research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (E)-1-naphthaldehyde oxime and (E)-phenanthrene-9-carbaldehyde oxime

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Rabigh College of Science and Arts, PO Box 344, King Abdulaziz University, Jeddah, Saudi Arabia, and bFB 1.3 Strukturanalytik, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
*Correspondence e-mail: jlasri@kau.edu.sa, katherine.chulvi-iborra@bam.de

Edited by G. Smith, Queensland University of Technology, Australia (Received 5 December 2017; accepted 4 February 2018; online 13 February 2018)

The aldoximes C11H9NO (I) and C15H11NO (II), synthesized in ca 90% yield, by treatment of 1-naphthaldehyde or phenanthrene-9-carbaldehyde, respectively, with hydroxyl­amine hydro­chloride and sodium carbonate, have been characterized by IR, 1H, 13C and DEPT-135 NMR spectroscopies, and also by single-crystal X-ray diffraction analysis. The mol­ecules of (I) and (II) are conformationally similar, with the aldoxime substituent groups lying outside the planes of the naphthalene or phenanthrene rings, forming dihedral angles with them of 23.9 (4) and 27.9 (6)°, respectively. The crystal structures of both (I) and (II) are similar with a single inter­molecular O—H⋯N hydrogen-bonding inter­action, giving rise to the formation of one-dimensional polymeric chains extending along the 21 (b) screw axes in each.

1. Chemical context

Oxime compounds have found many applications; for example in the medical field, they are used as anti­dotes for nerve agents (Kassa, 2002[Kassa, J. (2002). J. Toxicol. Clin. Toxicol. 40, 803-816.]). Oximes are also used as inter­mediates in the industrial production of caprolactam, a precursor to Nylon 6 (Ritz et al., 2012[Ritz, J., Fuchs, H., Kieczka, H. & Moran, W. C. (2012). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.]). Oximes, HO—N=CR1R2, are also valuable and simple reagents containing the O—N=C moiety (Kukushkin & Pombeiro, 1999[Kukushkin, V. Yu. & Pombeiro, A. J. L. (1999). Coord. Chem. Rev. 181, 147-175.]), which easily adds to nitrile ligands, to form a variety of nitro­gen-containing products e.g. imino­acyl­ated compounds (Kopylovich et al., 2009[Kopylovich, M. N., Lasri, J., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 3074-3084.]; Lasri et al., 2007[Lasri, J., Charmier, M. A. J., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2007). Dalton Trans. pp. 3259-3266.], 2008[Lasri, J., Guedes da Silva, M. F. C., Charmier, M. A. J. & Pombeiro, A. J. L. (2008). Eur. J. Inorg. Chem. pp. 3668-3677.]), amidines (Kopylovich et al., 2001[Kopylovich, M. N., Kukushkin, V. Yu., Guedes da Silva, M. F. C., Haukka, M., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1569-1573.]), carboxamides (Kopylovich et al., 2002[Kopylovich, M. N., Kukushkin, V. Yu., Haukka, M., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2002). Inorg. Chem. 41, 4798-4804.]), phthalocyanines (Kopylovich et al., 2004[Kopylovich, M. N., Kukushkin, V. Yu., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2004). J. Am. Chem. Soc. 126, 15040-15041.]), or 1,3,5-tri­aza­penta­diene species (Kopylovich et al., 2007[Kopylovich, M. N., Haukka, M., Kirillov, A. M., Kukushkin, V. Yu. & Pombeiro, A. J. L. (2007). Chem. Eur. J. 13, 786-791.]). In this work, we report the synthesis and crystal structures of two aldoximes, viz. (E)-1-naphthaldehyde oxime (I)[link] and (E)-phenanthrene-9-carbaldehyde oxime (II)[link], by treatment of 1-naphthaldehyde or phenanthrene-9-carbaldehyde, respectively, with hydroxyl­amine hydro­chloride and sodium carbonate.

[Scheme 1]

2. Structural commentary

The title compounds (I)[link] and (II)[link] both crystallize in the non-centrosymmetric monoclinic space group P21 with Z = 2, with similar unit-cell parameters. The asymmetric unit contents for each are shown in Figs. 1[link] and 2[link]. Compound (I)[link] comprises a naphthalene unit functionalized with an aldoxime group at position 1. The naphthalene unit is, as expected, essentially planar but the plane containing the aldoxime atoms lies significantly out of the naphthalene plane [torsion angle N1—C11—C1—C2 = 23.6 (6)°] (Table 1[link]). In the case of compound (II)[link], the plane of the aldoxime group lies similarly out-of-plane with the phenanthrene ring system [comparative torsion angle N1—C11—C9—C10 = 27.6 (4)°], corresponding to dihedral angles between the two planes of 23.9 (4) and 27.9 (5)° for (I)[link] and (II)[link], respectively. The aldoxime group shows similar bond lengths for both structures: 1.395 (5) and 1.405 (3) Å for O1—N1, 1.273 (5) and 1.268 (3) Å for N1—C11, 1.461 (6) and 1.466 (4) Å for C1—C11 or C9—C11, for (I)[link] and (II)[link], respectively.

Table 1
Selected torsion angles (°) for the aldoxime groups in (I)[link] and (II)

  Compound (I) Compound (II)
C1/C9—C11—N1—O1 −175.5 (4) −175.3 (2)
C2/C10—C1/C9—C11—N1 23.6 (6) 27.6 (4)
C8′—C1—C11—N1 −160.4 (4)
C8′—C9—C11—N1 −156.1 (2)
[Figure 1]
Figure 1
The mol­ecular conformation and atom-numbering scheme for (I)[link], with non-H atoms represented as 30% probability ellipsoids.
[Figure 2]
Figure 2
The mol­ecular conformation and atom-numbering scheme for (II)[link], with non-H atoms represented as 30% probability ellipsoids.

3. Supra­molecular features

Similar inter­molecular inter­actions are observed in the crystal structures of both (I)[link] and (II)[link]. In each, mol­ecules are linked through a single inter­molecular O1—H⋯N1i hydrogen-bonding inter­action [Tables 2[link] and 3[link] for (I)[link] and (II)[link], respectively]. These basic inter­actions are shown in Fig. 3[link], defining an oxime C(3) type II motif. It is well known that oximes are able to form different types of hydrogen-bonding motifs (Bruton et al., 2003[Bruton, E. A., Brammer, L., Pigge, F. C., Aakeröy, C. B. & Leinen, D. S. (2003). New J. Chem. 27, 1084-1094.]). In the structures of both (I)[link] and (II)[link], the formation of a one-dimensional polymeric chain arrangement of mol­ecules results, extending along the 21 (b) screw axes in each (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.90 (6) 1.94 (6) 2.834 (5) 177 (6)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H⋯N1i 0.88 (3) 1.99 (3) 2.852 (3) 169 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
Inter­molecular hydrogen-bonding associations for (I)[link] (left) and (II)[link] (right), shown as dashed lines. Non-associative H atoms have been omitted for clarity.
[Figure 4]
Figure 4
A packing diagram viewed along the a axis for (I)[link] (top) and (II)[link] (bottom), showing polymeric chain extensions.

4. Database survey

Many naphthalene-carbaldehyde oxime derivatives are present in the Cambridge Structural Database (Version 5.38; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) but no one crystal structure containing only an aldoxime group in position 1 of the naphthalene ring system has been reported. The most similar structures that can be found are LIVROY/LIVROY01 (Guo et al., 2008[Guo, Z., Li, L., Liu, G. & Dong, J. (2008). Acta Cryst. E64, o568.]; Tarai & Baruah, 2016[Tarai, A. & Baruah, J. B. (2016). Cryst. Growth Des. 16, 126-135.]) with an additional hydroxyl group in position 2 and TIJPOS (Asaad et al., 2005[Asaad, N., Davies, J. E., Hodgson, D. R. W., Kirby, A. J., van Vliet, L. & Ottavi, L. (2005). J. Phys. Org. Chem. 18, 101-109.]) with a di­methyl­amino group in position 9. The most important difference between (I)[link] and LIVROY/LIVROY01 are the two hydrogen bonds: one intra­molecular O—H⋯N and another inter­molecular O—H⋯O. As a result of the intra­molecular hydrogen-bonding inter­action, the aldoxime group in the latter compound is coplanar with the central naphthalene ring with a dihedral angle of 1.21° and torsion angles C1—C11—N1—O2 = 179.27, C3—C1—C11—N1 = −179.91 and C4—C1—C11—N1 = −0.76°. However, TIJPOS (Asaad et al., 2005[Asaad, N., Davies, J. E., Hodgson, D. R. W., Kirby, A. J., van Vliet, L. & Ottavi, L. (2005). J. Phys. Org. Chem. 18, 101-109.]), with just one type of inter­molecular hydrogen bond, shows a rotation in the aldoxime group that is more dramatic than in (I)[link] and (II)[link] (Table 1[link]), with a 40.35° deviation from the central naphthalene plane.

No examples of structures of phenanthrene-carbaldehyde oxime derivatives are present in the Cambridge Structural Database.

5. Synthesis and crystallization

The aldoximes (E)-1-naphthaldehyde oxime (I)[link] and (E)-phen­an­threne-9-carbaldehyde oxime (II)[link] were synthesized, in ca 90% yield, by treatment of 1-naphthaldehyde or phenanthrene-9-carbaldehyde, respectively, with hydroxyl­amine hydro­chloride and sodium carbonate in MeOH at room temperature. To a solution of hydroxyl­amine hydro­chloride (41.6 mg, 0.60 mmol) in MeOH (10 ml) was added sodium carbonate (31.7 mg, 0.30 mmol). The reaction mixture was stirred at room temperature for 5 min. 1-Naphthaldehyde (85.0 mg, 0.54 mmol) or phenanthrene-9-carbaldehyde (112.2 mg, 0.54 mmol) was added and the reaction mixture was stirred at room temperature for 12 h. The precipitate formed was then filtered off and the filtrate was evaporated in vacuo. The crude residue was purified by column chroma­tography on silica (CHCl3 as the eluent, 50 ml), followed by evaporation of the solvent in vacuo to give the pure aldoximes [(I), 84 mg, 90% yield and (II)[link], 107 mg, 89% yield] (see reaction scheme).

[Scheme 2]

Single crystals of the aldoximes (I)[link] and (II)[link] suitable for X-ray diffraction were obtained by slow evaporation of their 10 ml CHCl3 solutions at room temperature. Compounds (I)[link] and (II)[link] were characterized by IR, 1H, 13C and DEPT-135 NMR spectroscopies and also by single crystal X-ray diffraction analysis.

In the IR spectra of (I)[link] and (II)[link], the characteristic bands at wavenumbers 3389 and 3200 cm−1 (O—H), and 1614 and 1607 cm-1 (C=N), confirm the formation of the aldoximes (I)[link] and (II)[link], respectively. In the 1H NMR spectra, we observed the absence of the signal of the aldehyde at ca 10 ppm and a new signal at ca 8.8 ppm due to the imine proton CH=N was detected. Moreover, in the 13C and DEPT-135 NMR spectra, the signal of the aldehyde at ca 190 ppm was not observed, and a new signal at ca 150 ppm due to the oxime carbon CH=NOH was detected, confirming the formation of the aldoximes (I)[link] and (II)[link].

(E)-1-naphthaldehyde oxime (I)

Yield: 90%. IR (cm−1): 3389 (OH), 1614 (C=N). 1H NMR (CDCl3), δ: 7.53 (t, JHH 7.5 Hz, 1H, CHaromatic), 7.56 (t, JHH 7.0 Hz, 1H, CHaromatic), 7.61 (t, JHH 7.0 Hz, 1H, CHaromatic), 7.82 (d, JHH 7.1 Hz, 1H, CHaromatic), 7.93 (t, JHH 8.1 Hz, 2H, CHaromatic), 8.48 (d, JHH 8.3 Hz, 1H, CHaromatic), 8.87 (s, 1H, CH=N). 13C NMR (CDCl3), δ: 124.2, 125.4, 126.2, 127.0, 127.1 (CHaromatic), 128.0 (Caromatic), 128.8, 130.6 (CHaromatic), 130.8, 133.8 (Caromatic), 150.0 (CH=N). DEPT-135 NMR (CDCl3), δ: 124.2, 125.4, 126.2, 127.0, 127.1, 128.8, 130.6 (CHaromatic), 150.0 (CH=N).

E-phenanthrene-9-carbaldehyde oxime (II)

Yield: 89%. IR (cm−1): 3200 (OH), 1607 (C=N). 1H NMR (CDCl3), δ: 7.64 (t, JHH 7.9 Hz, 1H, CHaromatic), 7.68–7.75 (m, 3H, CHaromatic), 7.94 (d, JHH 7.9 Hz, 1H, CHaromatic), 8.04 (s, 1H, CHaromatic), 8.62 (d, JHH 7.9 Hz, 1H, CHaromatic), 8.70 (d, JHH 8.2 Hz, 1H, CHaromatic), 8.77 (d, JHH 8.2 Hz, 1H, CHaromatic), 8.85 (s, 1H, CH=N). 13C NMR (CDCl3), δ: 122.6, 123.1, 125.4 (CHaromatic), 126.8 (Caromatic), 126.9, 127.0, 127.2, 127.9, 129.3 (CHaromatic), 130.7, 131.0, 131.1 (Caromatic), 150.8 (CH=N). DEPT-135 NMR (CDCl3), δ: 122.6, 123.1, 125.4, 126.9, 127.0, 127.2, 127.9, 129.3 (CHaromatic), 150.8 (CH=N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All C-bound H atoms were located in difference-Fourier maps but were subsequently treated as riding with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The H atoms of the OH groups were positioned with idealized geometry and were refined freely in both structures.

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula C11H9NO C15H11NO
Mr 171.19 221.25
Crystal system, space group Monoclinic, P21 Monoclinic, P21
Temperature (K) 295 295
a, b, c (Å) 7.928 (5), 4.843 (3), 11.444 (7) 8.2397 (8), 4.9728 (5), 13.9332 (14)
β (°) 94.03 (5) 106.680 (7)
V3) 438.3 (5) 546.88 (10)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.09
Crystal size (mm) 0.10 × 0.06 × 0.02 0.16 × 0.09 × 0.05
 
Data collection
Diffractometer Bruker D8 Quest Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.684, 0.745 0.698, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 5762, 1570, 957 7330, 1988, 1509
Rint 0.100 0.053
(sin θ/λ)max−1) 0.603 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.098, 1.06 0.040, 0.093, 1.04
No. of reflections 1570 1988
No. of parameters 122 159
No. of restraints 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.15 0.15, −0.15
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXL2014 (Sheldrick, 2015b).

(E)-1-Naphthaldehyde oxime (I) top
Crystal data top
C11H9NOF(000) = 180
Mr = 171.19Dx = 1.297 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.928 (5) ÅCell parameters from 1367 reflections
b = 4.843 (3) Åθ = 2.6–22.6°
c = 11.444 (7) ŵ = 0.08 mm1
β = 94.03 (5)°T = 295 K
V = 438.3 (5) Å3Block, colourless
Z = 20.10 × 0.06 × 0.02 mm
Data collection top
Bruker D8 Quest
diffractometer
957 reflections with I > 2σ(I)
φ and ω scansRint = 0.100
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 2.6°
Tmin = 0.684, Tmax = 0.745h = 99
5762 measured reflectionsk = 55
1570 independent reflectionsl = 1313
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0164P)2 + 0.1408P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1570 reflectionsΔρmax = 0.15 e Å3
122 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8254 (4)0.0401 (7)0.5056 (3)0.0458 (9)
N10.8708 (5)0.1715 (9)0.4312 (3)0.0418 (11)
C10.7559 (5)0.4959 (10)0.2895 (4)0.0318 (12)
C20.8998 (6)0.5156 (11)0.2295 (4)0.0452 (14)
H20.99030.39870.24940.054*
C30.9129 (7)0.7072 (14)0.1393 (5)0.0569 (16)
H31.01280.72070.10170.068*
C40.7801 (7)0.8737 (11)0.1066 (4)0.0499 (15)
H40.78880.99700.04500.060*
C4'0.6296 (6)0.8624 (10)0.1645 (4)0.0377 (12)
C50.4924 (6)1.0383 (10)0.1338 (4)0.0468 (15)
H50.50091.16260.07260.056*
C60.3485 (7)1.0323 (12)0.1907 (5)0.0570 (17)
H60.25851.14790.16770.068*
C70.3370 (6)0.8491 (11)0.2846 (4)0.0478 (15)
H70.23930.84610.32500.057*
C80.4663 (5)0.6760 (11)0.3176 (4)0.0387 (13)
H80.45570.55580.38000.046*
C8'0.6172 (5)0.6760 (10)0.2582 (4)0.0285 (11)
C110.7413 (6)0.2826 (9)0.3785 (4)0.0350 (12)
H110.63430.22640.39720.042*
H10.922 (7)0.129 (13)0.528 (5)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.041 (2)0.044 (2)0.051 (2)0.008 (2)0.0047 (18)0.008 (2)
N10.040 (2)0.038 (3)0.046 (3)0.001 (2)0.005 (2)0.005 (2)
C10.033 (3)0.029 (3)0.033 (3)0.007 (3)0.002 (2)0.007 (3)
C20.035 (3)0.054 (4)0.048 (3)0.005 (3)0.009 (2)0.014 (3)
C30.051 (3)0.080 (5)0.043 (3)0.018 (4)0.021 (3)0.012 (4)
C40.064 (4)0.051 (4)0.036 (3)0.017 (3)0.011 (3)0.005 (3)
C4'0.046 (3)0.037 (3)0.029 (3)0.008 (3)0.003 (2)0.007 (3)
C50.060 (4)0.037 (4)0.041 (3)0.009 (3)0.011 (3)0.008 (3)
C60.049 (3)0.049 (4)0.070 (4)0.006 (3)0.013 (3)0.008 (4)
C70.035 (3)0.048 (4)0.060 (4)0.002 (3)0.000 (3)0.009 (3)
C80.036 (3)0.039 (3)0.040 (3)0.002 (3)0.002 (2)0.008 (3)
C8'0.029 (2)0.027 (3)0.029 (3)0.004 (2)0.0016 (19)0.008 (3)
C110.032 (3)0.029 (3)0.044 (3)0.002 (2)0.003 (2)0.008 (3)
Geometric parameters (Å, º) top
O1—N11.395 (5)C4'—C51.407 (6)
O1—H10.90 (6)C4'—C8'1.410 (6)
N1—C111.273 (5)C5—C61.353 (6)
C1—C21.375 (6)C5—H50.9300
C1—C8'1.429 (6)C6—C71.402 (7)
C1—C111.461 (6)C6—H60.9300
C2—C31.397 (7)C7—C81.357 (6)
C2—H20.9300C7—H70.9300
C3—C41.358 (7)C8—C8'1.417 (5)
C3—H30.9300C8—H80.9300
C4—C4'1.406 (6)C11—H110.9300
C4—H40.9300
N1—O1—H1106 (4)C6—C5—H5119.0
C11—N1—O1111.5 (4)C4'—C5—H5119.0
C2—C1—C8'118.9 (4)C5—C6—C7119.0 (5)
C2—C1—C11120.4 (5)C5—C6—H6120.5
C8'—C1—C11120.6 (4)C7—C6—H6120.5
C1—C2—C3121.5 (5)C8—C7—C6121.0 (5)
C1—C2—H2119.3C8—C7—H7119.5
C3—C2—H2119.3C6—C7—H7119.5
C4—C3—C2120.1 (5)C7—C8—C8'120.9 (5)
C4—C3—H3119.9C7—C8—H8119.5
C2—C3—H3119.9C8'—C8—H8119.5
C3—C4—C4'120.9 (5)C4'—C8'—C8118.1 (4)
C3—C4—H4119.5C4'—C8'—C1119.2 (4)
C4'—C4—H4119.5C8—C8'—C1122.7 (4)
C4—C4'—C5121.7 (5)N1—C11—C1121.9 (4)
C4—C4'—C8'119.3 (5)N1—C11—H11119.0
C5—C4'—C8'118.9 (4)C1—C11—H11119.0
C6—C5—C4'122.0 (5)
C8'—C1—C2—C30.1 (7)C5—C4'—C8'—C80.3 (6)
C11—C1—C2—C3176.2 (5)C4—C4'—C8'—C12.1 (6)
C1—C2—C3—C42.0 (8)C5—C4'—C8'—C1179.7 (4)
C2—C3—C4—C4'1.8 (8)C7—C8—C8'—C4'0.5 (7)
C3—C4—C4'—C5178.3 (5)C7—C8—C8'—C1179.6 (4)
C3—C4—C4'—C8'0.3 (7)C2—C1—C8'—C4'1.9 (6)
C4—C4'—C5—C6178.7 (5)C11—C1—C8'—C4'174.2 (4)
C8'—C4'—C5—C60.6 (7)C2—C1—C8'—C8178.0 (4)
C4'—C5—C6—C71.3 (8)C11—C1—C8'—C85.9 (6)
C5—C6—C7—C81.2 (8)O1—N1—C11—C1175.5 (4)
C6—C7—C8—C8'0.2 (7)C2—C1—C11—N123.6 (6)
C4—C4'—C8'—C8177.8 (4)C8'—C1—C11—N1160.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.90 (6)1.94 (6)2.834 (5)177 (6)
Symmetry code: (i) x+2, y1/2, z+1.
(E)-Phenanthrene-9-carbaldehyde oxime (II) top
Crystal data top
C15H11NOF(000) = 232
Mr = 221.25Dx = 1.344 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.2397 (8) ÅCell parameters from 2141 reflections
b = 4.9728 (5) Åθ = 2.6–24.9°
c = 13.9332 (14) ŵ = 0.09 mm1
β = 106.680 (7)°T = 295 K
V = 546.88 (10) Å3Block, colourless
Z = 20.16 × 0.09 × 0.05 mm
Data collection top
Bruker D8 Quest
diffractometer
1509 reflections with I > 2σ(I)
φ and ω scansRint = 0.053
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.3°, θmin = 2.6°
Tmin = 0.698, Tmax = 0.745h = 99
7330 measured reflectionsk = 55
1988 independent reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0478P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.15 e Å3
1988 reflectionsΔρmin = 0.15 e Å3
159 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.058 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3294 (3)1.0407 (5)0.49418 (15)0.0446 (6)
N10.4084 (3)0.8293 (5)0.55737 (16)0.0371 (6)
C110.3086 (4)0.7264 (5)0.6016 (2)0.0340 (7)
H110.1970240.7856370.5856140.041*
C90.3660 (3)0.5157 (6)0.67732 (18)0.0322 (7)
C100.5314 (4)0.5027 (7)0.7316 (2)0.0366 (7)
H100.6073950.6225140.7167270.044*
C10'0.5935 (3)0.3140 (6)0.81023 (19)0.0349 (7)
C10.7655 (4)0.3096 (7)0.8651 (2)0.0472 (8)
H10.8408120.4276850.8485770.057*
C20.8232 (4)0.1335 (8)0.9426 (2)0.0510 (9)
H20.9373390.1317170.9786230.061*
C30.7116 (4)0.0423 (7)0.9676 (2)0.0481 (9)
H30.7515830.1622191.0202930.058*
C40.5438 (4)0.0424 (6)0.9159 (2)0.0445 (8)
H40.4709410.1622300.9338860.053*
C4'0.4792 (4)0.1366 (6)0.83561 (19)0.0333 (7)
C5'0.3013 (4)0.1442 (6)0.77844 (19)0.0334 (7)
C50.1811 (4)0.0332 (6)0.7975 (2)0.0431 (8)
H50.2158090.1564170.8496260.052*
C60.0153 (4)0.0300 (7)0.7419 (3)0.0499 (9)
H60.0612470.1498980.7561190.060*
C70.0389 (4)0.1524 (7)0.6641 (2)0.0499 (9)
H70.1519040.1542880.6260560.060*
C80.0728 (4)0.3292 (7)0.6429 (2)0.0424 (8)
H80.0345200.4510630.5906670.051*
C8'0.2453 (3)0.3306 (6)0.69893 (19)0.0317 (7)
H0.413 (4)1.109 (7)0.475 (2)0.061 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0474 (13)0.0426 (14)0.0448 (12)0.0035 (11)0.0145 (10)0.0153 (11)
N10.0446 (14)0.0344 (14)0.0343 (13)0.0040 (13)0.0142 (11)0.0020 (12)
C110.0375 (16)0.0301 (17)0.0356 (15)0.0031 (14)0.0127 (13)0.0001 (13)
C90.0408 (16)0.0295 (16)0.0284 (14)0.0016 (16)0.0131 (12)0.0015 (14)
C100.0416 (16)0.0334 (17)0.0352 (14)0.0037 (15)0.0116 (12)0.0008 (15)
C10'0.0427 (16)0.0307 (16)0.0313 (14)0.0026 (15)0.0106 (12)0.0056 (14)
C10.0453 (18)0.046 (2)0.0475 (18)0.0005 (19)0.0093 (14)0.0020 (17)
C20.0461 (19)0.053 (2)0.0475 (19)0.0078 (18)0.0024 (15)0.0014 (17)
C30.060 (2)0.044 (2)0.0371 (17)0.0147 (18)0.0089 (15)0.0060 (15)
C40.0555 (19)0.041 (2)0.0390 (17)0.0035 (17)0.0168 (14)0.0040 (15)
C4'0.0464 (17)0.0265 (15)0.0294 (14)0.0033 (15)0.0149 (13)0.0035 (13)
C5'0.0432 (16)0.0297 (15)0.0306 (14)0.0021 (15)0.0157 (12)0.0040 (14)
C50.0552 (19)0.036 (2)0.0441 (18)0.0002 (17)0.0247 (15)0.0039 (15)
C60.0458 (19)0.047 (2)0.065 (2)0.0071 (18)0.0282 (16)0.0019 (18)
C70.0401 (18)0.051 (2)0.059 (2)0.0031 (18)0.0148 (15)0.0046 (19)
C80.0440 (18)0.0402 (18)0.0413 (17)0.0011 (17)0.0096 (14)0.0018 (16)
C8'0.0386 (15)0.0285 (15)0.0305 (14)0.0027 (15)0.0139 (12)0.0031 (14)
Geometric parameters (Å, º) top
O1—N11.405 (3)C3—C41.363 (4)
O1—H0.88 (3)C3—H30.9300
N1—C111.268 (3)C4—C4'1.409 (4)
C11—C91.466 (4)C4—H40.9300
C11—H110.9300C4'—C5'1.454 (4)
C9—C101.357 (3)C5'—C51.408 (4)
C9—C8'1.448 (4)C5'—C8'1.416 (4)
C10—C10'1.422 (4)C5—C61.364 (4)
C10—H100.9300C5—H50.9300
C10'—C11.405 (4)C6—C71.385 (4)
C10'—C4'1.408 (4)C6—H60.9300
C1—C21.365 (4)C7—C81.365 (4)
C1—H10.9300C7—H70.9300
C2—C31.384 (5)C8—C8'1.412 (4)
C2—H20.9300C8—H80.9300
N1—O1—H102 (2)C3—C4—H4119.5
C11—N1—O1110.9 (2)C4'—C4—H4119.5
N1—C11—C9121.2 (3)C10'—C4'—C4117.9 (2)
N1—C11—H11119.4C10'—C4'—C5'119.2 (2)
C9—C11—H11119.4C4—C4'—C5'122.9 (3)
C10—C9—C8'119.6 (2)C5—C5'—C8'118.0 (2)
C10—C9—C11120.0 (3)C5—C5'—C4'122.2 (3)
C8'—C9—C11120.4 (2)C8'—C5'—C4'119.8 (2)
C9—C10—C10'122.9 (3)C6—C5—C5'122.0 (3)
C9—C10—H10118.6C6—C5—H5119.0
C10'—C10—H10118.6C5'—C5—H5119.0
C1—C10'—C4'119.8 (3)C5—C6—C7119.9 (3)
C1—C10'—C10120.9 (3)C5—C6—H6120.1
C4'—C10'—C10119.2 (2)C7—C6—H6120.1
C2—C1—C10'120.6 (3)C8—C7—C6120.3 (3)
C2—C1—H1119.7C8—C7—H7119.8
C10'—C1—H1119.7C6—C7—H7119.8
C1—C2—C3119.9 (3)C7—C8—C8'121.2 (3)
C1—C2—H2120.1C7—C8—H8119.4
C3—C2—H2120.1C8'—C8—H8119.4
C4—C3—C2120.9 (3)C8—C8'—C5'118.6 (3)
C4—C3—H3119.5C8—C8'—C9122.0 (3)
C2—C3—H3119.5C5'—C8'—C9119.3 (2)
C3—C4—C4'120.9 (3)
O1—N1—C11—C9175.3 (2)C4—C4'—C5'—C51.9 (4)
N1—C11—C9—C1027.6 (4)C10'—C4'—C5'—C8'0.5 (4)
N1—C11—C9—C8'156.1 (2)C4—C4'—C5'—C8'179.7 (3)
C8'—C9—C10—C10'0.2 (4)C8'—C5'—C5—C60.2 (4)
C11—C9—C10—C10'176.1 (3)C4'—C5'—C5—C6178.2 (3)
C9—C10—C10'—C1179.3 (3)C5'—C5—C6—C70.1 (5)
C9—C10—C10'—C4'1.9 (4)C5—C6—C7—C80.1 (5)
C4'—C10'—C1—C20.4 (5)C6—C7—C8—C8'0.3 (5)
C10—C10'—C1—C2177.9 (3)C7—C8—C8'—C5'0.2 (4)
C10'—C1—C2—C30.0 (5)C7—C8—C8'—C9179.7 (3)
C1—C2—C3—C40.2 (5)C5—C5'—C8'—C80.1 (4)
C2—C3—C4—C4'0.0 (5)C4'—C5'—C8'—C8178.4 (3)
C1—C10'—C4'—C40.5 (4)C5—C5'—C8'—C9179.9 (2)
C10—C10'—C4'—C4178.1 (3)C4'—C5'—C8'—C91.5 (4)
C1—C10'—C4'—C5'179.7 (3)C10—C9—C8'—C8178.0 (3)
C10—C10'—C4'—C5'2.2 (4)C11—C9—C8'—C85.7 (4)
C3—C4—C4'—C10'0.3 (4)C10—C9—C8'—C5'1.9 (4)
C3—C4—C4'—C5'179.9 (3)C11—C9—C8'—C5'174.4 (2)
C10'—C4'—C5'—C5177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H···N1i0.88 (3)1.99 (3)2.852 (3)169 (3)
Symmetry code: (i) x+1, y+1/2, z+1.
Selected torsion angles (°) for the aldoxime groups in (I) and (II) top
Compound (I)Compound (II)
C1/C9—C11—N1—O1-175.5 (4)-175.3 (2)
C2/C10—C1/C9—C11—N123.6 (6)27.6 (4)
C8'—C1—C11—N1-160.4 (4)
C8'—C9—C11—N1-156.1 (2)
 

Funding information

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant No. (G-100–662-37). The authors, therefore, acknowledge with thanks the DSR for technical and financial support.

References

First citationAsaad, N., Davies, J. E., Hodgson, D. R. W., Kirby, A. J., van Vliet, L. & Ottavi, L. (2005). J. Phys. Org. Chem. 18, 101–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruton, E. A., Brammer, L., Pigge, F. C., Aakeröy, C. B. & Leinen, D. S. (2003). New J. Chem. 27, 1084–1094.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, Z., Li, L., Liu, G. & Dong, J. (2008). Acta Cryst. E64, o568.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKassa, J. (2002). J. Toxicol. Clin. Toxicol. 40, 803–816.  Web of Science CrossRef CAS Google Scholar
First citationKopylovich, M. N., Haukka, M., Kirillov, A. M., Kukushkin, V. Yu. & Pombeiro, A. J. L. (2007). Chem. Eur. J. 13, 786–791.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Kukushkin, V. Yu., Guedes da Silva, M. F. C., Haukka, M., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1569–1573.  Web of Science CSD CrossRef Google Scholar
First citationKopylovich, M. N., Kukushkin, V. Yu., Haukka, M., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2002). Inorg. Chem. 41, 4798–4804.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKopylovich, M. N., Kukushkin, V. Yu., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2004). J. Am. Chem. Soc. 126, 15040–15041.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKopylovich, M. N., Lasri, J., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 3074–3084.  Web of Science CSD CrossRef Google Scholar
First citationKukushkin, V. Yu. & Pombeiro, A. J. L. (1999). Coord. Chem. Rev. 181, 147–175.  Web of Science CrossRef CAS Google Scholar
First citationLasri, J., Charmier, M. A. J., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2007). Dalton Trans. pp. 3259–3266.  Web of Science CSD CrossRef Google Scholar
First citationLasri, J., Guedes da Silva, M. F. C., Charmier, M. A. J. & Pombeiro, A. J. L. (2008). Eur. J. Inorg. Chem. pp. 3668–3677.  Web of Science CSD CrossRef Google Scholar
First citationRitz, J., Fuchs, H., Kieczka, H. & Moran, W. C. (2012). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarai, A. & Baruah, J. B. (2016). Cryst. Growth Des. 16, 126–135.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds