research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and DFT study of (E)-4-[({4-[(pyri­din-2-yl­methyl­­idene)amino]­phen­yl}amino)­meth­yl]phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar, India, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: tiskenderov@ukr.net

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 January 2018; accepted 21 February 2018; online 28 February 2018)

In the title Schiff base compound, C19H17N3O, the configuration about the C=N bond is E. The mol­ecule is non-planar, with the phenolic and pyridine rings being inclined to the central benzene ring by 56.59 (4) and 15.13 (14)°, respectively. In the crystal, mol­ecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers. The dimers are connected to neighbouring dimers by N—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers parallel to the bc plane. The layers are linked by offset ππ inter­actions [inter­centroid distance = 3.779 (2) Å], forming a three-dimensional supra­molecular structure. Quantum chemical calculations of the mol­ecule are in good agreement with the solid-state structure.

1. Chemical context

Schiff bases often exhibit various biological activities and, in many cases, have been shown to have anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). Hy­droxy Schiff bases have been studied extensively for their biological, photochromic and thermochromic properties (Garnovskii et al., 1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]; Hadjoudis et al., 2004[Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. Chem. 162, 521-530.]). They can be used as potential materials for optical memory and switch devices (Zhao et al., 2007[Zhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta Part A, 67, 1120-1125.]). Schiff bases derived from pyridine­carbaldehydes have also attracted considerable inter­est in synthetic chemistry. This category covers a diverse range of bidentate or polydentate bridging (Wu & Liang, 2008[Wu, C.-M. & Liang, B. (2008). Acta Cryst. C64, o142-o144.]; Dong et al., 2000[Dong, Y.-B., Smith, M. D., Layland, R. C. & zur Loye, H.-C. (2000). Chem. Mater. 12, 1156-1161.]; Knödler et al., 2000[Knödler, A., Hübler, K., Sixt, T. & Kaim, W. (2000). Inorg. Chem. Commun. 3, 182-184.]), which played a significant role in coordination chemistry (Faizi & Hussain, 2014[Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.]). Transition metal complexes of pyridyl Schiff bases have found applications in laser dyes (Genady et al., 2008[Genady, A. R., Fayed, T. A. & Gabel, D. (2008). J. Organomet. Chem. 693, 1065-1072.]), catalysis (Wang et al., 2008[Wang, K., Wedeking, K., Zuo, W., Zhang, D. & Sun, W.-H. (2008). J. Organomet. Chem. 693, 1073-1080.]) and in crystal engineering, as they form coordination polymers (Huh & Lee, 2007[Huh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244-1248.]) or grid-type complexes (Nitschke et al., 2004[Nitschke, J. R., Hutin, M. & Bernardinelli, G. (2004). Angew. Chem. Int. Ed. 116, 6892-6895.]). The present work is part of an ongoing structural study of Schiff bases (Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15-20.]) and their utilization in the synthesis of metal complexes (Faizi & Prisyazhnaya, 2015[Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175-m176.]). We report herein on the crystal structure and DFT computational calculation of the title Schiff base compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The compound is non-planar; the dihedral angle between the central benzene ring (C8–C13) and the terminal phenolic ring (C1–C6) being 56.60 (13)°. The central benzene ring (C8–C13) is situated in a trans position with respect to the terminal pyridine ring (N3/C15–C19); these rings are inclined to each other by 15.13 (14)°. The configuration about the C14=N2 bond is E, with a C11—N2—C14—C15 torsion angle of 176.40 (2)°. The C7—N1—C8 angle is 123.43 (1)° and the C7—N1—H1A—C8 fragment is approximately planar; the amine N1 atom exhibits a geometry what is typical for an sp2 rather than an sp3 atom. Bond angles C11—N2—C14 and C15—N3—C19 are also near 120° [121.54 (1) and 117.20 (1)°, respectively], and the imine group has a torsion angle C11—N2—C14—C15 of 176.40 (2)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, pairs of O—H⋯N hydrogen bonds link the mol­ecules to form inversion dimers, with an R22(32) ring motif (Table 1[link] and Fig. 2[link]). The dimers are linked by N—H⋯·O hydrogen bonds (Table 1[link] and Fig. 2[link]) and C—H⋯π inter­actions (Table 1[link]), forming slabs lying parallel to the bc plane (Fig. 3[link]). The slabs are linked by offset ππ inter­actions involving the pyridine rings, forming a three-dimensional supra­molecular structure [Cg⋯.Cgiii = 3.779 (2) Å; Cg is the centroid of the N3/C15–C19 ring; inter­planar distance = 3.462 (1) Å and slippage = 1.516 Å; symmetry code (iii) −x + 1, −y + 2, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the pyridine ring, N3/C15-C19.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3i 0.88 (2) 1.92 (2) 2.796 (3) 179 (3)
N1—H1A⋯O1ii 0.86 2.13 2.982 (3) 170
C7—H7ACgiii 0.97 2.93 3.687 (3) 136
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x, -y+2, -z.
[Figure 2]
Figure 2
A view along the b axis of the inversion dimers, formed via. pairs of O—H⋯N hydrogen bonds (thin blue lines), enclosing an R22(32) ring motif. The dimers are linked by N—H⋯O hydrogen bonds (see Table 1[link] for details).
[Figure 3]
Figure 3
A view along the a axis of the layer-like structure in the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (Table 1[link]) and only the H atoms involved in hydrogen bonding have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures gave a number of hits for the principal moiety of the title compound, i.e. N-(2-pyridyl­methyl­ene)benzene-1,4-di­amine (CSD refcode EXOQAK; Marjani et al., 2011[Marjani, K., Mousavi, M. & Namazian, F. (2011). J. Chem. Crystallogr. 41, 1451-1455.]), and its metal complexes. The pyridine ring in EXOQAK is inclined to the benzene ring by 24.69 (13)° and the adjacent amine and pyridine N atoms are trans to each another. In the title compound, the pyridine ring is inclined to the benzene ring by 15.13 (14)° and the N atoms are also trans to each another. This is in contrast to the situation in the metal complexes of EXOQAK, e.g. di­chloro­{N-[(pyridin-2-yl)methyl­ene]benz­ene-1,4-di­amine}­zinc(II) (CSD refcode TUJXIG; Marjani et al., 2009[Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633-1637.]), where on coordination, the pyridine ring rotates and the adjacent amine and pyridine N atoms are then cis to each other.

5. DFT study

The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). DFT structure optimization of (I)[link] was performed starting from the X-ray geometry and the values compared with experimental values (see Table 2[link]). In general, the calculated values are in good agreement with the experimental data.

Table 2
Comparison of selected geometric data for (I)[link] (Å, °) from calculated (DFT) and X-ray data.

Bonds X-ray B3LYP/6–311G(d,p).
N1—C7 1.439 (3) 1.438
N1—C8 1.368 (3) 1.368
N2—C11 1.409 (3) 1.409
N2—C14 1.256 (3) 1.256
C1—O1 1.388 (3) 1.388
C4—C7 1.512 (3) 1.512
C14—C15 1.460 (3) 1.460
N1—C7—C4 112.3 (2) 112.28
C8—N1—C7 123.4 (2) 123.45
C11—N2—C14 121.5 (2) 121.54
N2—C14—C15 122.2 (3) 122.23
C4—C7—N1—C8 −166.3 (2) −166.34
C15—C14—N2—C11 176.4 (2) 176.39

The highest occupied mol­ecular orbitals (HOMO) and lowest unoccupied orbitals (LUMO) are named frontier orbitals (FMOs). The LUMO and HOMO orbital energy parameters are considerably answerable for the charge transfer, chemical reactivity and kinetic/thermodynamic stability of a mol­ecule 1. The DFT study of the title compound revealed that the HOMO and LUMO are localized in the plane extending from the whole phenol ring to the pyridine ring and electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4[link]. Mol­ecular orbitals of HOMO contain both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of σ-density, while LUMO+1 is composed of both σ and π electron density. The HOMO–LUMO energy gap is very important for the chemical activity and explains the eventual charge transfer inter­action within the mol­ecule. The HOMO–LUMO gap was found to be 0.128907 a.u. and the frontier mol­ecular orbital energies, EHOMO and ELUMO were found to be as −0.19367 and −0.06476 a.u., respectively.

[Figure 4]
Figure 4
Electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels for the title mol­ecule.

6. Synthesis and crystallization

The title compound was prepared from an equimolar mixture of 4-amino­phenyl­amino­methyl­phenol (0.50 g, 2.3 mmol) and pyridine-2-carbaldehyde (0.20 g, 2.30 mmol) in (50 ml) methanol. The yellow reaction mixture was stirred for 3 h at room temperature and solvent was evaporated to 5 ml. The resulting yellow solid was isolated by filtration, washed successively with a cold water and methanol mixture (10 ml) and hexane (20 ml). The compound was recrystallized from hot methanol, giving yellow plate-like crystals. Finally, the yellow solid was dried in a vacuum desiccator (yield 0.50 g, 70%; m.p. 446–448 K).

Spectroscopic data: UV–Vis (MeOH): λmax nm (, M−1 cm−1): 258 (13,000), 383 (16,000). IR (KBr, cm−1): ν(C=N) 1625, ν(N—H) 3265.

1H NMR (400 MHz, DMSO-d6): δ 8.6 (1H, s, CH=N), 7.4 (1H, s), 7.8 (1H, t, J = 8.4, 6.8 Hz), 8.0 (1H, d, J = 6.4 Hz), 8.5 (1H, s), 6.7 (2H, d, J = 6.0 Hz), 6.6 (2H, d, J = 6.4 Hz), 4.1 (2H, s), 7.1 (2H, d, J = 6.4 Hz), 7.2 (2H, d, J = 6.4 Hz), 9.3 (–OH), 6.5 (NH).

HRMS (ESI) m/z [M + H]+ calculated for C19H17N3O: 304.1444; found: 304.1455.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The crystal diffracted very weakly beyond 20° in θ, and only ca 40% of the data can be considered to be observed; hence the large value for Rint of 0.122. The N—H and O—H H atoms were located in difference Fourier maps. The OH H atom was freely refined, while during refinement, the N- and C-bound H atoms were included in calculated positions and treated as riding, with N—H = 0.86 Å and C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C,N).

Table 3
Experimental details

Crystal data
Chemical formula C19H17N3O
Mr 303.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.5652 (7), 7.9136 (6), 20.8153 (13)
β (°) 118.408 (4)
V3) 1530.77 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.21 × 0.15 × 0.11
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.785, 0.856
No. of measured, independent and observed [I > 2σ(I)] reflections 17211, 2664, 1087
Rint 0.122
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.092, 0.73
No. of reflections 2664
No. of parameters 212
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.15
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-4-[({4-[(Pyridin-2-ylmethylidene)amino]phenyl}amino)methyl]phenol top
Crystal data top
C19H17N3OF(000) = 640
Mr = 303.22Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5652 (7) ÅCell parameters from 1114 reflections
b = 7.9136 (6) Åθ = 2.8–18.2°
c = 20.8153 (13) ŵ = 0.08 mm1
β = 118.408 (4)°T = 296 K
V = 1530.77 (19) Å3Plate, yellow
Z = 40.21 × 0.15 × 0.11 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2664 independent reflections
Radiation source: sealed tube1087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.122
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1212
Tmin = 0.785, Tmax = 0.856k = 99
17211 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.73 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
2664 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.14 e Å3
7 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2029 (2)0.4843 (3)0.37245 (9)0.0677 (6)
N20.3840 (2)0.9002 (3)0.25128 (10)0.0575 (6)
N10.0654 (2)0.8060 (2)0.05048 (10)0.0584 (6)
H1A0.1041220.8460640.0754240.070*
N30.4388 (2)0.7338 (3)0.42061 (11)0.0551 (6)
C60.2709 (3)0.6253 (3)0.29168 (13)0.0618 (8)
H60.3639310.6384430.3298600.074*
C10.1675 (3)0.5496 (3)0.30408 (13)0.0536 (7)
C20.0284 (3)0.5374 (3)0.24837 (13)0.0569 (7)
H20.0427730.4904220.2570100.068*
C30.0050 (3)0.5955 (3)0.17948 (12)0.0560 (7)
H30.0993200.5875130.1420460.067*
C40.0990 (3)0.6653 (3)0.16507 (12)0.0517 (7)
C50.2366 (3)0.6822 (3)0.22213 (13)0.0611 (8)
H50.3073930.7321800.2139790.073*
C80.1329 (3)0.8340 (3)0.02322 (13)0.0489 (7)
C70.0669 (3)0.7130 (3)0.08846 (12)0.0603 (8)
H7A0.1454230.7810510.0908150.072*
H7B0.0609970.6111760.0612410.072*
C130.0849 (3)0.7669 (3)0.06958 (13)0.0584 (7)
H130.0016970.7080810.0500740.070*
C120.1648 (3)0.7869 (3)0.14445 (13)0.0579 (8)
H120.1316920.7386510.1744030.069*
C110.2923 (3)0.8763 (3)0.17598 (13)0.0508 (7)
C100.3358 (3)0.9513 (3)0.12946 (13)0.0567 (7)
H100.4190071.0166160.1490060.068*
C90.2582 (3)0.9308 (3)0.05489 (13)0.0554 (7)
H90.2900490.9824880.0250650.066*
C140.3648 (3)0.8223 (3)0.29852 (13)0.0590 (7)
H140.2850130.7521510.2832430.071*
C150.4635 (3)0.8382 (3)0.37661 (13)0.0515 (7)
C160.5780 (3)0.9501 (3)0.40340 (13)0.0598 (8)
H160.5922391.0213230.3718680.072*
C170.6708 (3)0.9544 (3)0.47755 (14)0.0647 (8)
H170.7483211.0286740.4966250.078*
C180.6472 (3)0.8476 (3)0.52292 (14)0.0616 (8)
H180.7087030.8472870.5730110.074*
C190.5308 (3)0.7418 (3)0.49240 (14)0.0594 (7)
H190.5143760.6709920.5233590.071*
H10.278 (3)0.416 (4)0.3883 (16)0.133 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0697 (15)0.0891 (15)0.0397 (11)0.0111 (13)0.0222 (11)0.0157 (10)
N20.0604 (15)0.0689 (15)0.0356 (13)0.0049 (11)0.0167 (12)0.0004 (10)
N10.0669 (16)0.0712 (16)0.0359 (13)0.0119 (13)0.0236 (12)0.0055 (11)
N30.0579 (15)0.0626 (15)0.0346 (13)0.0040 (12)0.0137 (12)0.0020 (11)
C60.0483 (18)0.083 (2)0.0389 (17)0.0012 (16)0.0083 (15)0.0036 (14)
C10.063 (2)0.0563 (19)0.0415 (17)0.0068 (15)0.0248 (16)0.0053 (13)
C20.0477 (19)0.071 (2)0.0448 (17)0.0031 (15)0.0160 (15)0.0046 (14)
C30.0480 (18)0.0675 (19)0.0385 (16)0.0028 (15)0.0091 (14)0.0027 (13)
C40.0574 (19)0.0574 (18)0.0360 (16)0.0008 (14)0.0187 (15)0.0017 (12)
C50.056 (2)0.077 (2)0.0458 (17)0.0045 (15)0.0208 (16)0.0058 (14)
C80.0572 (19)0.0510 (18)0.0332 (15)0.0044 (14)0.0172 (14)0.0008 (12)
C70.0610 (19)0.072 (2)0.0436 (17)0.0006 (16)0.0216 (15)0.0059 (14)
C130.0591 (18)0.073 (2)0.0391 (17)0.0132 (15)0.0198 (15)0.0047 (13)
C120.0629 (19)0.068 (2)0.0411 (17)0.0106 (16)0.0237 (15)0.0001 (13)
C110.0574 (19)0.0553 (18)0.0352 (16)0.0046 (14)0.0182 (15)0.0004 (13)
C100.0584 (19)0.0597 (19)0.0475 (17)0.0085 (14)0.0216 (16)0.0041 (13)
C90.063 (2)0.062 (2)0.0435 (17)0.0077 (15)0.0272 (16)0.0019 (13)
C140.0554 (17)0.0665 (19)0.0426 (17)0.0065 (14)0.0130 (14)0.0040 (13)
C150.0539 (18)0.0554 (19)0.0398 (16)0.0045 (15)0.0179 (15)0.0044 (13)
C160.066 (2)0.065 (2)0.0465 (18)0.0075 (16)0.0251 (16)0.0048 (14)
C170.060 (2)0.068 (2)0.0556 (19)0.0099 (15)0.0192 (17)0.0072 (15)
C180.061 (2)0.067 (2)0.0398 (16)0.0021 (16)0.0099 (15)0.0047 (15)
C190.069 (2)0.0624 (19)0.0396 (18)0.0046 (17)0.0198 (16)0.0007 (13)
Geometric parameters (Å, º) top
O1—C11.388 (3)C8—C91.394 (3)
O1—H10.879 (17)C7—H7A0.9700
N2—C141.256 (3)C7—H7B0.9700
N2—C111.409 (3)C13—C121.384 (3)
N1—C81.368 (3)C13—H130.9300
N1—C71.439 (3)C12—C111.380 (3)
N1—H1A0.8600C12—H120.9300
N3—C191.341 (3)C11—C101.387 (3)
N3—C151.347 (3)C10—C91.377 (3)
C6—C11.374 (3)C10—H100.9300
C6—C51.390 (3)C9—H90.9300
C6—H60.9300C14—C151.460 (3)
C1—C21.376 (3)C14—H140.9300
C2—C31.382 (3)C15—C161.385 (3)
C2—H20.9300C16—C171.380 (3)
C3—C41.384 (3)C16—H160.9300
C3—H30.9300C17—C181.376 (3)
C4—C51.378 (3)C17—H170.9300
C4—C71.512 (3)C18—C191.369 (3)
C5—H50.9300C18—H180.9300
C8—C131.391 (3)C19—H190.9300
C1—O1—H1112 (2)C12—C13—C8120.6 (2)
C14—N2—C11121.5 (2)C12—C13—H13119.7
C8—N1—C7123.4 (2)C8—C13—H13119.7
C8—N1—H1A118.3C11—C12—C13121.9 (2)
C7—N1—H1A118.3C11—C12—H12119.0
C19—N3—C15117.2 (2)C13—C12—H12119.0
C1—C6—C5120.0 (2)C12—C11—C10117.4 (2)
C1—C6—H6120.0C12—C11—N2126.7 (2)
C5—C6—H6120.0C10—C11—N2116.0 (2)
C6—C1—C2119.9 (2)C9—C10—C11121.2 (2)
C6—C1—O1120.3 (2)C9—C10—H10119.4
C2—C1—O1119.8 (3)C11—C10—H10119.4
C1—C2—C3119.6 (2)C10—C9—C8121.3 (2)
C1—C2—H2120.2C10—C9—H9119.3
C3—C2—H2120.2C8—C9—H9119.3
C2—C3—C4121.3 (2)N2—C14—C15122.2 (3)
C2—C3—H3119.3N2—C14—H14118.9
C4—C3—H3119.3C15—C14—H14118.9
C5—C4—C3118.2 (2)N3—C15—C16122.2 (2)
C5—C4—C7120.0 (2)N3—C15—C14115.9 (2)
C3—C4—C7121.7 (2)C16—C15—C14121.9 (2)
C4—C5—C6120.8 (2)C17—C16—C15119.1 (2)
C4—C5—H5119.6C17—C16—H16120.5
C6—C5—H5119.6C15—C16—H16120.5
N1—C8—C13123.3 (2)C18—C17—C16119.2 (3)
N1—C8—C9119.4 (2)C18—C17—H17120.4
C13—C8—C9117.3 (2)C16—C17—H17120.4
N1—C7—C4112.3 (2)C19—C18—C17118.3 (2)
N1—C7—H7A109.2C19—C18—H18120.9
C4—C7—H7A109.2C17—C18—H18120.9
N1—C7—H7B109.2N3—C19—C18124.0 (2)
C4—C7—H7B109.2N3—C19—H19118.0
H7A—C7—H7B107.9C18—C19—H19118.0
C5—C6—C1—C23.1 (4)C13—C12—C11—N2178.0 (2)
C5—C6—C1—O1176.5 (2)C14—N2—C11—C128.6 (4)
C6—C1—C2—C32.6 (4)C14—N2—C11—C10171.5 (2)
O1—C1—C2—C3177.0 (2)C12—C11—C10—C92.9 (4)
C1—C2—C3—C40.3 (4)N2—C11—C10—C9177.2 (2)
C2—C3—C4—C52.6 (4)C11—C10—C9—C80.0 (4)
C2—C3—C4—C7173.8 (2)N1—C8—C9—C10174.9 (2)
C3—C4—C5—C62.1 (4)C13—C8—C9—C103.5 (4)
C7—C4—C5—C6174.3 (2)C11—N2—C14—C15176.4 (2)
C1—C6—C5—C40.7 (4)C19—N3—C15—C160.2 (3)
C7—N1—C8—C133.9 (4)C19—N3—C15—C14177.8 (2)
C7—N1—C8—C9177.7 (2)N2—C14—C15—N3173.0 (2)
C8—N1—C7—C4166.3 (2)N2—C14—C15—C165.0 (4)
C5—C4—C7—N1137.0 (2)N3—C15—C16—C170.4 (4)
C3—C4—C7—N146.7 (3)C14—C15—C16—C17177.5 (2)
N1—C8—C13—C12174.1 (2)C15—C16—C17—C180.0 (4)
C9—C8—C13—C124.3 (4)C16—C17—C18—C190.7 (4)
C8—C13—C12—C111.5 (4)C15—N3—C19—C180.5 (4)
C13—C12—C11—C102.1 (4)C17—C18—C19—N31.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the pyridine ring, N3/C15-C19.
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.88 (2)1.92 (2)2.796 (3)179 (3)
N1—H1A···O1ii0.862.132.982 (3)170
C7—H7A···Cgiii0.972.933.687 (3)136
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+2, z.
Comparison of selected geometric data for (I) (Å, °) from calculated (DFT) and X-ray data. top
BondsX-rayB3LYP/6-311G(d,p).
N1—C71.439 (3)1.438
N1—C81.368 (3)1.368
N2—C111.409 (3)1.409
N2—C141.256 (3)1.256
C1—O11.388 (3)1.388
C4—C71.512 (3)1.512
C14—C151.460 (3)1.460
N1—C7—C4112.3 (2)112.28
C8—N1—C7123.4 (2)123.45
C11—N2—C14121.5 (2)121.54
N2—C14—C15122.2 (3)122.23
C4—C7—N1—C8-166.3 (2)-166.34
C15—C14—N2—C11176.4 (2)176.39
 

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, for financial support.

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y.-B., Smith, M. D., Layland, R. C. & zur Loye, H.-C. (2000). Chem. Mater. 12, 1156–1161.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationGenady, A. R., Fayed, T. A. & Gabel, D. (2008). J. Organomet. Chem. 693, 1065–1072.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. Chem. 162, 521–530.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244–1248.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnödler, A., Hübler, K., Sixt, T. & Kaim, W. (2000). Inorg. Chem. Commun. 3, 182–184.  Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarjani, K., Mousavi, M. & Namazian, F. (2011). J. Chem. Crystallogr. 41, 1451–1455.  Web of Science CSD CrossRef CAS Google Scholar
First citationNitschke, J. R., Hutin, M. & Bernardinelli, G. (2004). Angew. Chem. Int. Ed. 116, 6892–6895.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, K., Wedeking, K., Zuo, W., Zhang, D. & Sun, W.-H. (2008). J. Organomet. Chem. 693, 1073–1080.  CrossRef CAS Google Scholar
First citationWu, C.-M. & Liang, B. (2008). Acta Cryst. C64, o142–o144.  CrossRef IUCr Journals Google Scholar
First citationZhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta Part A, 67, 1120–1125.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds