research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Oxo-2H-chromen-7-yl 4-tert-butyl­benzoate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Moléculaire et de Matériaux (LCMM), Equipe de Chimie Organique et de Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, bUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité Appliquées (UMRI EEA), Equipe de Recherche: Instrumentation Image et Spectroscopie (L2IS), DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INPHB), BP 1093, Yamoussoukro, Côte d'Ivoire, and cInstitut de Chimie Radicalaire, Equipe SREP, UMR 7273 Aix-Marseille Université, Avenue Escadrille Normandie-Niemen, Service 521, 13397 Marseille cedex 20, France
*Correspondence e-mail: abouakoun@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 8 March 2018; accepted 12 March 2018; online 16 March 2018)

In the title compound, C20H18O4, the benzoate ring is oriented at an acute angle of 33.10 (12)° with respect to the planar (r.m.s deviation = 0.016 Å) coumarin ring system. An intra­molecular C—H⋯O hydrogen bond closes an S(6) ring motif. In the crystal, C—H⋯O contacts generate infinite C(6) chains along the b-axis direction. Also present are ππ stacking inter­actions between neighbouring pyrone and benzene rings [centroid–centroid distance = 3.7034 (18) Å] and C=O⋯π inter­actions [O⋯centroid = 3.760 (3) Å]. The data obtained from quantum chemical calculations performed on the title compound are in good agreement with the observed structure, although the calculated C—O—C—C torsion angle between the coumarin ring system and the benzoate ring (129.1°) is somewhat lower than the observed value [141.3 (3)°]. Hirshfeld surface analysis has been used to confirm and qu­antify the supra­molecular inter­actions.

1. Chemical context

Coumarins and their derivatives constitute one of the major classes of naturally occurring compounds and inter­est in their chemistry continues unabated because of their usefulness as biologically active agents. They also form the core of several mol­ecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Basanagouda et al., 2009[Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485-495.]), anti-oxidant (Vukovic et al., 2010[Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5-15.]) and anti-inflammatory agents (Emmanuel-Giota et al., 2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). Heterocycl. Chem. 38, 717-722.]). In view of their importance and as a continuation of our work on the crystal structure analysis of coumarin derivatives (Abou et al., 2012[Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438-o3439.], 2013[Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081-o1082.]), we report herein the synthesis, crystal structure, geometry optimization and Hirshfeld surface analysis of the title coumarin derivative, (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title coumarin derivative, (I)[link], is illustrated in Fig. 1[link]. An S(6) ring motif arises from an intra­molecular C6—H6⋯O4 hydrogen bond, and generates a pseudo-tricyclic ring system (Fig. 1[link]). The coumarin ring system is planar [r.m.s deviation = 0.016 Å] and is oriented at an acute angle of 33.10 (12)° with respect to the C11–C16 benzene ring while the pseudo-six-membered ring makes dihedral angles of 27.34 (11) and 13.98 (13)°, respectively, with the coumarin ring system and the benzene ring. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the pyrone ring: the C3—C2 [1.338 (5) Å] and C2—C1 [1.426 (5) Å] bond lengths are shorter and longer, respectively, than those excepted for a Car—Car bond. This suggests that the electron density is preferentially located in the C2—C3 bond of the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]; Ziki et al., 2016[Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562-1564.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound and the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The intra­molecular hydrogen bond is indicated by dashed lines.

3. Supra­molecular features

In the crystal, two types of inter­molecular hydrogen-bonding inter­actions are present (Table 1[link]). The C8—H8⋯O4 hydrogen bonds link mol­ecules into infinite chains along the [010] direction (Fig. 2[link]) while the C15—H15⋯O2 hydrogen-bonding inter­actions generate chains extending along the c-axis direction, as shown in Fig. 3[link]. In addition, a close contact [H2⋯H19B(−x, −[{1\over 2}] + y, [{3\over 2}] − z) = 2.38 Å] is found at a distance shorter than the sum of the van der Waals radii. An unusual C10=O4⋯π inter­action [O4⋯Cg2(−x, [{1\over 2}] + y, [{3\over 2}] − z) = 3.760 (3) Å, where Cg2 is the centroid of the C4–C9 benzene ring], is also present. The resulting supra­molecular aggregation is completed by the presence of ππ stacking (Fig. 4[link]) between the pyrone and benzene rings with centroid–centroid distances [Cg1⋯Cg3(−x, −[{1\over 2}] + y, [{3\over 2}] − z) = 3.7035 (18) and Cg3⋯Cg1 (−x, [{1\over 2}] + y, [{3\over 2}] − z) = 3.7034 (18) Å, where Cg1 and Cg3 are the centroids of the pyrone and the C11–C16 benzene rings, respectively] that are less than 3.8 Å, the maximum regarded as suitable for an effective ππ inter­action (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). In these inter­actions, the perpendicular distances of Cg1 on ring 3 are 3.6144 (13) and 3.6143 (13) Å, respectively, and the distances between Cg1 and a perpendicular projection of Cg3 on ring 1 (slippage) are 0.726 and 0.807Å, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O4i 0.93 2.32 3.114 (4) 144
C15—H15⋯O2ii 0.93 2.65 3.310 (4) 128
C6—H6⋯O4 0.93 2.41 2.813 (4) 106
C10—O4⋯Cg2iii 1.18 (1) 3.76 (1) 3.560 (3) 71 (1)
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Part of the crystal packing of the title compound showing the formation of an infinite C(6) chain along the b-axis direction. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen-bonding inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
Crystal packing of (I)[link] showing adjacent pairs of mol­ecules along the b axis
[Figure 4]
Figure 4
 A view of the crystal packing, showing H⋯H contacts, C10=O4⋯π and ππ stacking inter­actions (dashed lines). The green dots are ring centroids. H atoms not involved in H⋯H inter­actions have been omitted for clarity.

4. Database survey

A CSD search (Web CSD version 5.39; March 9, 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found five coumarin ester structures with substituents at the 7 positions (Ramasubbu et al.,1982[Ramasubbu, N., Gnanaguru, K., Venkatesan, K. & Ramamurthy, V. (1982). Can. J. Chem. 60, 2159-2161.]; Gnanaguru et al., 1985[Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337-2346.]; Parveen et al., 2011[Parveen, M., Mehdi, S. H., Ghalib, R. M., Alam, M. & Pallepogu, R. (2011). Pharma Chemica, 3, 22-30.]; Ji et al., 2014[Ji, W., Liu, G., Xu, M., Dou, X. & Feng, C. (2014). Chem. Commun. 50, 15545-15548.], 2017[Ji, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790-7795.]). In these structures and those of meta-substituted coumarin esters (Abou et al., 2012[Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438-o3439.], 2013[Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081-o1082.]; Bibila Mayaya Bisseyou et al., 2013[Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125-o1126.]; Yu et al., 2014[Yu, J., Gao, L.-L., Huang, P. & Wang, D.-L. (2014). Acta Cryst. E70, m369-m370.]; Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]; Ziki et al., 2016[Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562-1564.], 2017[Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45-47.]), the pyrone rings all show three long (in the range 1.37–1.46 Å) and one short (1.32–1.34 Å) C—C distances, suggesting that the electronic density is preferentially located in the short C—C bond at the pyrone ring. This pattern is clearly repeated here with C2—C3 = 1.338 (5) Å while C1—C2 = 1.426 (5), C3—C4 = 1.436 (5) and C4—C5 = 1.375 (4) Å.

5. Hirshfeld surface analysis

Mol­ecular Hirshfeld surfaces of 2-oxo-2H-chromen-7-yl 4-tert-butyl­benzoate, (I)[link], were calculated using a standard (high) surface resolution, and with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.39 (red) to 1.4 Å (blue) with the program CrystalExplorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The analysis of inter­molecular inter­actions through the mapping of dnorm is accomplished by considering the contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively. In (I)[link], the surface mapped over dnorm highlights six red spots showing distances shorter than the sum of the van der Waals radii. These dominant inter­actions correspond to inter­molecular C—H⋯O hydrogen bonds, O⋯π and ππ stacking inter­actions between the surface and the neighbouring environment. The mapping also shows white spots with distances equal to the sum of the van der Waals radii and blue regions with distances longer than the sum of the van der Waals radii. The surfaces are transparent to allow visualization of the mol­ecule (Fig. 5[link]). Furthermore, the two-dimensional fingerprint plots (FP) in Fig. 6[link] highlight particular close contacts of atom pairs and the contributions from different contacts are provided. The red spots in the middle of the surface appearing near de = di ≃ 1.8–2 Å correspond to close C⋯C inter­planar contacts. These contacts, which comprise 8.3% of the total Hirshfeld surface area, relate to ππ inter­actions (Fig. 6[link]a), as shown by the X-ray study. The most significant contribution to the Hirshfeld surface (46.8%) is from H⋯H contacts, which appear in the central region of the FP (Fig. 6[link]b). H⋯O/O⋯H inter­actions with a 24.1% contribution appear as blue spikes in Fig. 6[link]c and show the presence of O⋯H contacts, whereas the C⋯H/H⋯C plot (17.3%) gives information about inter­molecular hydrogen bonds (Fig. 6[link]d). Other visible spots in the Hirshfeld surfaces show C⋯O/O⋯C and O⋯O contacts, which contribute only 4.0 and 1.0%, respectively (Fig. 6[link]e and 6f).

[Figure 5]
Figure 5
 A View of the Hirshfeld surfaces with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.39 (red) to 1.4 Å (blue) for compound (I)[link].
[Figure 6]
Figure 6
Decomposed two-dimensional fingerprint plots for compound (I)[link]. Various close contacts and their relative contributions are indicated.

6. Theoretical calculations

The geometry optimization of compound (I)[link] was performed using the density functional theory (DFT) method with a 6-311++G(d,p) basis set. The crystal structure in the solid state was used as the starting structure for the calculations. The DFT calculations are performed with the GAUSSIAN09 program package (Frisch et al., 2013[Frisch, M. J., et al. (2013). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.]). The resulting geometrical parameters are compared with those obtained from the X-ray crystallographic study. An analysis of the computational bond lengths and bond angles and comparison with the crystallographic results shows a good agreement between them, with a root-mean-square deviation of 0.017 Å for bond lengths and 0.97° for bond angles (see Supplementary Tables S1 and S2). In addition, an inspection of the calculated torsion angles shows that the coumarin ring system and the benzene (C11–C16) ring are planar (Supplementary Table S3), which is in good agreement with the crystallographic prevision, although the calculated C10—O3—C7—C8 torsion angle between them (129.1°) is somewhat lower than the observed value [141.3 (3)°].

7. Synthesis and crystallization

To a solution of 4-tert-butyl­benzoyl chloride (6.17 mmol; 1.3 g) in dry tetra­hydro­furan (30 to 40 ml), was added dry tri­methyl­amine (2.6 ml; 3 molar equivalents) and 7-hy­droxy­coumarin (6.17 mmol; 1g) in small portions over 30 min. The mixture was then refluxed for four h and poured into 40 ml of chloro­form. The solution was acidified with diluted hydro­chloric acid until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and recrystallized from chloro­form. Colourless crystals of the title compound were obtained in a good yield: 90%; m.p. 406–408 K.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions [C—H = 0.93 (aromatic) or 0.96 Å (methyl group)] and refined using a riding-model approximation with Uiso(H) constrained to 1.2 (aromatic) or 1.5 (meth­yl) times Ueq(C) of the respective parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C20H18O4
Mr 322.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 18.684 (2), 6.5431 (5), 13.6688 (14)
β (°) 93.627 (11)
V3) 1667.7 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.73
Crystal size (mm) 0.40 × 0.12 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas S2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.714, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9647, 3005, 1710
Rint 0.035
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.202, 1.01
No. of reflections 3005
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.13
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek,2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

2-Oxo-2H-chromen-7-yl 4-tert-butylbenzoate top
Crystal data top
C20H18O4F(000) = 680
Mr = 322.34Dx = 1.284 Mg m3
Monoclinic, P21/cMelting point = 406–408 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 18.684 (2) ÅCell parameters from 1499 reflections
b = 6.5431 (5) Åθ = 4.7–63.4°
c = 13.6688 (14) ŵ = 0.73 mm1
β = 93.627 (11)°T = 298 K
V = 1667.7 (3) Å3Prism, colorless
Z = 40.40 × 0.12 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas S2
diffractometer
3005 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1710 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 5.3048 pixels mm-1θmax = 67.7°, θmin = 4.7°
ω scansh = 2219
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 77
Tmin = 0.714, Tmax = 1.000l = 1516
9647 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0981P)2]
where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.13 e Å3
72 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.05338 (12)0.1955 (3)0.65709 (16)0.0967 (6)
O10.19810 (13)0.3433 (3)0.65369 (16)0.1016 (7)
O40.04152 (14)0.5177 (3)0.6031 (2)0.1233 (9)
C70.01924 (18)0.1455 (4)0.64140 (19)0.0869 (8)
C40.15790 (19)0.0068 (4)0.61057 (19)0.0905 (8)
C60.07476 (18)0.2783 (4)0.6568 (2)0.0904 (8)
H60.06620.41190.67760.108*
C110.15865 (18)0.3838 (4)0.63538 (19)0.0860 (8)
C50.14356 (18)0.2044 (4)0.63979 (19)0.0869 (8)
C90.1001 (2)0.1235 (4)0.5982 (2)0.0974 (9)
H90.10860.25860.57970.117*
C100.0789 (2)0.3799 (4)0.6300 (2)0.0907 (8)
C120.1920 (2)0.5629 (4)0.6107 (2)0.0974 (9)
H120.16450.67740.59350.117*
C140.3083 (2)0.4064 (5)0.6350 (2)0.0971 (9)
C80.0311 (2)0.0549 (4)0.6129 (2)0.0933 (8)
H80.00730.14190.60380.112*
C30.2317 (2)0.0532 (5)0.5957 (2)0.1066 (10)
H30.24320.18660.57740.128*
O20.31255 (16)0.4209 (5)0.6509 (2)0.1421 (11)
C130.2657 (2)0.5738 (5)0.6111 (2)0.1024 (10)
H130.28720.69650.59500.123*
C160.20033 (19)0.2163 (4)0.6614 (2)0.0957 (9)
H160.17880.09510.67940.115*
C150.2743 (2)0.2284 (5)0.6607 (2)0.1034 (10)
H150.30180.11400.67810.124*
C10.2694 (2)0.2881 (6)0.6378 (3)0.1124 (10)
C20.2839 (2)0.0826 (6)0.6080 (3)0.1137 (11)
H20.33140.04150.59680.136*
C170.3902 (2)0.4102 (6)0.6331 (3)0.1112 (10)
C180.4185 (3)0.6214 (7)0.6053 (4)0.1529 (18)
H18A0.39730.66060.54230.229*
H18B0.40620.72000.65350.229*
H18C0.46970.61570.60280.229*
C190.4251 (3)0.3551 (9)0.7329 (4)0.170 (2)
H19A0.47630.35830.73020.256*
H19B0.41070.45180.78070.256*
H19C0.41030.22050.75080.256*
C200.4126 (3)0.2572 (8)0.5546 (4)0.166 (2)
H20A0.39010.29420.49200.249*
H20B0.46380.26040.55120.249*
H20C0.39790.12190.57170.249*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.1181 (17)0.0720 (10)0.0991 (14)0.0106 (10)0.0014 (11)0.0063 (9)
O10.1168 (17)0.0875 (13)0.0988 (14)0.0074 (11)0.0057 (12)0.0189 (10)
O40.129 (2)0.0812 (13)0.160 (2)0.0214 (13)0.0119 (16)0.0276 (13)
C70.119 (2)0.0684 (13)0.0726 (15)0.0089 (14)0.0013 (14)0.0037 (10)
C40.132 (2)0.0739 (14)0.0647 (14)0.0064 (15)0.0000 (14)0.0019 (10)
C60.128 (2)0.0655 (13)0.0764 (15)0.0065 (14)0.0047 (14)0.0088 (11)
C110.120 (2)0.0690 (13)0.0681 (14)0.0067 (13)0.0017 (14)0.0029 (10)
C50.121 (2)0.0732 (13)0.0660 (14)0.0058 (15)0.0021 (13)0.0042 (11)
C90.150 (3)0.0642 (13)0.0779 (16)0.0016 (16)0.0037 (17)0.0010 (11)
C100.133 (3)0.0646 (13)0.0730 (15)0.0115 (14)0.0011 (15)0.0031 (11)
C120.133 (3)0.0688 (14)0.0890 (18)0.0092 (15)0.0019 (17)0.0035 (12)
C140.124 (3)0.0839 (17)0.0813 (17)0.0018 (16)0.0056 (16)0.0001 (13)
C80.130 (3)0.0681 (14)0.0815 (16)0.0106 (15)0.0045 (16)0.0028 (12)
C30.143 (3)0.0864 (18)0.0893 (19)0.0144 (19)0.0001 (19)0.0027 (14)
O20.126 (2)0.149 (2)0.149 (2)0.0183 (18)0.0063 (17)0.0434 (19)
C130.132 (3)0.0772 (16)0.097 (2)0.0074 (16)0.0000 (18)0.0070 (14)
C160.121 (3)0.0740 (15)0.0915 (19)0.0033 (15)0.0038 (16)0.0098 (13)
C150.123 (3)0.0817 (17)0.104 (2)0.0078 (16)0.0040 (18)0.0128 (15)
C10.127 (3)0.114 (2)0.095 (2)0.003 (2)0.0028 (19)0.0183 (18)
C20.123 (3)0.115 (3)0.102 (2)0.016 (2)0.002 (2)0.0086 (19)
C170.115 (3)0.109 (2)0.108 (2)0.0068 (19)0.0027 (19)0.0005 (18)
C180.137 (4)0.133 (3)0.185 (5)0.031 (3)0.019 (3)0.017 (3)
C190.119 (3)0.246 (6)0.143 (4)0.016 (3)0.012 (3)0.050 (4)
C200.140 (4)0.166 (4)0.198 (5)0.026 (3)0.052 (4)0.048 (4)
Geometric parameters (Å, º) top
O3—C101.357 (3)C8—H80.9300
O3—C71.399 (4)C3—C21.338 (5)
O1—C11.383 (4)C3—H30.9300
O1—C51.387 (3)O2—C11.206 (4)
O4—C101.184 (3)C13—H130.9300
C7—C61.379 (4)C16—C151.385 (5)
C7—C81.382 (4)C16—H160.9300
C4—C51.375 (4)C15—H150.9300
C4—C91.395 (5)C1—C21.426 (5)
C4—C31.436 (5)C2—H20.9300
C6—C51.379 (4)C17—C191.517 (5)
C6—H60.9300C17—C181.536 (5)
C11—C161.378 (4)C17—C201.545 (5)
C11—C121.379 (4)C18—H18A0.9600
C11—C101.488 (5)C18—H18B0.9600
C9—C81.369 (5)C18—H18C0.9600
C9—H90.9300C19—H19A0.9600
C12—C131.380 (5)C19—H19B0.9600
C12—H120.9300C19—H19C0.9600
C14—C131.381 (4)C20—H20A0.9600
C14—C151.383 (4)C20—H20B0.9600
C14—C171.531 (5)C20—H20C0.9600
C10—O3—C7121.3 (2)C14—C13—H13119.3
C1—O1—C5121.1 (3)C11—C16—C15120.1 (3)
C6—C7—C8122.2 (3)C11—C16—H16120.0
C6—C7—O3124.1 (3)C15—C16—H16120.0
C8—C7—O3113.7 (3)C14—C15—C16121.7 (3)
C5—C4—C9118.2 (3)C14—C15—H15119.2
C5—C4—C3117.8 (3)C16—C15—H15119.2
C9—C4—C3124.0 (3)O2—C1—O1115.8 (3)
C5—C6—C7117.1 (3)O2—C1—C2127.2 (4)
C5—C6—H6121.5O1—C1—C2117.0 (4)
C7—C6—H6121.5C3—C2—C1122.3 (4)
C16—C11—C12118.8 (3)C3—C2—H2118.8
C16—C11—C10123.2 (3)C1—C2—H2118.8
C12—C11—C10118.0 (3)C19—C17—C14110.7 (3)
C4—C5—C6122.8 (3)C19—C17—C18107.5 (4)
C4—C5—O1121.6 (3)C14—C17—C18112.2 (3)
C6—C5—O1115.6 (2)C19—C17—C20110.6 (4)
C8—C9—C4120.8 (3)C14—C17—C20108.4 (3)
C8—C9—H9119.6C18—C17—C20107.3 (4)
C4—C9—H9119.6C17—C18—H18A109.5
O4—C10—O3123.5 (3)C17—C18—H18B109.5
O4—C10—C11124.8 (3)H18A—C18—H18B109.5
O3—C10—C11111.7 (2)C17—C18—H18C109.5
C11—C12—C13120.6 (3)H18A—C18—H18C109.5
C11—C12—H12119.7H18B—C18—H18C109.5
C13—C12—H12119.7C17—C19—H19A109.5
C13—C14—C15117.4 (4)C17—C19—H19B109.5
C13—C14—C17123.0 (3)H19A—C19—H19B109.5
C15—C14—C17119.6 (3)C17—C19—H19C109.5
C9—C8—C7119.0 (3)H19A—C19—H19C109.5
C9—C8—H8120.5H19B—C19—H19C109.5
C7—C8—H8120.5C17—C20—H20A109.5
C2—C3—C4120.1 (3)C17—C20—H20B109.5
C2—C3—H3119.9H20A—C20—H20B109.5
C4—C3—H3119.9C17—C20—H20C109.5
C12—C13—C14121.4 (3)H20A—C20—H20C109.5
C12—C13—H13119.3H20B—C20—H20C109.5
C10—O3—C7—C641.5 (4)C6—C7—C8—C90.8 (4)
C10—O3—C7—C8141.3 (3)O3—C7—C8—C9178.1 (3)
C8—C7—C6—C51.7 (4)C5—C4—C3—C21.5 (5)
O3—C7—C6—C5178.7 (2)C9—C4—C3—C2179.2 (3)
C9—C4—C5—C60.3 (4)C11—C12—C13—C140.8 (5)
C3—C4—C5—C6179.7 (3)C15—C14—C13—C121.5 (5)
C9—C4—C5—O1180.0 (2)C17—C14—C13—C12177.9 (3)
C3—C4—C5—O10.6 (4)C12—C11—C16—C151.1 (5)
C7—C6—C5—C41.2 (4)C10—C11—C16—C15177.2 (3)
C7—C6—C5—O1178.5 (2)C13—C14—C15—C160.9 (5)
C1—O1—C5—C40.5 (4)C17—C14—C15—C16178.5 (3)
C1—O1—C5—C6179.2 (3)C11—C16—C15—C140.4 (5)
C5—C4—C9—C81.3 (4)C5—O1—C1—O2179.1 (3)
C3—C4—C9—C8179.4 (3)C5—O1—C1—C20.8 (5)
C7—O3—C10—O49.6 (4)C4—C3—C2—C11.2 (5)
C7—O3—C10—C11168.7 (2)O2—C1—C2—C3180.0 (4)
C16—C11—C10—O4175.9 (3)O1—C1—C2—C30.1 (6)
C12—C11—C10—O42.4 (5)C13—C14—C17—C19122.1 (4)
C16—C11—C10—O32.3 (4)C15—C14—C17—C1958.5 (5)
C12—C11—C10—O3179.4 (2)C13—C14—C17—C181.9 (5)
C16—C11—C12—C130.6 (4)C15—C14—C17—C18178.7 (4)
C10—C11—C12—C13177.8 (3)C13—C14—C17—C20116.5 (4)
C4—C9—C8—C70.7 (4)C15—C14—C17—C2062.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.932.323.114 (4)144
C15—H15···O2ii0.932.653.310 (4)128
C6—H6···O40.932.412.813 (4)106
C10—O4···Cg2iii1.18 (1)3.76 (1)3.560 (3)71 (1)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+3/2.
S1 top
Experimental and calculated bond lengths (Å)
BondX-ray6-311++G(d,p)
O3—C101.357 (3)1.381
O3—C71.399 (4)1.387
O1—C11.383 (4)1.399
O1—C51.387 (3)1.363
O4—C101.184 (3)1.203
C7—C61.379 (4)1.387
C7—C81.382 (4)1.399
C4—C51.375 (4)1.406
C4—C91.395 (5)1.405
C4—C31.436 (5)1.438
C6—C51.379 (4)1.392
C11—C161.378 (4)1.401
C11—C121.379 (4)1.397
C11—C101.488 (5)1.482
C9—C81.369 (5)1.383
C12—C131.380 (5)1.391
C14—C131.381 (4)1.401
C14—C151.383 (4)1.405
C14—C171.531 (5)1.537
C3—C21.338 (5)1.350
O2—C11.206 (4)1.202
C16—C151.385 (5)1.388
C1—C21.426 (5)1.457
C17—C191.517 (5)1.547
C17—C181.536 (5)1.540
C17—C201.545 (5)1.547
S2 top
Experimental and calculated bond angles (°)
Bond angleX-ray6-311++G(d,p)
C10—O3—C7121.3 (2)120.5
C1—O1—C5121.1 (3)122.9
C6—C7—C8122.2 (3)121.8
C6—C7—O3124.1 (3)121.7
C8—C7—O3113.7 (3)116.5
C5—C4—C9118.2 (3)118.3
C5—C4—C3117.8 (3)117.5
C9—C4—C3124.0 (3)124.3
C5—C6—C7117.1 (3)118.2
C16—C11—C12118.8 (3)118.9
C16—C11—C10123.2 (3)123.1
C12—C11—C10118.0 (3)118.0
C4—C5—C6122.8 (3)121.7
C4—C5—O1121.6 (3)121.2
C6—C5—O1115.6 (2)117.0
C8—C9—C4120.8 (3)120.8
O4—C10—O3123.5 (3)123.0
O4—C10—C11124.8 (3)125.7
O3—C10—C11111.7 (2)111.4
C11—C12—C13120.6 (3)120.5
C13—C14—C15117.4 (4)117.3
C13—C14—C17123.0 (3)122.8
C15—C14—C17119.6 (3)119.9
C9—C8—C7119.0 (3)119.2
C2—C3—C4120.1 (3)120.9
C12—C13—C14121.4 (3)121.4
C11—C16—C15120.1 (3)120.1
C14—C15—C16121.7 (3)121.8
O2—C1—O1115.8 (3)117.7
O2—C1—C2127.2 (4)126.4
O1—C1—C2117.0 (4)115.9
C3—C2—C1122.3 (4)121.6
C19—C17—C14110.7 (3)109.3
C19—C17—C18107.5 (4)108.2
C14—C17—C18112.2 (3)112.4
C19—C17—C20110.6 (4)109.4
C14—C17—C20108.4 (3)109.3
C18—C17—C20107.3 (4)108.2
S3 top
Experimental and calculated torsion angles (°)
Torsion angleX-ray6-311++G(d,p)
C10—O3—C7—C6-41.5 (4)-54.7
C10—O3—C7—C8141.3 (3)129.1
C8—C7—C6—C5-1.7 (4)-0.3
O3—C7—C6—C5-178.7 (2)-176.3
C9—C4—C5—C60.3 (4)0.1
C3—C4—C5—C6179.7 (3)-180.0
C9—C4—C5—O1180.0 (2)-179.7
C3—C4—C5—O1-0.6 (4)0.3
C7—C6—C5—C41.2 (4)0.2
C7—C6—C5—O1-178.5 (2)179.9
C1—O1—C5—C4-0.5 (4)-0.0
C1—O1—C5—C6179.2 (3)-179.8
C5—C4—C9—C8-1.3 (4)-0.2
C3—C4—C9—C8179.4 (3)179.9
C7—O3—C10—O49.6 (4)-2.1
C7—O3—C10—C11-168.7 (2)178.3
C16—C11—C10—O4-175.9 (3)178.9
C12—C11—C10—O42.4 (5)-1.0
C16—C11—C10—O32.3 (4)-1.6
C12—C11—C10—O3-179.4 (2)178.6
C16—C11—C12—C130.6 (4)0.1
C10—C11—C12—C13-177.8 (3)179.9
C4—C9—C8—C70.7 (4)0.0
C6—C7—C8—C90.8 (4)0.2
O3—C7—C8—C9178.1 (3)176.4
C5—C4—C3—C21.5 (5)-0.23
C9—C4—C3—C2-179.2 (3)179.7
C11—C12—C13—C140.8 (5)-0.1
C15—C14—C13—C12-1.5 (5)0.0
C17—C14—C13—C12177.9 (3)-180.0
C12—C11—C16—C15-1.1 (5)0.0
C10—C11—C16—C15177.2 (3)-179.8
C13—C14—C15—C160.9 (5)0.1
C17—C14—C15—C16-178.5 (3)-179.9
C11—C16—C15—C140.4 (5)-0.1
C5—O1—C1—O2-179.1 (3)179.7
C5—O1—C1—C20.8 (5)-0.3
C4—C3—C2—C1-1.2 (5)-0.1
O2—C1—C2—C3180.0 (4)-179.6
O1—C1—C2—C30.1 (6)0.4
C13—C14—C17—C19122.1 (4)119.9
C15—C14—C17—C19-58.5 (5)-60.1
C13—C14—C17—C181.9 (5)-0.3
C15—C14—C17—C18-178.7 (4)179.7
C13—C14—C17—C20-116.5 (4)-120.4
C15—C14—C17—C2062.9 (4)59.6

Acknowledgements

The authors are grateful to the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme (France) for the use of the diffractometer.

References

First citationAbou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438–o3439.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAbou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082.  CSD CrossRef IUCr Journals Google Scholar
First citationBasanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.  Web of Science CSD CrossRef CAS Google Scholar
First citationBibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126.  CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). Heterocycl. Chem. 38, 717–722.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2013). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationGnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346.  CSD CrossRef CAS Web of Science Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJi, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790–7795.  CSD CrossRef Google Scholar
First citationJi, W., Liu, G., Xu, M., Dou, X. & Feng, C. (2014). Chem. Commun. 50, 15545–15548.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParveen, M., Mehdi, S. H., Ghalib, R. M., Alam, M. & Pallepogu, R. (2011). Pharma Chemica, 3, 22–30.  Google Scholar
First citationRamasubbu, N., Gnanaguru, K., Venkatesan, K. & Ramamurthy, V. (1982). Can. J. Chem. 60, 2159–2161.  CSD CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationYu, J., Gao, L.-L., Huang, P. & Wang, D.-L. (2014). Acta Cryst. E70, m369–m370.  CSD CrossRef IUCr Journals Google Scholar
First citationZiki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZiki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds