (9)0.0019 (6)0.0148 (6)0.0016 (6)
C110.0215 (7)0.0208 (7)0.0525 (11)0.0063 (6)0.0084 (7)0.0063 (7)
C120.0235 (7)0.0229 (7)0.0339 (9)0.0003 (6)0.0002 (6)0.0115 (6)
C130.0188 (6)0.0177 (6)0.0185 (6)0.0043 (5)0.0015 (5)0.0038 (5)
C140.0287 (8)0.0259 (7)0.0159 (6)0.0078 (6)0.0021 (6)0.0033 (6)
C150.0574 (13)0.0442 (11)0.0242 (9)0.0312 (10)0.0117 (8)0.0077 (8)
C160.0722 (17)0.0596 (15)0.0237 (9)0.0390 (14)0.0119 (10)0.0149 (9)
C170.0532 (13)0.0509 (13)0.0155 (7)0.0185 (10)0.0084 (8)0.0037 (7)
C180.0319 (8)0.0321 (9)0.0182 (7)0.0052 (7)0.0037 (6)0.0051 (6)
C190.0226 (7)0.0208 (7)0.0176 (6)0.0031 (5)0.0004 (5)0.0046 (5)
C200.0148 (6)0.0188 (6)0.0273 (7)0.0012 (5)0.0013 (5)0.0033 (6)
O60.0276 (13)0.0409 (15)0.061 (2)0.0138 (11)0.0072 (19)0.001 (2)
C210.0222 (14)0.0421 (19)0.058 (3)0.0132 (13)0.001 (2)0.009 (2)
C220.0369 (19)0.053 (2)0.071 (3)0.0202 (18)0.010 (2)0.022 (2)
C230.0303 (16)0.080 (3)0.049 (2)0.0020 (18)0.0129 (16)0.028 (2)
C240.046 (2)0.044 (2)0.048 (2)0.0090 (17)0.0000 (17)0.0119 (17)
O6A0.032 (3)0.049 (3)0.020 (2)0.007 (2)0.0013 (19)0.008 (2)
C24A0.032 (3)0.049 (3)0.020 (2)0.007 (2)0.0013 (19)0.008 (2)
C23A0.032 (3)0.049 (3)0.020 (2)0.007 (2)0.0013 (19)0.008 (2)
C22A0.032 (3)0.049 (3)0.020 (2)0.007 (2)0.0013 (19)0.008 (2)
C21A0.032 (3)0.049 (3)0.020 (2)0.007 (2)0.0013 (19)0.008 (2)
Geometric parameters (Å, º) top
Re1—Cl12.4875 (6)C18—C191.399 (2)
Re1—N12.1580 (14)C19—C201.492 (2)
Re1—N22.2008 (13)O6—C211.458 (5)
Re1—C11.9074 (19)O6—C241.469 (5)
Re1—C21.9244 (19)C21—H21A0.9900
Re1—C31.9146 (18)C21—H21B0.9900
O1—C11.150 (2)C21—C221.508 (5)
O2—C21.151 (2)C22—H22A0.9900
O3—C31.149 (2)C22—H22B0.9900
O4—C201.206 (2)C22—C231.558 (7)
O5—H50.90 (3)C23—H23A0.9900
O5—C201.333 (2)C23—H23B0.9900
N1—C41.347 (2)C23—C241.507 (5)
N1—C81.347 (2)C24—H24A0.9900
N2—C91.3648 (18)C24—H24B0.9900
N2—C131.3506 (19)O6A—C24A1.441 (11)
C4—H40.9500O6A—C21A1.478 (13)
C4—C51.380 (3)C24A—H24C0.9900
C5—H5A0.9500C24A—H24D0.9900
C5—C61.378 (4)C24A—C23A1.546 (12)
C6—H60.9500C23A—H23C0.9900
C6—C71.380 (3)C23A—H23D0.9900
C7—H70.9500C23A—C22A1.534 (13)
C7—C81.392 (2)C22A—H22C0.9900
C8—C91.473 (2)C22A—H22D0.9900
C9—C101.388 (2)C22A—C21A1.533 (13)
C10—H100.9500C21A—H21C0.9900
C10—C111.379 (3)C21A—H21D0.9900
C11—H110.9500O6B—C21B1.4432
C11—C121.367 (3)O6B—C24B1.4435
C12—H120.9500C21B—H21E0.9900
C12—C131.392 (2)C21B—H21F0.9900
C13—C141.493 (2)C21B—C22B1.5350
C14—C151.393 (2)C22B—H22E0.9900
C14—C191.400 (2)C22B—H22F0.9900
C15—H150.9500C22B—C23B1.5390
C15—C161.386 (3)C23B—H23E0.9900
C16—H160.9500C23B—H23F0.9900
C16—C171.389 (3)C23B—C24B1.5350
C17—H170.9500C24B—H24E0.9900
C17—C181.380 (3)C24B—H24F0.9900
C18—H180.9500
N1—Re1—Cl182.45 (4)C21—O6—C24109.5 (3)
N1—Re1—N275.48 (5)O6—C21—H21A111.6
N2—Re1—Cl182.11 (4)O6—C21—H21B111.6
C1—Re1—Cl194.36 (6)O6—C21—C22101.1 (3)
C1—Re1—N194.91 (8)H21A—C21—H21B109.4
C1—Re1—N2170.08 (7)C22—C21—H21A111.6
C1—Re1—C285.75 (9)C22—C21—H21B111.6
C1—Re1—C389.41 (8)C21—C22—H22A111.1
C2—Re1—Cl193.41 (6)C21—C22—H22B111.1
C2—Re1—N1175.84 (7)C21—C22—C23103.5 (3)
C2—Re1—N2103.67 (7)H22A—C22—H22B109.0
C3—Re1—Cl1174.86 (5)C23—C22—H22A111.1
C3—Re1—N193.76 (7)C23—C22—H22B111.1
C3—Re1—N293.61 (6)C22—C23—H23A110.7
C3—Re1—C290.36 (8)C22—C23—H23B110.7
C20—O5—H5109 (2)H23A—C23—H23B108.8
C4—N1—Re1124.05 (13)C24—C23—C22105.4 (3)
C8—N1—Re1117.26 (10)C24—C23—H23A110.7
C8—N1—C4118.58 (15)C24—C23—H23B110.7
C9—N2—Re1114.86 (10)O6—C24—C23104.5 (4)
C13—N2—Re1127.46 (10)O6—C24—H24A110.8
C13—N2—C9117.63 (13)O6—C24—H24B110.8
O1—C1—Re1178.1 (2)C23—C24—H24A110.8
O2—C2—Re1174.45 (19)C23—C24—H24B110.8
O3—C3—Re1178.65 (18)H24A—C24—H24B108.9
N1—C4—H4118.7C24A—O6A—C21A108.4 (10)
N1—C4—C5122.6 (2)O6A—C24A—H24C110.3
C5—C4—H4118.7O6A—C24A—H24D110.3
C4—C5—H5A120.6O6A—C24A—C23A106.9 (9)
C6—C5—C4118.87 (18)H24C—C24A—H24D108.6
C6—C5—H5A120.6C23A—C24A—H24C110.3
C5—C6—H6120.5C23A—C24A—H24D110.3
C5—C6—C7119.08 (17)C24A—C23A—H23C111.6
C7—C6—H6120.5C24A—C23A—H23D111.6
C6—C7—H7120.3H23C—C23A—H23D109.4
C6—C7—C8119.45 (19)C22A—C23A—C24A100.9 (8)
C8—C7—H7120.3C22A—C23A—H23C111.6
N1—C8—C7121.38 (15)C22A—C23A—H23D111.6
N1—C8—C9115.86 (13)C23A—C22A—H22C111.5
C7—C8—C9122.76 (15)C23A—C22A—H22D111.5
N2—C9—C8116.40 (13)H22C—C22A—H22D109.3
N2—C9—C10122.22 (14)C21A—C22A—C23A101.5 (9)
C10—C9—C8121.36 (14)C21A—C22A—H22C111.5
C9—C10—H10120.4C21A—C22A—H22D111.5
C11—C10—C9119.24 (16)O6A—C21A—C22A99.9 (11)
C11—C10—H10120.4O6A—C21A—H21C111.8
C10—C11—H11120.5O6A—C21A—H21D111.8
C12—C11—C10118.92 (16)C22A—C21A—H21C111.8
C12—C11—H11120.5C22A—C21A—H21D111.8
C11—C12—H12120.0H21C—C21A—H21D109.5
C11—C12—C13120.07 (16)C21B—O6B—C24B109.5
C13—C12—H12120.0O6B—C21B—H21E110.4
N2—C13—C12121.85 (15)O6B—C21B—H21F110.4
N2—C13—C14121.29 (14)O6B—C21B—C22B106.4
C12—C13—C14116.49 (14)H21E—C21B—H21F108.6
C15—C14—C13117.06 (15)C22B—C21B—H21E110.4
C15—C14—C19118.97 (16)C22B—C21B—H21F110.4
C19—C14—C13123.40 (15)C21B—C22B—H22E111.5
C14—C15—H15119.5C21B—C22B—H22F111.5
C16—C15—C14121.01 (18)C21B—C22B—C23B101.5
C16—C15—H15119.5H22E—C22B—H22F109.3
C15—C16—H16120.1C23B—C22B—H22E111.5
C15—C16—C17119.87 (19)C23B—C22B—H22F111.5
C17—C16—H16120.1C22B—C23B—H23E111.5
C16—C17—H17120.1C22B—C23B—H23F111.5
C18—C17—C16119.80 (18)H23E—C23B—H23F109.3
C18—C17—H17120.1C24B—C23B—C22B101.5
C17—C18—H18119.6C24B—C23B—H23E111.5
C17—C18—C19120.72 (17)C24B—C23B—H23F111.5
C19—C18—H18119.6O6B—C24B—C23B106.4
C14—C19—C20120.28 (14)O6B—C24B—H24E110.4
C18—C19—C14119.60 (15)O6B—C24B—H24F110.4
C18—C19—C20120.12 (15)C23B—C24B—H24E110.4
O4—C20—O5124.18 (16)C23B—C24B—H24F110.4
O4—C20—C19124.17 (15)H24E—C24B—H24F108.6
O5—C20—C19111.64 (14)
Re1—N1—C4—C5175.99 (14)C13—N2—C9—C100.4 (2)
Re1—N1—C8—C7174.60 (12)C13—C14—C15—C16173.3 (2)
Re1—N1—C8—C94.26 (17)C13—C14—C19—C18171.61 (16)
Re1—N2—C9—C80.54 (16)C13—C14—C19—C208.9 (2)
Re1—N2—C9—C10177.80 (12)C14—C15—C16—C171.5 (4)
Re1—N2—C13—C12175.22 (11)C14—C19—C20—O48.5 (2)
Re1—N2—C13—C142.4 (2)C14—C19—C20—O5171.69 (15)
N1—C4—C5—C61.1 (3)C15—C14—C19—C180.5 (3)
N1—C8—C9—N22.41 (19)C15—C14—C19—C20179.93 (18)
N1—C8—C9—C10179.23 (14)C15—C16—C17—C180.2 (4)
N2—C9—C10—C112.4 (2)C16—C17—C18—C190.9 (4)
N2—C13—C14—C1588.2 (2)C17—C18—C19—C140.8 (3)
N2—C13—C14—C19100.55 (19)C17—C18—C19—C20178.70 (18)
C4—N1—C8—C71.7 (2)C18—C19—C20—O4170.91 (16)
C4—N1—C8—C9179.42 (14)C18—C19—C20—O58.9 (2)
C4—C5—C6—C70.6 (3)C19—C14—C15—C161.6 (4)
C5—C6—C7—C81.0 (3)O6—C21—C22—C2337.5 (4)
C6—C7—C8—N12.2 (2)C21—O6—C24—C2324.1 (5)
C6—C7—C8—C9179.01 (15)C21—C22—C23—C2424.2 (4)
C7—C8—C9—N2176.43 (14)C22—C23—C24—O61.0 (5)
C7—C8—C9—C101.9 (2)C24—O6—C21—C2239.3 (5)
C8—N1—C4—C50.1 (3)O6A—C24A—C23A—C22A18.3 (16)
C8—C9—C10—C11175.90 (15)C24A—O6A—C21A—C22A36.3 (19)
C9—N2—C13—C121.8 (2)C24A—C23A—C22A—C21A39.9 (14)
C9—N2—C13—C14174.62 (13)C23A—C22A—C21A—O6A46.9 (16)
C9—C10—C11—C122.1 (3)C21A—O6A—C24A—C23A11.4 (19)
C10—C11—C12—C130.0 (3)O6B—C21B—C22B—C23B31.5
C11—C12—C13—N22.1 (2)C21B—O6B—C24B—C23B12.4
C11—C12—C13—C14175.19 (16)C21B—C22B—C23B—C24B37.4
C12—C13—C14—C1585.0 (2)C22B—C23B—C24B—O6B31.5
C12—C13—C14—C1986.3 (2)C24B—O6B—C21B—C22B12.3
C13—N2—C9—C8177.94 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O60.90 (3)1.74 (4)2.615 (4)164 (3)
O5—H5···O6A0.90 (3)1.68 (4)2.516 (15)154 (3)
O5—H5···O6B0.90 (3)1.83 (4)2.642 (9)150 (3)
C5—H5A···Cl1i0.952.803.371 (2)120
C10—H10···Cl1ii0.952.703.552 (2)149
C12—H12···Cl1iii0.952.763.524 (2)138
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: American Chemical Society Petroleum Research Fund (grant No. 54833-UNI3 to Sheri Lense).

References

First citationAgarwal, J., Shaw, T. W., Schaefer, H. F. III & Bocarsly, A. B. (2015). Inorg. Chem. 54, 5285–5294.  CrossRef CAS Google Scholar
First citationBourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. (2011). Angew. Chem. Int. Ed. 50, 9903–9906.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2015). APEX3 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharris-Molina, A., Castillo, J.-C., Macías, M. & Portilla, J. (2017). J. Org. Chem. 82, 12674–12681.  CAS Google Scholar
First citationChen, Y. D., Zhang, L. Y. & Chen, Z. N. (2005). Acta Cryst. E61, m121–m122.  CrossRef IUCr Journals Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 795–798.  CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFranco, F., Cometto, C., Vallana, F. F., Sordello, F., Priola, E., Minero, C., Nervi, C. & Gobetto, R. (2014). Chem. Commun. 50, 14670–14673.  CrossRef CAS Google Scholar
First citationFranco, F., Cometto, C., Nencini, L., Barolo, C., Sordello, F., Minero, C., Fiedler, J., Robert, M., Gobetto, R. & Nervi, C. (2017). Chem. Eur. J. 23, 4782–4793.  CrossRef CAS Google Scholar
First citationGerlits, O. O. & Coppens, P. (2001). Acta Cryst. E57, m164–m166.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuzei, I. A. (2014). J. Appl. Cryst. 47, 806–809.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHawecker, J., Lehn, J.-M. & Ziessel, R. (1986). Helv. Chim. Acta, 69, 1990–2012.  CrossRef CAS Web of Science Google Scholar
First citationHorn, E., Snow, M. R. & Tiekink, E. R. T. (1987). Acta Cryst. C43, 792–794.  CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLeBlanc, F. A., Piers, W. E. & Parvez, M. (2014). Angew. Chem. Int. Ed. 53, 789–792.  CrossRef CAS Google Scholar
First citationLiu, X. (2013). Acta Cryst. E69, m204.  CrossRef IUCr Journals Google Scholar
First citationMachan, C. W., Chabolla, S. A., Yin, J., Gilson, M. K., Tezcan, F. A. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 14598–14607.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManbeck, G. F., Muckerman, J. T., Szalda, D. J., Himeda, Y. & Fujita, E. (2015). J. Phys. Chem. B, 119, 7457–7466.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSampson, M. D., Nguyen, A. D., Grice, K. A., Moore, C. E., Rheingold, A. L. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 5460–5471.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmieja, J. M., Benson, E. E., Kumar, B., Grice, K. A., Seu, C. S., Miller, A. J. M., Mayer, J. M. & Kubiak, C. P. (2012). Proc. Natl Acad. Sci. USA, 109, 15646–15650.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSmieja, J. M. & Kubiak, C. P. (2010). Inorg. Chem. 49, 9283–9289.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSmieja, J. M., Sampson, M. D., Grice, K. A., Benson, E. E., Froehlich, J. D. & Kubiak, C. P. (2013). Inorg. Chem. 52, 2484–2491.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStor, G. J., Stufkens, D. J., Vernooijs, P., Baerends, E. J., Fraanje, J. & Goubitz, K. (1995). Inorg. Chem. 34, 1588–1594.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds