research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Spontaneous resolution and crystal structure of (2S)-2-(3-nitro­phen­yl)-3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one; crystal structure of rac-2-(4-nitro­phen­yl)-3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one

CROSSMARK_Color_square_no_text.svg

aThe Pennsylvania State University, Dept. Biochemistry and Molecular Biology, University Park, Pa 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 January 2018; accepted 27 February 2018; online 6 March 2018)

The crystal structures of isomeric rac-2-(4-nitro­phen­yl)-3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (C16H14N2O3S) (1) and (2S)-2-(3-nitro­phen­yl)-3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (C16H14N2O3S) (2) are reported here. While 1 crystallizes in a centrosymmetric space group, the crystal of 2 chosen for data collection has mol­ecules only with (2S) chirality. This is the result of spontaneous resolution during crystallization, as the synthesis produces a racemic mixture. A crystal with (2R) mol­ecules was also found in the same crystallization vial (structure factors available). The six-membered thia­zine ring in both 1 and 2 displays an envelope conformation with the S atom forming the flap. The aryl rings in both structures adopt an approximate V shape with angles between their planes of 46.97 (14)° in 1 and 58.37 (10)° in 2. In both structures, the mol­ecules form layers in the ab plane. Within such a layer in 1, one of the O atoms of the nitro­phenyl group accepts a C—H⋯O hydrogen bond from the CH group at position 5 of the thia­zine ring of a mol­ecule of opposite chirality, forming chains along the a-axis direction. Each of the thia­zine rings also participate in C—H⋯O bonds with the same carbon atom as above, resulting in chains along the b-axis direction, albeit of monochiral type. Adjacent layers are consolidated along the c-axis direction by pairs of parallel hydrogen bonds (C—H⋯O type) between the nitro­phenyl groups of enanti­omers. In 2, the two C—H⋯O hydrogen bonds contribute to chain formation along the b-axis direction. Weak edge-to-face inter­actions between the aryl groups of neighbouring mol­ecules in 1, and C—H⋯π inter­actions between a thia­zine ring CH group and a phenyl group of a neighboring mol­ecule in 2 are also observed.

1. Chemical context

Compounds with an N-aryl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one scaffold have been shown to have a wide variety of bioactivities, including anti­fungal (Qu et al., 2013[Qu, H., Zhang, R., Hu, Y., Ke, Y., Gao, Z. & Xu, H. (2013). J. Biosci. 68, 77-81.]; Dandia et al., 2004[Dandia, A., Singh, R. & Arya, K. (2004). Phosphorus Sulfur Silicon, 179, 551-564.]; Krumkains, 1984[Krumkains, E. V. (1984). EP, 10420, B1.]), anti­tubercular (Dandia et al., 2004[Dandia, A., Singh, R. & Arya, K. (2004). Phosphorus Sulfur Silicon, 179, 551-564.]), anti­tumor (Chen et al., 2012[Chen, Y., Wu, J. Yu. L., Zhai, D., Yi, Z., Luo, J. N. & Liu, M. (2012). Patent CN102653526A.]), anti­diabetic (Arya et al., 2012[Arya, K., Rawat, D. S., Dandia, A. & Sasai, H. M. (2012). J. Fluor. Chem. 137, 117-122.]), regulation of plant growth (Krumkains, 1984[Krumkains, E. V. (1984). EP, 10420, B1.]), cleavage of DNA (possible anti­tumor) (Dandia et al., 2013[Dandia, A., Singh, R. & Saini, D. (2013). J. Chem. Sci. 125, 1045-1053.]), inhibition of cannabinoid receptor 1 (CB1) (Choi et al., 2008[Choi, H., Wang, Z., Zhu, X., He, X., Yang, K. & Liu, H. (2008). Patent WO2008112674, A1.]), and inhibition of angiogenesis (possible treatment of eye disease, neoplasm, arteriosclerosis, arthritis, psoriasis, diabetes, and mellitus) (Chen et al., 2012[Chen, Y., Wu, J. Yu. L., Zhai, D., Yi, Z., Luo, J. N. & Liu, M. (2012). Patent CN102653526A.]).

The spontaneous resolution of a racemic solution by direct crystallization to form a conglomerate, a mechanical mixture of separate homochiral crystals, is an uncommon but well-known phenomenon, recognized first by Pasteur in 1848 (Pasteur, 1848[Pasteur, L. (1848). Ann. Chim. Phys. 22, 442-459.]; Jacques et al., 1981[Jacques, J., Collet, A. & Wilen, S. H. (1981). Enantiomers, Racemates, and Resolutions. New York: John Wiley & Sons.]; Eliel & Wilen, 1994[Eliel, E. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds. New York: John Wiley & Sons.]; Pérez-Garcia & Amabilino, 2007[Pérez-García, L. & Amabilino, D. B. (2007). Chem. Soc. Rev. 36, 941-967.]). It has even been used in the production of chiral active pharmaceutical ingredients (Bredikhin & Bredikhina, 2017[Bredikhin, A. A. & Bredikhina, Z. A. (2017). Chem. Eng. Technol. 40, 1211-1220.]). However, the reasons why this occurs with a minority of mol­ecules are not well understood (Pérez-Garcia & Amabilino, 2007[Pérez-García, L. & Amabilino, D. B. (2007). Chem. Soc. Rev. 36, 941-967.]) and have not yet yielded to attempts to predict occurrence (D'Oria, Karanertzanis & Price, 2010[D'Oria, E., Karamertzanis, P. G. & Price, S. L. (2010). Cryst. Growth Des. 10, 1749-1756.]; Pérez-Garcia & Amabilino, 2007[Pérez-García, L. & Amabilino, D. B. (2007). Chem. Soc. Rev. 36, 941-967.]).

[Scheme 1]

In this work, we report the spontaneous resolution and crystal structure of (2S)-2-(3-nitro­phen­yl)-3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one, 2. We later collected another crystal from the vial and confirmed that it had the (2R) configuration (identical packing, structure factors available upon request). We also report the racemic (centrosymmetric) structure of the isomeric 2-(4-nitro­phen­yl)-3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one, 1. We have previously reported the crystal structure of rac-2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (Yennawar & Silverberg, 2014[Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133. Corrigendum: (2015), E71, e5.]).

2. Structural commentary

Both structures 1 and 2 (Figs. 1[link] and 2[link]) exhibit an envelope pucker conformation of the thia­zine ring with the sulfur atom forming the flap. The Cremer & Pople (1975) puckering parameters in 1 are: Q = 0.638 (3) Å, θ = 47.0 (3)°, φ = 339.8 (4)° and in 2: Q = 0.6654 (16) Å, θ = 44.20 (17)°, φ = 353.8 (3)°. The aryl rings in both structures form an approximate V shape with inter-centroid distances of 3.964 (2) and 4.160 (2) Å, and inter­planar angles of 46.97 (14) and 58.37 (10)°, in 1 and 2, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of 1, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 2, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In both structures, C—H⋯O inter­actions are observed (Tables 1[link] and 2[link], Figs. 3[link] and 4[link]), resulting in layering of mol­ecules in planes parallel to (001). In each layer of structure 1, one of the oxygen atoms of the nitro­phenyl group accepts a C—H⋯O hydrogen bond from the CH group at position 5 of the thia­zine ring of a mol­ecule of opposite chirality. This results in infinite chains of mixed chirality along the a-axis direction. The second oxygen atom of the nitro­phenyl group also accepts a hydrogen bond from the thia­zine 5-carbon atom, resulting this time in monochiral chains along the b-axis direction. Further, the stacking of layers along the c-axis direction is consolidated by pairs of parallel hydrogen bonds between the nitro­phenyl groups of enanti­omers. In 2, a monochiral structure, the C—H⋯O hydrogen bonds between the chiral carbon atom and the 4-oxygen atom on the neighboring thia­zine ring results in a chain along the b-axis direction. The second hydrogen bond loops back to the second mol­ecule in the reverse direction of the same chain. While weak edge-to-face inter­actions [CgCg distance of 5.340 (3) Å and an inter­planar angle of 84.99 (2)°] between the aryl groups of neighboring mol­ecules is observed in 1, in 2, the 6-carbon atom of the thia­zine ring inter­acts with the phenyl group in a C—H⋯π type inter­action [C4⋯Cg = 3.581 (2) Å].

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.97 2.62 3.405 (4) 139
C3—H3B⋯O3ii 0.97 2.57 3.253 (5) 128
C7—H7⋯O2iii 0.93 2.50 3.417 (4) 170
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.98 2.19 3.158 (2) 170
C15—H15⋯O3ii 0.93 2.58 3.501 (3) 174
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z.
[Figure 3]
Figure 3
Packing diagram for 1, showing the layering of mol­ecules in the ab plane. Red dotted lines show hydrogen bonds between enanti­omers and blue dotted lines show inter­actions between mol­ecules of same chirality.
[Figure 4]
Figure 4
Packing diagram for 2, showing the layering of mol­ecules in the ab plane. Blue dotted lines show hydrogen bonds between mol­ecules forming a chain in the b-axis direction and red dotted lines show a loop-back inter­action within each chain.

4. Database survey

No substanti­ally similar crystal structures were found other than certain ones we have published, including 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (Yennawar & Silverberg, 2014[Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133. Corrigendum: (2015), E71, e5.], 2015[Yennawar, H. P. & Silverberg, L. J. (2015), E71, e5.]), 2-(3-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.]), and 2-(4-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (Yennawar et al., 2015[Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414-417.]).

5. Synthesis and crystallization

General: A two-necked 25 ml round-bottom flask was oven-dried, cooled under N2, and charged with a stir bar and the imine (6 mmol). 3-Mercaptopropionic acid (0.52 ml, 6 mmol) and then 2-methyl­tetra­hydro­furan (2.3 ml) were added and the solution was stirred. Pyridine (1.95 ml, 24 mmol) and finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-trioxide (T3P) in 2-methyl­tetra­hydro­furan (50 weight percent; 7.3 ml, 12 mmol) were added. The reaction was stirred at room temperature and followed by TLC. The mixture was poured into a separatory funnel with di­chloro­methane and distilled water. The layers were separated and the aqueous was then extracted twice with di­chloro­methane. The organics were combined and washed with saturated sodium bicarbonate and then saturated sodium chloride. The organic was dried over sodium sulfate and concentrated under vacuum to give crude product.

2-(4-Nitro­phen­yl)-3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (1): the crude product was recrystallized from 2-propanol to give a white powder. Yield: 1.397 g (74%). m.p. 410–412 K. Colorless blocks for data collection were grown by slow evaporation from 2-propanol solution.

2-(3-Nitro­phen­yl)-3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (2): The crude product was recrystallized from 2-propanol to give a yellow powder. Yield: 1.121 g (59%). m.p. 415 K. Colorless blocks were grown by slow evaporation from ethanol solution; the (2S) and (2R) crystals had identical morphology. The stereochemical configuration of individual crystals was identified by solving the crystal structure. After several were found to be (2S), a crystal was found that was (2R).

6. Refinement

Crystal data, data collection and structure refinement details for both structures 1 and 2 are summarized in Table 3[link]. The H atoms were placed geometrically and allowed to ride on their parent C atoms during refinement, with C—H distances of 0.93 Å (aromatic), 0.97 Å (methyl­ene) and 0.98 (meth­yl) and with Uiso(H) = 1.2Ueq(aromatic or methyl­ene C) or 1.5Ueq(methyl C). In structure 2, the absolute configuration for the chiral centres in the mol­ecule was determined as (2S) with a Flack absolute structure parameter of 0.09 (7) for 4055 Friedel pairs.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C16H14N2O3S C16H14N2O3S
Mr 314.35 314.35
Crystal system, space group Orthorhombic, Pbca Orthorhombic, P212121
Temperature (K) 298 298
a, b, c (Å) 15.801 (6), 10.280 (4), 18.460 (7) 8.6877 (17), 9.6547 (19), 18.137 (4)
V3) 2998.4 (19) 1521.3 (5)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.23 0.23
Crystal size (mm) 0.2 × 0.16 × 0.09 0.21 × 0.19 × 0.18
 
Data collection
Diffractometer Bruker SMART CCD area detector Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[ Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2001[ Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.154, 0.9 0.341, 0.9
No. of measured, independent and observed [I > 2σ(I)] reflections 26571, 3769, 2297 14176, 3775, 3144
Rint 0.057 0.035
(sin θ/λ)max−1) 0.670 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.216, 1.19 0.045, 0.121, 1.01
No. of reflections 3769 3775
No. of parameters 199 199
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.48 0.32, −0.16
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4055 Friedel pairs
Absolute structure parameter 0.09 (7)
Computer programs: SMART and SAINT (Bruker, 2016[ Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 2001). Cell refinement: SAINT (Bruker, 2016) for (1); SAINT (Bruker, 2001) for (2). Data reduction: SAINT (Bruker, 2016) for (1); SAINT (Bruker, 2001) for (2). Program(s) used to solve structure: olex2.solve (Bourhis et al., 2015) for (1); SHELXS97 (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(2S)-2-(3-Nitrophenyl)-3-phenyl-3,4,5,6-tetrahydro-2H-1,3-thiazin-4-one (1) top
Crystal data top
C16H14N2O3SDx = 1.393 Mg m3
Mr = 314.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3516 reflections
a = 15.801 (6) Åθ = 2.6–27.5°
b = 10.280 (4) ŵ = 0.23 mm1
c = 18.460 (7) ÅT = 298 K
V = 2998.4 (19) Å3Block, colorless
Z = 80.2 × 0.16 × 0.09 mm
F(000) = 1312
Data collection top
Bruker SMART CCD area detector
diffractometer
3769 independent reflections
Radiation source: fine-focus sealed tube2297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
phi and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2021
Tmin = 0.154, Tmax = 0.9k = 1313
26571 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3769 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.48 e Å3
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38874 (16)0.8032 (2)0.80475 (15)0.0493 (7)
H10.34580.87130.79950.059*
C20.32207 (18)0.6103 (3)0.86948 (17)0.0613 (8)
C30.3466 (2)0.6614 (3)0.94234 (17)0.0744 (10)
H3A0.39410.61040.95970.089*
H3B0.29980.64620.97520.089*
C40.3704 (2)0.8027 (4)0.94716 (18)0.0746 (10)
H4A0.39010.82240.99570.090*
H4B0.32120.85620.93730.090*
C50.44572 (15)0.8058 (2)0.73915 (15)0.0446 (6)
C60.42995 (16)0.8917 (2)0.68348 (15)0.0482 (7)
H60.38600.95130.68800.058*
C70.47813 (18)0.8909 (3)0.62117 (15)0.0551 (7)
H70.46740.94950.58390.066*
C80.54241 (16)0.8013 (3)0.61555 (15)0.0525 (7)
C90.56167 (17)0.7155 (3)0.67046 (18)0.0584 (8)
H90.60580.65630.66580.070*
C100.51327 (17)0.7203 (3)0.73259 (16)0.0546 (7)
H100.52620.66500.77090.066*
C110.31097 (16)0.6326 (2)0.73959 (15)0.0488 (7)
C120.24278 (18)0.6965 (3)0.71096 (17)0.0572 (7)
H120.21590.76120.73750.069*
C130.2139 (2)0.6647 (3)0.64262 (19)0.0679 (9)
H130.16720.70780.62350.082*
C140.2530 (2)0.5712 (3)0.6032 (2)0.0747 (10)
H140.23360.55110.55690.090*
C150.3214 (2)0.5062 (3)0.6317 (2)0.0770 (10)
H150.34840.44230.60450.092*
C160.3502 (2)0.5354 (3)0.70058 (19)0.0660 (8)
H160.39550.48990.72040.079*
N10.34542 (14)0.6745 (2)0.80829 (12)0.0514 (6)
N20.59028 (18)0.7939 (3)0.54789 (16)0.0700 (7)
O10.28131 (16)0.5087 (2)0.86495 (14)0.0905 (8)
O20.57444 (17)0.8711 (3)0.49997 (13)0.0870 (8)
O30.6441 (2)0.7111 (3)0.54203 (18)0.1312 (13)
S10.45206 (5)0.83866 (9)0.88301 (4)0.0706 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0452 (15)0.0467 (14)0.0561 (17)0.0018 (11)0.0019 (12)0.0096 (11)
C20.0498 (16)0.0657 (18)0.068 (2)0.0000 (14)0.0077 (14)0.0223 (16)
C30.065 (2)0.099 (3)0.060 (2)0.0073 (18)0.0096 (16)0.0301 (18)
C40.072 (2)0.100 (3)0.0521 (19)0.0153 (19)0.0029 (16)0.0062 (17)
C50.0395 (13)0.0399 (12)0.0543 (16)0.0048 (10)0.0009 (11)0.0045 (11)
C60.0439 (14)0.0458 (13)0.0550 (17)0.0024 (11)0.0026 (12)0.0079 (12)
C70.0550 (16)0.0586 (16)0.0517 (17)0.0010 (14)0.0036 (13)0.0106 (13)
C80.0445 (15)0.0585 (16)0.0545 (17)0.0061 (12)0.0055 (13)0.0029 (13)
C90.0436 (15)0.0584 (16)0.073 (2)0.0060 (12)0.0027 (14)0.0090 (15)
C100.0481 (15)0.0545 (15)0.0613 (18)0.0053 (13)0.0041 (13)0.0188 (13)
C110.0438 (14)0.0466 (14)0.0559 (17)0.0038 (11)0.0047 (13)0.0097 (12)
C120.0496 (16)0.0574 (16)0.065 (2)0.0008 (13)0.0008 (14)0.0009 (14)
C130.0625 (19)0.0674 (19)0.074 (2)0.0120 (16)0.0130 (17)0.0057 (17)
C140.083 (2)0.073 (2)0.069 (2)0.0263 (19)0.0012 (19)0.0034 (18)
C150.086 (3)0.063 (2)0.083 (3)0.0113 (18)0.012 (2)0.0183 (18)
C160.0600 (18)0.0513 (16)0.087 (2)0.0032 (14)0.0041 (17)0.0009 (15)
N10.0475 (13)0.0509 (12)0.0558 (15)0.0010 (10)0.0032 (11)0.0165 (10)
N20.0613 (16)0.0829 (19)0.0657 (19)0.0036 (15)0.0121 (14)0.0036 (15)
O10.0943 (18)0.0839 (17)0.0934 (19)0.0271 (14)0.0132 (14)0.0336 (14)
O20.0969 (18)0.1087 (19)0.0554 (15)0.0039 (15)0.0103 (13)0.0133 (14)
O30.124 (3)0.155 (3)0.115 (3)0.062 (2)0.061 (2)0.030 (2)
S10.0682 (6)0.0868 (6)0.0569 (6)0.0123 (4)0.0040 (4)0.0004 (4)
Geometric parameters (Å, º) top
C1—H10.9800C8—C91.378 (4)
C1—C51.509 (4)C8—N21.462 (4)
C1—N11.491 (3)C9—H90.9300
C1—S11.795 (3)C9—C101.379 (4)
C2—C31.495 (5)C10—H100.9300
C2—N11.359 (3)C11—C121.368 (4)
C2—O11.230 (4)C11—C161.379 (4)
C3—H3A0.9700C11—N11.446 (4)
C3—H3B0.9700C12—H120.9300
C3—C41.503 (5)C12—C131.381 (4)
C4—H4A0.9700C13—H130.9300
C4—H4B0.9700C13—C141.355 (5)
C4—S11.790 (3)C14—H140.9300
C5—C61.378 (4)C14—C151.375 (5)
C5—C101.388 (4)C15—H150.9300
C6—H60.9300C15—C161.384 (4)
C6—C71.379 (4)C16—H160.9300
C7—H70.9300N2—O21.215 (3)
C7—C81.375 (4)N2—O31.208 (4)
C5—C1—H1108.7C9—C8—N2118.7 (3)
C5—C1—S1108.04 (18)C8—C9—H9121.1
N1—C1—H1108.7C8—C9—C10117.8 (3)
N1—C1—C5109.0 (2)C10—C9—H9121.1
N1—C1—S1113.65 (17)C5—C10—H10119.3
S1—C1—H1108.7C9—C10—C5121.4 (3)
N1—C2—C3120.4 (3)C9—C10—H10119.3
O1—C2—C3119.7 (3)C12—C11—C16120.0 (3)
O1—C2—N1119.9 (3)C12—C11—N1119.5 (2)
C2—C3—H3A108.0C16—C11—N1120.3 (3)
C2—C3—H3B108.0C11—C12—H12120.0
C2—C3—C4117.2 (2)C11—C12—C13120.0 (3)
H3A—C3—H3B107.2C13—C12—H12120.0
C4—C3—H3A108.0C12—C13—H13119.7
C4—C3—H3B108.0C14—C13—C12120.5 (3)
C3—C4—H4A109.7C14—C13—H13119.7
C3—C4—H4B109.7C13—C14—H14120.1
C3—C4—S1109.9 (2)C13—C14—C15119.8 (3)
H4A—C4—H4B108.2C15—C14—H14120.1
S1—C4—H4A109.7C14—C15—H15119.8
S1—C4—H4B109.7C14—C15—C16120.3 (3)
C6—C5—C1120.1 (2)C16—C15—H15119.8
C6—C5—C10118.7 (2)C11—C16—C15119.3 (3)
C10—C5—C1121.2 (2)C11—C16—H16120.3
C5—C6—H6119.4C15—C16—H16120.3
C5—C6—C7121.2 (2)C2—N1—C1126.3 (3)
C7—C6—H6119.4C2—N1—C11118.8 (2)
C6—C7—H7120.8C11—N1—C1113.49 (19)
C8—C7—C6118.3 (3)O2—N2—C8118.8 (3)
C8—C7—H7120.8O3—N2—C8118.5 (3)
C7—C8—C9122.4 (3)O3—N2—O2122.7 (3)
C7—C8—N2118.8 (3)C4—S1—C195.08 (15)
C1—C5—C6—C7176.2 (2)C12—C11—N1—C169.7 (3)
C1—C5—C10—C9175.0 (3)C12—C11—N1—C297.7 (3)
C2—C3—C4—S154.0 (4)C12—C13—C14—C150.8 (5)
C3—C2—N1—C15.9 (4)C13—C14—C15—C160.3 (5)
C3—C2—N1—C11171.6 (3)C14—C15—C16—C111.7 (5)
C3—C4—S1—C163.8 (2)C16—C11—C12—C130.9 (4)
C5—C1—N1—C2147.8 (3)C16—C11—N1—C1105.6 (3)
C5—C1—N1—C1145.9 (3)C16—C11—N1—C287.0 (3)
C5—C1—S1—C4171.67 (19)N1—C1—C5—C6115.7 (3)
C5—C6—C7—C80.4 (4)N1—C1—C5—C1062.5 (3)
C6—C5—C10—C93.3 (4)N1—C1—S1—C450.6 (2)
C6—C7—C8—C91.9 (4)N1—C2—C3—C420.1 (4)
C6—C7—C8—N2176.0 (3)N1—C11—C12—C13174.4 (2)
C7—C8—C9—C100.7 (4)N1—C11—C16—C15173.3 (3)
C7—C8—N2—O23.4 (4)N2—C8—C9—C10177.1 (3)
C7—C8—N2—O3176.7 (3)O1—C2—C3—C4160.7 (3)
C8—C9—C10—C51.9 (4)O1—C2—N1—C1174.9 (3)
C9—C8—N2—O2178.6 (3)O1—C2—N1—C119.3 (4)
C9—C8—N2—O31.3 (4)S1—C1—C5—C6120.4 (2)
C10—C5—C6—C72.1 (4)S1—C1—C5—C1061.4 (3)
C11—C12—C13—C140.5 (5)S1—C1—N1—C227.3 (3)
C12—C11—C16—C151.9 (4)S1—C1—N1—C11166.44 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.972.623.405 (4)139
C3—H3B···O3ii0.972.573.253 (5)128
C7—H7···O2iii0.932.503.417 (4)170
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1/2, y, z+3/2; (iii) x+1, y+2, z+1.
rac-2-(4-Nitrophenyl)-3-phenyl-3,4,5,6-tetrahydro-2H-1,3-thiazin-4-one (2) top
Crystal data top
C16H14N2O3SDx = 1.373 Mg m3
Mr = 314.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1695 reflections
a = 8.6877 (17) Åθ = 2.6–27.4°
b = 9.6547 (19) ŵ = 0.23 mm1
c = 18.137 (4) ÅT = 298 K
V = 1521.3 (5) Å3Block, colorless
Z = 40.21 × 0.19 × 0.18 mm
F(000) = 656
Data collection top
Bruker SMART CCD area detector
diffractometer
3775 independent reflections
Radiation source: fine-focus sealed tube3144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.34 pixels mm-1θmax = 28.3°, θmin = 2.3°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1212
Tmin = 0.341, Tmax = 0.9l = 2422
14176 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0783P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3775 reflectionsΔρmax = 0.32 e Å3
199 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 4055 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (7)
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26199 (19)0.53305 (17)0.75480 (10)0.0468 (4)
H10.18850.60660.74260.056*
C20.0844 (3)0.3448 (2)0.79727 (12)0.0640 (5)
C30.0753 (3)0.4045 (3)0.87435 (13)0.0688 (6)
H3A0.03210.40530.88890.083*
H3B0.12830.34130.90730.083*
C40.1385 (2)0.5458 (2)0.88739 (13)0.0685 (6)
H4A0.14350.56380.94000.082*
H4B0.07100.61430.86530.082*
C50.39844 (19)0.54561 (17)0.70401 (10)0.0462 (4)
C60.3973 (2)0.64968 (18)0.65124 (11)0.0499 (4)
H60.31330.70890.64700.060*
C70.5226 (2)0.6638 (2)0.60521 (11)0.0535 (5)
C80.6496 (2)0.5792 (2)0.60899 (13)0.0614 (5)
H80.73260.59130.57730.074*
C90.6499 (2)0.4757 (2)0.66142 (14)0.0648 (6)
H90.73430.41680.66530.078*
C100.5258 (2)0.45870 (19)0.70826 (12)0.0546 (5)
H100.52740.38810.74310.066*
C110.17339 (19)0.34283 (18)0.67247 (10)0.0464 (4)
C120.0949 (2)0.4149 (2)0.61946 (11)0.0541 (4)
H120.04560.49730.63150.065*
C130.0889 (3)0.3649 (3)0.54785 (13)0.0697 (6)
H130.03600.41360.51160.084*
C140.1617 (3)0.2433 (3)0.53116 (13)0.0784 (8)
H140.15740.20880.48330.094*
C150.2404 (3)0.1724 (3)0.58378 (16)0.0748 (7)
H150.29020.09030.57150.090*
C160.2472 (2)0.2211 (2)0.65527 (13)0.0601 (5)
H160.30090.17230.69120.072*
N10.18311 (17)0.39713 (15)0.74654 (8)0.0473 (3)
N20.5185 (3)0.7744 (2)0.54921 (11)0.0695 (5)
O10.0060 (2)0.2427 (2)0.78250 (10)0.1044 (8)
O20.6279 (3)0.7859 (2)0.50693 (12)0.1032 (7)
O30.4078 (2)0.8498 (2)0.54701 (13)0.0971 (7)
S10.32852 (6)0.56010 (6)0.84780 (3)0.06274 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0395 (8)0.0424 (9)0.0586 (10)0.0006 (7)0.0046 (8)0.0003 (8)
C20.0585 (11)0.0712 (13)0.0624 (12)0.0210 (11)0.0031 (10)0.0021 (10)
C30.0573 (11)0.0877 (16)0.0613 (12)0.0131 (12)0.0106 (9)0.0027 (11)
C40.0561 (11)0.0838 (15)0.0655 (12)0.0010 (11)0.0092 (10)0.0206 (12)
C50.0399 (8)0.0400 (8)0.0587 (10)0.0030 (7)0.0068 (7)0.0026 (8)
C60.0473 (8)0.0417 (9)0.0606 (11)0.0030 (7)0.0123 (9)0.0026 (8)
C70.0648 (11)0.0428 (9)0.0529 (11)0.0117 (9)0.0069 (9)0.0005 (8)
C80.0599 (11)0.0527 (11)0.0717 (13)0.0094 (10)0.0122 (10)0.0040 (10)
C90.0482 (9)0.0530 (11)0.0932 (16)0.0051 (8)0.0087 (11)0.0020 (11)
C100.0489 (9)0.0449 (10)0.0701 (12)0.0015 (8)0.0016 (9)0.0080 (9)
C110.0377 (7)0.0471 (9)0.0544 (9)0.0070 (7)0.0012 (8)0.0017 (7)
C120.0478 (9)0.0525 (10)0.0621 (11)0.0027 (8)0.0081 (9)0.0016 (9)
C130.0786 (14)0.0757 (15)0.0547 (12)0.0185 (13)0.0091 (12)0.0099 (11)
C140.0955 (18)0.0839 (17)0.0556 (12)0.0344 (16)0.0165 (13)0.0110 (12)
C150.0721 (14)0.0633 (13)0.0891 (17)0.0018 (12)0.0275 (13)0.0183 (13)
C160.0514 (10)0.0550 (11)0.0741 (13)0.0058 (9)0.0007 (10)0.0007 (11)
N10.0431 (7)0.0500 (8)0.0489 (8)0.0088 (6)0.0029 (6)0.0002 (7)
N20.0846 (14)0.0604 (11)0.0637 (11)0.0208 (11)0.0131 (10)0.0075 (9)
O10.1126 (16)0.1198 (15)0.0807 (11)0.0768 (14)0.0227 (11)0.0220 (11)
O20.133 (2)0.0990 (14)0.0779 (11)0.0127 (13)0.0272 (13)0.0221 (11)
O30.0867 (12)0.0827 (13)0.1218 (16)0.0107 (11)0.0210 (12)0.0455 (12)
S10.0486 (2)0.0780 (4)0.0616 (3)0.0121 (2)0.0044 (2)0.0156 (3)
Geometric parameters (Å, º) top
C1—H10.9800C8—H80.9300
C1—C51.506 (2)C8—C91.380 (3)
C1—N11.488 (2)C9—H90.9300
C1—S11.802 (2)C9—C101.383 (3)
C2—C31.514 (3)C10—H100.9300
C2—N11.356 (3)C11—C121.369 (3)
C2—O11.228 (3)C11—C161.375 (3)
C3—H3A0.9700C11—N11.444 (2)
C3—H3B0.9700C12—H120.9300
C3—C41.490 (3)C12—C131.386 (3)
C4—H4A0.9700C13—H130.9300
C4—H4B0.9700C13—C141.368 (4)
C4—S11.806 (2)C14—H140.9300
C5—C61.388 (3)C14—C151.359 (4)
C5—C101.391 (2)C15—H150.9300
C6—H60.9300C15—C161.380 (4)
C6—C71.379 (3)C16—H160.9300
C7—C81.375 (3)N2—O21.226 (3)
C7—N21.474 (3)N2—O31.207 (3)
C5—C1—H1108.4C9—C8—H8121.1
C5—C1—S1107.96 (11)C8—C9—H9119.7
N1—C1—H1108.4C8—C9—C10120.51 (19)
N1—C1—C5111.83 (14)C10—C9—H9119.7
N1—C1—S1111.70 (12)C5—C10—H10119.5
S1—C1—H1108.4C9—C10—C5121.00 (18)
N1—C2—C3121.17 (18)C9—C10—H10119.5
O1—C2—C3118.6 (2)C12—C11—C16120.49 (19)
O1—C2—N1120.1 (2)C12—C11—N1119.87 (16)
C2—C3—H3A107.7C16—C11—N1119.61 (18)
C2—C3—H3B107.7C11—C12—H12120.0
H3A—C3—H3B107.1C11—C12—C13120.0 (2)
C4—C3—C2118.4 (2)C13—C12—H12120.0
C4—C3—H3A107.7C12—C13—H13120.4
C4—C3—H3B107.7C14—C13—C12119.2 (2)
C3—C4—H4A109.6C14—C13—H13120.4
C3—C4—H4B109.6C13—C14—H14119.7
C3—C4—S1110.09 (15)C15—C14—C13120.6 (2)
H4A—C4—H4B108.2C15—C14—H14119.7
S1—C4—H4A109.6C14—C15—H15119.7
S1—C4—H4B109.6C14—C15—C16120.6 (2)
C6—C5—C1118.31 (16)C16—C15—H15119.7
C6—C5—C10118.75 (17)C11—C16—C15119.0 (2)
C10—C5—C1122.93 (16)C11—C16—H16120.5
C5—C6—H6120.5C15—C16—H16120.5
C7—C6—C5118.90 (17)C2—N1—C1123.49 (16)
C7—C6—H6120.5C2—N1—C11117.31 (15)
C6—C7—N2118.02 (19)C11—N1—C1116.14 (14)
C8—C7—C6123.01 (18)O2—N2—C7118.5 (2)
C8—C7—N2119.0 (2)O3—N2—C7118.6 (2)
C7—C8—H8121.1O3—N2—O2122.8 (2)
C7—C8—C9117.81 (19)C1—S1—C493.89 (9)
C1—C5—C6—C7178.90 (16)C12—C11—N1—C161.8 (2)
C1—C5—C10—C9178.72 (19)C12—C11—N1—C299.1 (2)
C2—C3—C4—S148.3 (3)C12—C13—C14—C150.6 (4)
C3—C2—N1—C114.7 (3)C13—C14—C15—C160.6 (4)
C3—C2—N1—C11174.1 (2)C14—C15—C16—C110.2 (4)
C3—C4—S1—C163.17 (18)C16—C11—C12—C130.3 (3)
C5—C1—N1—C2162.42 (18)C16—C11—N1—C1116.17 (18)
C5—C1—N1—C1137.9 (2)C16—C11—N1—C282.9 (2)
C5—C1—S1—C4177.36 (13)N1—C1—C5—C6118.45 (17)
C5—C6—C7—C80.1 (3)N1—C1—C5—C1062.3 (2)
C5—C6—C7—N2179.58 (16)N1—C1—S1—C459.28 (14)
C6—C5—C10—C90.5 (3)N1—C2—C3—C418.6 (4)
C6—C7—C8—C90.1 (3)N1—C11—C12—C13178.24 (18)
C6—C7—N2—O2178.4 (2)N1—C11—C16—C15178.26 (19)
C6—C7—N2—O31.7 (3)N2—C7—C8—C9179.38 (18)
C7—C8—C9—C100.0 (3)O1—C2—C3—C4165.2 (2)
C8—C7—N2—O21.1 (3)O1—C2—N1—C1169.2 (2)
C8—C7—N2—O3178.8 (2)O1—C2—N1—C119.8 (3)
C8—C9—C10—C50.4 (3)S1—C1—C5—C6118.27 (14)
C10—C5—C6—C70.4 (3)S1—C1—C5—C1061.0 (2)
C11—C12—C13—C140.2 (3)S1—C1—N1—C241.3 (2)
C12—C11—C16—C150.3 (3)S1—C1—N1—C11159.05 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.982.193.158 (2)170
C15—H15···O3ii0.932.583.501 (3)174
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1, z.
 

Acknowledgements

The authors thank Euticals Inc. for the gift of T3P.

References

First citationArya, K., Rawat, D. S., Dandia, A. & Sasai, H. M. (2012). J. Fluor. Chem. 137, 117–122.  Web of Science CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBredikhin, A. A. & Bredikhina, Z. A. (2017). Chem. Eng. Technol. 40, 1211–1220.  Web of Science CrossRef CAS Google Scholar
First citation Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Wu, J. Yu. L., Zhai, D., Yi, Z., Luo, J. N. & Liu, M. (2012). Patent CN102653526A.  Google Scholar
First citationChoi, H., Wang, Z., Zhu, X., He, X., Yang, K. & Liu, H. (2008). Patent WO2008112674, A1.  Google Scholar
First citationDandia, A., Singh, R. & Arya, K. (2004). Phosphorus Sulfur Silicon, 179, 551–564.  Web of Science CrossRef CAS Google Scholar
First citationDandia, A., Singh, R. & Saini, D. (2013). J. Chem. Sci. 125, 1045–1053.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationD'Oria, E., Karamertzanis, P. G. & Price, S. L. (2010). Cryst. Growth Des. 10, 1749–1756.  CAS Google Scholar
First citationEliel, E. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds. New York: John Wiley & Sons.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacques, J., Collet, A. & Wilen, S. H. (1981). Enantiomers, Racemates, and Resolutions. New York: John Wiley & Sons.  Google Scholar
First citationKrumkains, E. V. (1984). EP, 10420, B1.  Google Scholar
First citationPasteur, L. (1848). Ann. Chim. Phys. 22, 442–459.  Google Scholar
First citationPérez-García, L. & Amabilino, D. B. (2007). Chem. Soc. Rev. 36, 941–967.  Google Scholar
First citationQu, H., Zhang, R., Hu, Y., Ke, Y., Gao, Z. & Xu, H. (2013). J. Biosci. 68, 77–81.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414–417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133. Corrigendum: (2015), E71, e5.  Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2015), E71, e5.  Google Scholar
First citationYennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds