research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4′-allyl-4,5,6,7,2′,7′-hexa­chloro­fluorescein allyl ester unknown solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, 5735 South Ellis ave, Chicago, IL 60637, USA
*Correspondence e-mail: gsengel@uchicago.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 November 2017; accepted 19 December 2017; online 1 January 2018)

In the title compound, 4′-allyl-4,5,6,7,2′,7′-hexa­chloro­fluorescein allyl ester {systematic name: prop-2-en-1-yl 2,3,4,5-tetra­chloro-6-[2,7-di­chloro-6-hy­droxy-3-oxo-4-(prop-2-en-1-yl)-3H-xanthen-9-yl]benzoate}, C26H14Cl6O5, accompanied by unknown solvate molecules, the dihedral angle between the xanthene ring system (r.m.s. deviation = 0.046 Å) and the penta­substituted benzene ring is 71.67 (9)°. Both allyl groups are disordered over two sets of sites in statistical ratios. The scattering contributions of the disordered solvent mol­ecules (both Ph2O and CHCl3, as identified by NMR) were removed with the PLATON SQUEEZE algorithm [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. In the crystal, tetra­meric supra­molecular aggregates linked by O—H⋯O hydrogen bonds occur; these further inter­act with neighboring aggregates through C—Cl⋯π inter­actions arising from the benzene rings, forming infinite two-dimensional sheets. Each C6Cl4 ring shifts in the direction perpendicular to the two-dimensional sheet, exhibiting a helical chain in which every C6Cl4 ring is utilized as both a donor and an acceptor of Cl⋯π contacts. Thus, these two-dimensional sheets pack in a helical fashion, constructing a three-dimensional network.

1. Chemical context

Fluorescein derivatives have been widely used in chemical and biological research. The high fluorescence quantum yields and excellent photostability of these dyes make them attractive as fluorescent labels for macromolecules such as proteins (Giepmans et al., 2006[Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. (2006). Science, 312, 217-224.]) or DNA (Li et al., 1995[Li, X., Traganos, F., Melamed, M. R. & Darzynkiewicz, Z. (1995). Cytometry, 20, 172-180.]). Fluorescein derivatives also exhibit tunable optical transitions in the visible range and high molar extinction coefficients, making them suitable for optical laser and dye-sensitized solar cell applications (Pepe et al., 2016[Pepe, G., Cole, J. M., Waddell, P. G. & Griffiths, J. R. D. (2016). Mol. Syst. Des. Eng. 1, 402-415.]). Understanding the properties of these fluorescein derivatives, especially their bonding abilities at certain local environments, is essential for designing and utilizing these compounds. Detailed crystal structure determinations of fluorescein derivatives can reveal their bonding/packing properties, providing valuable insights in directing future mol­ecular engineering design and chemical and biological applications. Until recently, the different forms of fluorescein could only be obtained as microcrystalline powders and the first crystal structure determination of free fluorescein came from powder diffraction data analysis (Tremayne et al., 1997[Tremayne, M., Kariuki, B. M. & Harris, K. D. M. (1997). Angew. Chem. Int. Ed. Engl. 36, 770-772.]). It was then followed by a number of single crystal X-ray structural analyses of fluorescein derivatives. For several recent examples, see Christianson & Gabbaï (2016[Christianson, A. M. & Gabbaï, F. P. (2016). Inorg. Chem. 55, 5828-5835.]), Sezukuri et al. (2016[Sezukuri, K., Suzuki, M., Hayashi, H., Kuzuhara, D., Aratani, N. & Yamada, H. (2016). Chem. Commun. 52, 4872-4875.]), and Dufresne et al. (2007[Dufresne, S., Pérez Guarìn, S. A. & Skene, W. G. (2007). Acta Cryst. C63, o350-o352.]).

The title compound, 4′-allyl-4,5,6,7,2′,7′-hexa­chloro­fluorescein allyl ester, is an important inter­mediate in the synthetic route of structurally flexible fluorescein heterodimers that were recently published by us (Wang et al., 2017[Wang, L., Griffin, G. B., Zhang, A., Zhai, F., Williams, N. E., Jordan, R. F. & Engel, G. S. (2017). Nat. Chem. 9, 219-225.]). Such heterodimers were designed to test the engineering principle of quantum coherences in artificial light-harvesting systems. Herein, we present the crystal structure of the title compound, which reveals the importance of Cl⋯π inter­actions in the solid state.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The structure consists of a xanthene ring system, a perchlorinated phenyl ring and two allyl groups; one is located at the periphery of the xanthene ring while the other is linked to the six-membered ring through the carboxyl­ate linker (atom O6). The phenyl plane inclines from the xanthene plane by about 73 ° [the C4—C13—C14—C15 torsion angle is 72.7 (3)°]. The unusual unsymmetrical substitution pattern on the xanthene ring of the title compound leads to the possibility of having different tautomers as depicted in the Scheme. Unsymmetrically substituted fluoresceins have previously been reported, but until now all related structural reports showed only their spiroxanthene isomeric forms (Hou et al., 2012[Hou, F., Cheng, J., Xi, P., Chen, F., Huang, L., Xie, G., Shi, Y., Liu, H., Bai, D. & Zeng, Z. (2012). Dalton Trans. 41, 5799-5804.]; Swamy et al., 2006[Swamy, K. M. K., Lee, Y. J., Lee, H. N., Chun, J., Kim, Y., Kim, S.-J. & Yoon, J. (2006). J. Org. Chem. 71, 8626-8628.]; Wang et al., 2005[Wang, W., Rusin, O., Xu, X., Kim, K. K., Escobedo, J. O., Fakayode, S. O., Fletcher, K. A., Lowry, M., Schowalter, C. M., Lawrence, C. M., Fronczek, F. R., Warner, I. M. & Strongin, R. M. (2005). J. Am. Chem. Soc. 127, 15949-15958.]), thwarting a direct comparison with this study. While the title compound may exist as a mixture of exchanging tautomers (A) and (B) in solution, the solid-state structure is better described as tautomer (A) based on the bond-length distribution. For example, the bond lengths for C7—O4 [1.251 (3) Å] and C1—O2 [1.326 (3) Å] are consistent with a C=O double bond and a C—O single bond, respectively. The bond lengths of C8—C9, C10—C13, and C11—C12, which are 1.359 (4), 1.373 (3), and 1.347 (3) Å, respectively, are significantly shorter than C7—C12 and C10—C11 [1.459 (4) and 1.429 (3) Å, respectively], suggesting that the former are of a double-bond character. It should be noted here that this tautomer may not represent the thermodynamically more stable tautomer that may exist in the gas phase, because this form may be stabilized by the formation of tetra­meric aggregates through inter­molecular O2—H2⋯O4 bonds as discussed below (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.74 (4) 1.86 (4) 2.595 (3) 172 (4)
Symmetry code: (i) [y+{\script{1\over 4}}, -x+{\script{3\over 4}}, -z+{\script{3\over 4}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with 40% displacement ellipsoids. H atoms as well as atoms of the disordered allyl groups are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
A tetra­meric hydrogen-bonded aggregate formed by the title compound: O2—H2⋯O4 bonds are labeled as `a'. The assemblage has [\overline{4}] symmetry.

3. Supra­molecular features

In the crystal, the title compound forms tetra­meric aggregates linked by O2—H2⋯O4 hydrogen bonds, as shown in Fig. 2[link]. The allyl groups sit inside the pocket formed by the hydrogen bonds and are not engaged in any particular inter­molecular inter­actions (only one disorder component is shown). The tetra­meric aggregates further inter­act with neighboring aggregates through Cl⋯π inter­actions of dangling C6Cl4 rings forming infinite two-dimensional sheets, as shown in Fig. 3[link]. Each of the C6Cl4 rings accepts two edge-on Cl⋯C short contacts from an adjacent C6Cl4 unit [Cl4⋯C16 = 3.398 (3); Cl5⋯C18 = 3.333 (3) Å]. When viewed along the two-dimensional sheet located in the ab plane, it may be noted that each –C6Cl4 ring is in fact shifted in the direction perpendic­ular to the two-dimensional sheet. These C6Cl4 rings thus exhibit a helical chain in which every C6Cl4 ring is utilized as both a donor and an acceptor of Cl⋯π contacts. Thus, several layers of the tetra­meric aggregates are further packed in a helical manner in the third dimension along the c axis, constructing a three-dimensional network, as shown in Fig. 4[link].

[Figure 3]
Figure 3
Infinite sheets formed by neighboring tetra­meric aggregates via Cl⋯π inter­actions. The aggregates are shown as large black squares and the inter­molecular inter­actions between them are shown as small red squares with a semi-transparent green background.
[Figure 4]
Figure 4
Three-dimensional packing diagram of the title compound.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that several fluorescein derivatives with halogen substituents on the xanthene ring have been reported (Cody, 1987[Cody, V. (1987). Acta Cryst. C43, 705-707.]; Willner et al., 1992[Willner, I., Eichen, Y., Rabinovitz, M., Hoffman, R. & Cohen, S. (1992). J. Am. Chem. Soc. 114, 637-644.]; Harrison et al., 2007[Harrison, W. T. A., Ramadevi, P., Seethalakshmi, P. G. & Kumaresan, S. (2007). Acta Cryst. E63, o3911.]; Quint et al., 2016[Quint, V., Morlet-Savary, F., Lohier, J.-F., Lalevée, J., Gaumont, A.-C. & Lakhdar, S. (2016). J. Am. Chem. Soc. 138, 7436-7441.]). However, there was only one structural report on fluorescein derivatives that contains a tetra­chloro-substituted phenyl unit (CCDC refcode KUFTUA; Willner et al., 1992[Willner, I., Eichen, Y., Rabinovitz, M., Hoffman, R. & Cohen, S. (1992). J. Am. Chem. Soc. 114, 637-644.]), and there were no structural reports on hexa­chlorinated fluorescein derivatives. While the hydroxyl groups on the xanthene rings of fluorescein derivatives have been reported to engage in hydrogen bonds (Abrahams et al., 2009[Abrahams, B. F., McCormick, L. J. & Robson, R. (2009). J. Mol. Struct. 920, 466-471.]), to the best of our knowledge, the tetra­meric aggregation motif in this report has not been found previously for fluorescein derivatives.

5. Synthesis and crystallization

4,5,6,7,2′,7′-Hexa­chloro­fluorescein diallyl ether ester was synthesized following a literature method (Wang et al., 2017[Wang, L., Griffin, G. B., Zhang, A., Zhai, F., Williams, N. E., Jordan, R. F. & Engel, G. S. (2017). Nat. Chem. 9, 219-225.]). 4,5,6,7,2′,7′-Hexa­chloro­fluorescein diallyl ether ester (500 mg) in diphenyl ether (5 ml) was heated in a sealed tube at 443 K under N2 overnight. The homogeneous mixture was then cooled to room temperature, transferred to a scintillation vial, and diluted with CHCl3 (5 ml). Red prismatic crystals of the title compound formed slowly from this mixture at room temperature within three months, yield: 52%. This crystalline material contained 0.3 equiv. of diphenyl ether and ca 0.1 equiv of CHCl3, as determined by 1H NMR integration. Note that the qu­antity of CHCl3 could be underestimated because of the overly long T1 relaxation time of the H-CCl3 proton. The volatile nature of CHCl3 and the loss in the sample-dissolving process could also contribute to underestimation.

Data for the title compound: 1H NMR (500 MHz, CD3OD): δ 7.25 (s, 1H), 7.20 (s, 1H), 7.03 (br s, 1H), 5.96 (ddt, J = 16.9, 10.2, 6.5 Hz, 1H), 5.32 (ddt, J = 17.0, 10.4, 6.5 Hz, 1H), 5.17 (dq, J = 17.1, 1.7 Hz, 1H), 5.06–4.95 (m, 3H), 4.45–4.41 (m, 2H), 3.58 (dt, J = 6.4, 1.3 Hz, 2H).

Data for diphenyl ether: 1H NMR (500 MHz, CD3OD): δ 7.36–7.32 (m, 4H), 7.10 (tt, J = 7.5, 1.1 Hz, 2H), 6.98–6.96 (m, 4H).

Data for CHCl3: 1H NMR (500 MHz, CD3OD): δ 7.90 (s, 1H).

HRMS (ESI-TOF, positive ion, m/z): Calc. 618.9022 ([M + H]+), found 618.9015.

6. Refinement

Crystal data, data collection and structural refinement details are summarized in Table 2[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The H atom of the hydroxyl group was found in a difference-Fourier map and freely refined [O—H = 0.74 (4) Å]. Most atoms except those of the allyl groups were refined anisotropically. Both allyl groups were found to be disordered and each disorder was individually modeled with the application of appropriate geometric (SADI) restraints or thermal parameters (EADP) constraints. The disorder was modelled over two positions (refined occupancies of 0.5:0.5 and 0.55:0.45). Similar distance soft restraints were used for the allyl groups. Hydrogen atoms were included in idealized positions for structure-factor calculations.

Table 2
Experimental details

Crystal data
Chemical formula C26H14Cl6O5
Mr 619.07
Crystal system, space group Tetragonal, I41/a
Temperature (K) 100
a, c (Å) 41.432 (2), 7.7844 (6)
V3) 13363.0 (18)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.42 × 0.32 × 0.18
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SAINT, APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.803, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 105222, 7959, 6656
Rint 0.043
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.156, 1.05
No. of reflections 7959
No. of parameters 327
No. of restraints 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.08, −0.69
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). SAINT, APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The crystal contained many disordered solvent mol­ecules located in several solvent-accessible voids. 1H NMR analysis of the crystalline material in MeOD revealed that both Ph2O and CHCl3 are present. The amount of Ph2O is qu­anti­fied to be 0.3 equiv. using the integrals for multiplets at δ 7.37–7.32 (4H), 7.12–7.07 (2H), and 6.98–6.96 (4H). The amount of CHCl3 is found to be approximately 0.1 equiv. using the integral for the singlet at δ 7.90. The amount of the CHCl3 is most probably underestimated owing to a very long T1 relaxation time of the HCCl3 proton and its loss in the sample during the dissolving process and crystals transfer. These results guided the disorder modeling of the allyl group pointing into the void as 0.5:0.5. The allyl group inside the void is poorly defined and could not be freely refined. Attempts to model the disordered solvent area were not successful, and the diffuse contribution to scattering was treated by application of the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) as implemented in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) using the fab file construct: the SQUEEZE algorithm located four voids, centered at (0, 0.250, 0.625), (0, 0.750, 0.375), (0, 0.250, 0.875) and (0, 0.750, 0.125) with a volume of 860 Å3 and an electron count of 186 or approximately 47 electrons per mol­ecule of fluorescein. From the 1H NMR data, 0.3 equiv. of Ph2O and 0.2 equiv. of CHCl3 account for 39 electrons.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Prop-2-en-1-yl 2,3,4,5-tetrachloro-6-[2,7-dichloro-6-hydroxy-3-oxo-4-(prop-2-en-1-yl)-3H-xanthen-9-yl]benzoate top
Crystal data top
C26H14Cl6O5Dx = 1.231 Mg m3
Mr = 619.07Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 9585 reflections
a = 41.432 (2) Åθ = 2.2–27.9°
c = 7.7844 (6) ŵ = 0.54 mm1
V = 13363.0 (18) Å3T = 100 K
Z = 16Prism, red
F(000) = 49920.42 × 0.32 × 0.18 mm
Data collection top
Bruker D8 Venture
diffractometer
6656 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.043
ω and phi scansθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 5454
Tmin = 0.803, Tmax = 0.940k = 5454
105222 measured reflectionsl = 910
7959 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: mixed
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0825P)2 + 46.1798P]
where P = (Fo2 + 2Fc2)/3
7959 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 1.08 e Å3
13 restraintsΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.39543 (2)0.48283 (2)0.58350 (11)0.03112 (17)
Cl20.27839 (2)0.26500 (2)0.42276 (14)0.0454 (2)
Cl30.31144 (2)0.41091 (2)0.23233 (8)0.02342 (15)
Cl40.24970 (2)0.45200 (2)0.29555 (8)0.02253 (15)
Cl50.21385 (2)0.44703 (2)0.64520 (9)0.02840 (16)
Cl60.23918 (2)0.40045 (2)0.92801 (9)0.03081 (17)
O20.45019 (5)0.44372 (5)0.4967 (4)0.0402 (6)
H20.4637 (10)0.4339 (10)0.463 (5)0.045 (11)*
O30.39550 (4)0.34387 (4)0.4569 (3)0.0305 (5)
O40.34551 (5)0.24470 (5)0.3600 (4)0.0467 (7)
C10.42382 (6)0.42571 (6)0.5078 (4)0.0286 (6)
C20.39447 (6)0.44152 (6)0.5503 (4)0.0247 (5)
C30.36604 (6)0.42505 (6)0.5618 (3)0.0212 (5)
H30.3467960.4361730.5917710.025*
C40.36511 (6)0.39153 (6)0.5293 (3)0.0189 (5)
C50.39438 (6)0.37617 (6)0.4901 (4)0.0242 (5)
C60.42330 (6)0.39261 (7)0.4794 (4)0.0313 (6)
H60.4426600.3813950.4527820.038*
C70.34334 (7)0.27382 (6)0.4012 (5)0.0320 (7)
C80.37143 (7)0.29388 (6)0.4114 (5)0.0348 (7)
C90.36809 (6)0.32553 (6)0.4539 (4)0.0244 (5)
C100.33741 (5)0.34042 (5)0.4904 (3)0.0179 (5)
C110.30949 (6)0.32027 (6)0.4812 (3)0.0211 (5)
H110.2888080.3290550.5055400.025*
C120.31228 (6)0.28889 (6)0.4383 (4)0.0262 (6)
C130.33624 (5)0.37283 (6)0.5269 (3)0.0169 (4)
C140.30471 (5)0.38966 (5)0.5564 (3)0.0158 (4)
C150.29226 (5)0.40932 (5)0.4272 (3)0.0162 (4)
C160.26413 (5)0.42701 (5)0.4541 (3)0.0167 (4)
C170.24778 (5)0.42433 (6)0.6088 (3)0.0187 (5)
C180.25919 (6)0.40341 (6)0.7354 (3)0.0198 (5)
C190.28768 (6)0.38606 (6)0.7089 (3)0.0192 (5)
O5A0.32942 (12)0.37441 (15)0.9111 (6)0.0277 (12)*0.515 (11)
O6A0.28648 (16)0.34190 (13)0.8881 (7)0.0337 (14)*0.515 (11)
C20A0.30476 (16)0.36766 (16)0.8496 (8)0.0165 (16)*0.515 (11)
C21A0.2973 (2)0.32063 (19)1.0245 (10)0.0398 (17)*0.515 (11)
H21A0.3091060.3332581.1120860.048*0.515 (11)
H21B0.2783330.3105481.0806310.048*0.515 (11)
C22A0.3178 (2)0.29612 (19)0.9564 (11)0.058 (2)*0.515 (11)
H22A0.3372400.3030790.9033520.069*0.515 (11)
C23A0.3123 (3)0.2639 (2)0.9600 (14)0.077 (3)*0.515 (11)
H23A0.2931560.2557421.0116230.092*0.515 (11)
H23B0.3275020.2494500.9109230.092*0.515 (11)
O5B0.32477 (13)0.36512 (17)0.9121 (7)0.0307 (13)*0.485 (11)
O6B0.27778 (16)0.33861 (12)0.8719 (7)0.0290 (13)*0.485 (11)
C20B0.29915 (17)0.36200 (18)0.8455 (8)0.0162 (17)*0.485 (11)
C21B0.2864 (2)0.3138 (2)1.0020 (11)0.046 (2)*0.485 (11)
H21C0.3023680.3230541.0828610.055*0.485 (11)
H21D0.2668850.3080561.0685390.055*0.485 (11)
C22B0.2994 (4)0.2857 (4)0.928 (2)0.111 (5)*0.485 (11)
H22B0.2855650.2712630.8677720.134*0.485 (11)
C23B0.3325 (4)0.2785 (5)0.942 (3)0.142 (7)*0.485 (11)
H23C0.3465020.2927731.0019800.170*0.485 (11)
H23D0.3409410.2593950.8913330.170*0.485 (11)
C240.40398 (15)0.28020 (16)0.3449 (9)0.0320 (9)*0.5
H24A0.4003910.2649450.2488970.038*0.5
H24B0.4182480.2978250.3048710.038*0.5
C250.4188 (4)0.2628 (3)0.4996 (15)0.104 (3)*0.5
H250.4057610.2467420.5517410.124*0.5
C260.4489 (5)0.2677 (7)0.573 (4)0.253 (10)*0.5
H26A0.4630670.2834670.5266810.303*0.5
H26B0.4553060.2552480.6695650.303*0.5
C24A0.40402 (15)0.27709 (16)0.4069 (9)0.0320 (9)*0.5
H24C0.4199400.2887670.4785130.038*0.5
H24D0.4022030.2546190.4489810.038*0.5
C25A0.4134 (3)0.2777 (4)0.2274 (16)0.104 (3)*0.5
H25A0.4143670.2964770.1574790.124*0.5
C26A0.4210 (7)0.2454 (6)0.171 (4)0.253 (10)*0.5
H26C0.4193960.2278890.2496860.303*0.5
H26D0.4276050.2416490.0562780.303*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0197 (3)0.0175 (3)0.0562 (5)0.0022 (2)0.0040 (3)0.0126 (3)
Cl20.0226 (3)0.0189 (3)0.0947 (7)0.0046 (2)0.0035 (4)0.0100 (4)
Cl30.0204 (3)0.0253 (3)0.0245 (3)0.0027 (2)0.0056 (2)0.0038 (2)
Cl40.0212 (3)0.0206 (3)0.0258 (3)0.0057 (2)0.0041 (2)0.0019 (2)
Cl50.0196 (3)0.0342 (3)0.0314 (3)0.0135 (2)0.0019 (2)0.0024 (3)
Cl60.0300 (3)0.0393 (4)0.0231 (3)0.0109 (3)0.0075 (3)0.0007 (3)
O20.0132 (9)0.0229 (10)0.0844 (19)0.0038 (8)0.0105 (10)0.0175 (11)
O30.0138 (8)0.0161 (8)0.0617 (14)0.0014 (6)0.0016 (9)0.0128 (9)
O40.0264 (10)0.0162 (9)0.098 (2)0.0031 (8)0.0117 (12)0.0170 (11)
C10.0125 (11)0.0202 (12)0.0529 (18)0.0005 (9)0.0033 (11)0.0103 (12)
C20.0184 (12)0.0158 (11)0.0400 (15)0.0010 (9)0.0018 (11)0.0095 (11)
C30.0127 (10)0.0182 (11)0.0328 (14)0.0008 (8)0.0015 (10)0.0071 (10)
C40.0142 (10)0.0156 (11)0.0268 (12)0.0018 (8)0.0008 (9)0.0052 (9)
C50.0168 (11)0.0151 (11)0.0407 (15)0.0024 (9)0.0002 (11)0.0082 (10)
C60.0139 (11)0.0220 (13)0.0579 (19)0.0017 (9)0.0042 (12)0.0120 (13)
C70.0226 (13)0.0154 (12)0.0580 (19)0.0035 (10)0.0084 (13)0.0062 (12)
C80.0206 (13)0.0177 (12)0.066 (2)0.0050 (10)0.0058 (13)0.0106 (13)
C90.0146 (11)0.0165 (11)0.0422 (15)0.0014 (9)0.0040 (10)0.0049 (11)
C100.0155 (11)0.0139 (10)0.0242 (12)0.0023 (8)0.0033 (9)0.0014 (9)
C110.0154 (11)0.0173 (11)0.0305 (13)0.0012 (9)0.0032 (10)0.0004 (10)
C120.0193 (12)0.0146 (11)0.0447 (16)0.0013 (9)0.0071 (11)0.0033 (11)
C130.0133 (10)0.0161 (11)0.0215 (11)0.0013 (8)0.0024 (9)0.0009 (9)
C140.0120 (10)0.0116 (10)0.0238 (12)0.0012 (8)0.0011 (9)0.0043 (9)
C150.0124 (10)0.0131 (10)0.0231 (12)0.0020 (8)0.0003 (9)0.0018 (9)
C160.0147 (10)0.0122 (10)0.0231 (12)0.0003 (8)0.0041 (9)0.0014 (9)
C170.0130 (10)0.0173 (11)0.0256 (12)0.0015 (8)0.0007 (9)0.0053 (9)
C180.0175 (11)0.0221 (12)0.0199 (12)0.0016 (9)0.0023 (9)0.0052 (9)
C190.0184 (11)0.0170 (11)0.0222 (12)0.0034 (9)0.0018 (9)0.0033 (9)
Geometric parameters (Å, º) top
Cl1—C21.732 (2)C19—C20A1.511 (6)
Cl2—C121.722 (3)C19—C20B1.533 (7)
Cl3—C151.714 (2)O5A—C20A1.162 (8)
Cl4—C161.718 (2)O6A—C20A1.343 (8)
Cl5—C171.715 (2)O6A—C21A1.450 (9)
Cl6—C181.718 (3)C21A—H21A0.9900
O2—H20.74 (4)C21A—H21B0.9900
O2—C11.326 (3)C21A—C22A1.427 (10)
O3—C51.364 (3)C22A—H22A0.9500
O3—C91.367 (3)C22A—C23A1.355 (11)
O4—C71.251 (3)C23A—H23A0.9500
C1—C21.420 (3)C23A—H23B0.9500
C1—C61.389 (4)O5B—C20B1.188 (8)
C2—C31.364 (3)O6B—C20B1.329 (9)
C3—H30.9500O6B—C21B1.486 (10)
C3—C41.412 (3)C21B—H21C0.9900
C4—C51.403 (3)C21B—H21D0.9900
C4—C131.425 (3)C21B—C22B1.407 (18)
C5—C61.381 (4)C22B—H22B0.9500
C6—H60.9500C22B—C23B1.411 (15)
C7—C81.432 (4)C23B—H23C0.9500
C7—C121.459 (4)C23B—H23D0.9500
C8—C91.359 (4)C24—H24A0.9900
C8—C241.552 (7)C24—H24B0.9900
C8—C24A1.519 (6)C24—C251.531 (8)
C9—C101.441 (3)C25—H250.9500
C10—C111.429 (3)C25—C261.385 (17)
C10—C131.373 (3)C26—H26A0.9500
C11—H110.9500C26—H26B0.9500
C11—C121.347 (3)C24A—H24C0.9900
C13—C141.499 (3)C24A—H24D0.9900
C14—C151.393 (3)C24A—C25A1.451 (12)
C14—C191.389 (3)C25A—H25A0.9500
C15—C161.392 (3)C25A—C26A1.442 (17)
C16—C171.387 (3)C26A—H26C0.9500
C17—C181.395 (4)C26A—H26D0.9500
C18—C191.397 (3)
C1—O2—H2110 (3)C14—C19—C20B120.3 (3)
C5—O3—C9121.41 (19)C18—C19—C20A123.2 (3)
O2—C1—C2117.5 (2)C18—C19—C20B119.6 (3)
O2—C1—C6123.9 (2)C20A—O6A—C21A118.2 (6)
C6—C1—C2118.6 (2)O5A—C20A—C19126.1 (6)
C1—C2—Cl1118.09 (19)O5A—C20A—O6A126.5 (6)
C3—C2—Cl1120.30 (19)O6A—C20A—C19107.4 (5)
C3—C2—C1121.6 (2)O6A—C21A—H21A109.6
C2—C3—H3119.9O6A—C21A—H21B109.6
C2—C3—C4120.2 (2)H21A—C21A—H21B108.1
C4—C3—H3119.9C22A—C21A—O6A110.1 (6)
C3—C4—C13124.0 (2)C22A—C21A—H21A109.6
C5—C4—C3117.5 (2)C22A—C21A—H21B109.6
C5—C4—C13118.4 (2)C21A—C22A—H22A116.8
O3—C5—C4121.0 (2)C23A—C22A—C21A126.3 (10)
O3—C5—C6116.3 (2)C23A—C22A—H22A116.8
C6—C5—C4122.6 (2)C22A—C23A—H23A120.0
C1—C6—H6120.3C22A—C23A—H23B120.0
C5—C6—C1119.4 (2)H23A—C23A—H23B120.0
C5—C6—H6120.3C20B—O6B—C21B116.7 (6)
O4—C7—C8121.0 (3)O5B—C20B—C19120.6 (6)
O4—C7—C12121.8 (2)O5B—C20B—O6B127.4 (6)
C8—C7—C12117.2 (2)O6B—C20B—C19112.0 (5)
C7—C8—C24118.4 (3)O6B—C21B—H21C109.0
C7—C8—C24A117.1 (3)O6B—C21B—H21D109.0
C9—C8—C7119.4 (2)H21C—C21B—H21D107.8
C9—C8—C24121.5 (3)C22B—C21B—O6B112.7 (9)
C9—C8—C24A122.5 (3)C22B—C21B—H21C109.0
O3—C9—C10119.4 (2)C22B—C21B—H21D109.0
C8—C9—O3117.1 (2)C21B—C22B—H22B119.5
C8—C9—C10123.4 (2)C21B—C22B—C23B121.0 (17)
C11—C10—C9117.0 (2)C23B—C22B—H22B119.5
C13—C10—C9119.4 (2)C22B—C23B—H23C120.0
C13—C10—C11123.6 (2)C22B—C23B—H23D120.0
C10—C11—H11119.8H23C—C23B—H23D120.0
C12—C11—C10120.5 (2)C8—C24—H24A110.8
C12—C11—H11119.8C8—C24—H24B110.8
C7—C12—Cl2117.33 (19)H24A—C24—H24B108.8
C11—C12—Cl2120.1 (2)C25—C24—C8105.0 (7)
C11—C12—C7122.5 (2)C25—C24—H24A110.8
C4—C13—C14118.5 (2)C25—C24—H24B110.8
C10—C13—C4120.3 (2)C24—C25—H25115.9
C10—C13—C14121.2 (2)C26—C25—C24128.1 (18)
C15—C14—C13119.0 (2)C26—C25—H25115.9
C19—C14—C13121.6 (2)C25—C26—H26A120.0
C19—C14—C15119.4 (2)C25—C26—H26B120.0
C14—C15—Cl3119.32 (17)H26A—C26—H26B120.0
C16—C15—Cl3120.06 (19)C8—C24A—H24C110.8
C16—C15—C14120.6 (2)C8—C24A—H24D110.8
C15—C16—Cl4120.03 (19)H24C—C24A—H24D108.9
C17—C16—Cl4120.14 (18)C25A—C24A—C8104.6 (7)
C17—C16—C15119.8 (2)C25A—C24A—H24C110.8
C16—C17—Cl5120.01 (19)C25A—C24A—H24D110.8
C16—C17—C18119.8 (2)C24A—C25A—H25A125.3
C18—C17—Cl5120.13 (19)C26A—C25A—C24A109.5 (17)
C17—C18—Cl6119.82 (18)C26A—C25A—H25A125.3
C17—C18—C19120.1 (2)C25A—C26A—H26C120.0
C19—C18—Cl6120.0 (2)C25A—C26A—H26D120.0
C14—C19—C18120.0 (2)H26C—C26A—H26D120.0
C14—C19—C20A115.8 (3)
Cl1—C2—C3—C4178.0 (2)C9—C10—C13—C40.3 (4)
Cl3—C15—C16—Cl43.2 (3)C9—C10—C13—C14176.7 (2)
Cl3—C15—C16—C17176.60 (17)C10—C11—C12—Cl2178.5 (2)
Cl4—C16—C17—Cl52.3 (3)C10—C11—C12—C70.6 (4)
Cl4—C16—C17—C18178.46 (18)C10—C13—C14—C15104.3 (3)
Cl5—C17—C18—Cl60.0 (3)C10—C13—C14—C1975.6 (3)
Cl5—C17—C18—C19176.96 (19)C11—C10—C13—C4178.3 (2)
Cl6—C18—C19—C14176.83 (18)C11—C10—C13—C141.4 (4)
Cl6—C18—C19—C20A8.2 (5)C12—C7—C8—C90.2 (5)
Cl6—C18—C19—C20B5.8 (5)C12—C7—C8—C24170.4 (4)
O2—C1—C2—Cl10.1 (4)C12—C7—C8—C24A168.5 (4)
O2—C1—C2—C3178.9 (3)C13—C4—C5—O32.5 (4)
O2—C1—C6—C5178.4 (3)C13—C4—C5—C6176.1 (3)
O3—C5—C6—C1178.6 (3)C13—C10—C11—C12177.5 (3)
O3—C9—C10—C11178.5 (2)C13—C14—C15—Cl35.6 (3)
O3—C9—C10—C130.3 (4)C13—C14—C15—C16175.8 (2)
O4—C7—C8—C9179.0 (3)C13—C14—C19—C18176.7 (2)
O4—C7—C8—C248.8 (6)C13—C14—C19—C20A7.3 (4)
O4—C7—C8—C24A12.3 (6)C13—C14—C19—C20B6.0 (5)
O4—C7—C12—Cl20.2 (5)C14—C15—C16—Cl4178.20 (17)
O4—C7—C12—C11179.4 (3)C14—C15—C16—C172.0 (3)
C1—C2—C3—C40.7 (4)C14—C19—C20A—O5A58.7 (7)
C2—C1—C6—C51.1 (5)C14—C19—C20A—O6A120.2 (4)
C2—C3—C4—C51.7 (4)C14—C19—C20B—O5B61.9 (7)
C2—C3—C4—C13175.6 (3)C14—C19—C20B—O6B116.7 (5)
C3—C4—C5—O3179.9 (3)C15—C14—C19—C183.4 (3)
C3—C4—C5—C61.2 (4)C15—C14—C19—C20A172.9 (4)
C3—C4—C13—C10178.5 (3)C15—C14—C19—C20B173.9 (4)
C3—C4—C13—C141.5 (4)C15—C16—C17—Cl5177.90 (18)
C4—C5—C6—C10.1 (5)C15—C16—C17—C181.4 (3)
C4—C13—C14—C1572.7 (3)C16—C17—C18—Cl6179.24 (18)
C4—C13—C14—C19107.4 (3)C16—C17—C18—C192.3 (4)
C5—O3—C9—C8176.9 (3)C17—C18—C19—C140.1 (4)
C5—O3—C9—C101.5 (4)C17—C18—C19—C20A168.8 (4)
C5—C4—C13—C101.3 (4)C17—C18—C19—C20B177.2 (4)
C5—C4—C13—C14175.7 (2)C18—C19—C20A—O5A110.4 (6)
C6—C1—C2—Cl1179.4 (3)C18—C19—C20A—O6A70.7 (5)
C6—C1—C2—C30.7 (5)C18—C19—C20B—O5B120.8 (6)
C7—C8—C9—O3178.1 (3)C18—C19—C20B—O6B60.6 (6)
C7—C8—C9—C100.1 (5)C19—C14—C15—Cl3174.23 (18)
C7—C8—C24—C2588.3 (7)C19—C14—C15—C164.4 (3)
C7—C8—C24A—C25A94.0 (8)O6A—C21A—C22A—C23A118.3 (10)
C8—C7—C12—Cl2179.0 (3)C20A—O6A—C21A—C22A88.9 (8)
C8—C7—C12—C110.2 (5)C21A—O6A—C20A—C19178.2 (5)
C8—C9—C10—C110.3 (4)C21A—O6A—C20A—O5A2.8 (10)
C8—C9—C10—C13177.9 (3)O6B—C21B—C22B—C23B107.2 (16)
C8—C24—C25—C26125 (2)C20B—O6B—C21B—C22B97.9 (11)
C8—C24A—C25A—C26A126.4 (15)C21B—O6B—C20B—C19179.9 (5)
C9—O3—C5—C42.6 (4)C21B—O6B—C20B—O5B1.4 (10)
C9—O3—C5—C6176.1 (3)C24—C8—C9—O38.2 (5)
C9—C8—C24—C25101.7 (7)C24—C8—C9—C10170.1 (4)
C9—C8—C24A—C25A97.7 (8)C24A—C8—C9—O313.8 (6)
C9—C10—C11—C120.6 (4)C24A—C8—C9—C10167.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.74 (4)1.86 (4)2.595 (3)172 (4)
Symmetry code: (i) y+1/4, x+3/4, z+3/4.
 

Funding information

The authors thank DTRA (Grant No. HDTRA1–10-0091), AFOSR (Grant No. FA9550–14-1–0367), DARPA QuBE (Grant No. N66001–10-1–4060), NSF MRSEC Program (Grant No. DMR 14–20709), Vannevar Bush Fellowship (ONR N00014–16-1–2513), the Alfred P. Sloan Foundation, and the Camille and Henry Dreyfus Foundation for support.

References

First citationAbrahams, B. F., McCormick, L. J. & Robson, R. (2009). J. Mol. Struct. 920, 466–471.  CrossRef CAS Google Scholar
First citationBruker (2015). SAINT, APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristianson, A. M. & Gabbaï, F. P. (2016). Inorg. Chem. 55, 5828–5835.  CrossRef CAS PubMed Google Scholar
First citationCody, V. (1987). Acta Cryst. C43, 705–707.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDufresne, S., Pérez Guarìn, S. A. & Skene, W. G. (2007). Acta Cryst. C63, o350–o352.  CrossRef IUCr Journals Google Scholar
First citationGiepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. (2006). Science, 312, 217–224.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ramadevi, P., Seethalakshmi, P. G. & Kumaresan, S. (2007). Acta Cryst. E63, o3911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, F., Cheng, J., Xi, P., Chen, F., Huang, L., Xie, G., Shi, Y., Liu, H., Bai, D. & Zeng, Z. (2012). Dalton Trans. 41, 5799–5804.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, X., Traganos, F., Melamed, M. R. & Darzynkiewicz, Z. (1995). Cytometry, 20, 172–180.  CrossRef CAS PubMed Google Scholar
First citationPepe, G., Cole, J. M., Waddell, P. G. & Griffiths, J. R. D. (2016). Mol. Syst. Des. Eng. 1, 402–415.  CrossRef CAS Google Scholar
First citationQuint, V., Morlet-Savary, F., Lohier, J.-F., Lalevée, J., Gaumont, A.-C. & Lakhdar, S. (2016). J. Am. Chem. Soc. 138, 7436–7441.  CrossRef CAS PubMed Google Scholar
First citationSezukuri, K., Suzuki, M., Hayashi, H., Kuzuhara, D., Aratani, N. & Yamada, H. (2016). Chem. Commun. 52, 4872–4875.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSwamy, K. M. K., Lee, Y. J., Lee, H. N., Chun, J., Kim, Y., Kim, S.-J. & Yoon, J. (2006). J. Org. Chem. 71, 8626–8628.  CrossRef PubMed CAS Google Scholar
First citationTremayne, M., Kariuki, B. M. & Harris, K. D. M. (1997). Angew. Chem. Int. Ed. Engl. 36, 770–772.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, L., Griffin, G. B., Zhang, A., Zhai, F., Williams, N. E., Jordan, R. F. & Engel, G. S. (2017). Nat. Chem. 9, 219–225.  CrossRef CAS PubMed Google Scholar
First citationWang, W., Rusin, O., Xu, X., Kim, K. K., Escobedo, J. O., Fakayode, S. O., Fletcher, K. A., Lowry, M., Schowalter, C. M., Lawrence, C. M., Fronczek, F. R., Warner, I. M. & Strongin, R. M. (2005). J. Am. Chem. Soc. 127, 15949–15958.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWillner, I., Eichen, Y., Rabinovitz, M., Hoffman, R. & Cohen, S. (1992). J. Am. Chem. Soc. 114, 637–644.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds