research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of two isomers of 5-(phenyl­iso­thia­zol­yl)-1,3,4-oxa­thia­zol-2-one

CROSSMARK_Color_square_no_text.svg

aTeva Pharmaceuticals, 3333 N Torrey Pines Ct, Suite 400, La Jolla, CA 92130, bDepartment of Chemistry, Crandall University, PO Box 6004, Moncton, New Brunswick, E1C 9L7, Canada, and cThe Atlantic Centre for Green Chemistry and the Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
*Correspondence e-mail: mel.schriver@crandallu.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 September 2017; accepted 16 October 2017; online 20 October 2017)

The syntheses and crystal structures of two isomers of phenyl iso­thia­zolyl oxa­thia­zolone, C11H6N2O2S2, are described [systematic names: 5-(3-phenyl­iso­thia­zol-5-yl)-1,3,4-oxa­thia­zol-2-one, (I), and 5-(3-phenyl­iso­thia­zol-4-yl)-1,3,4-oxa­thia­zol-2-one, (II)]. There are two almost planar (r.m.s. deviations = 0.032 and 0.063 Å) mol­ecules of isomer (I) in the asymmetric unit, which form centrosymmetric tetra­mers linked by strong S⋯N [3.072 (2) Å] and S⋯O contacts [3.089 (1) Å]. The tetra­mers are π-stacked parallel to the a-axis direction. The single mol­ecule in the asymmetric unit of isomer (II) is twisted into a non-planar conformation by steric repulsion [dihedral angles between the central iso­thia­zolyl ring and the pendant oxa­thia­zolone and phenyl rings are 13.27 (6) and 61.18 (7)°, respectively], which disrupts the π-conjugation between the heteroaromatic iso­thia­zoloyl ring and the non-aromatic oxa­thia­zolone heterocycle. In the crystal of isomer (II), the strong S⋯O [3.020 (1) Å] and S⋯C contacts [3.299 (2) Å] and the non-planar structure of the mol­ecule lead to a form of π-stacking not observed in isomer (I) or other oxa­thia­zolone derivatives.

1. Chemical context

Compounds containing the iso­thia­zolyl moiety are well known in organic and pharmacological research, with extensive reviews on the synthesis and chemistry of the ring (Abdel-Sattar & Elgazwy, 2003[Elgazwy, A. S. H. (2003). Tetrahedron, 59, 7445-7463.]) and the medicinal and industrial uses of compounds containing the iso­thia­zolyl heterocycle (Kaberdin & Potkin 2002[Kaberdin, R. V. & Potkin, V. I. (2002). Russ. Chem. Rev. 71, 673-694.]). The solid-state structural features of iso­thia­zole derivatives have been reviewed (Abdel-Sattar & Elgazwy, 2003[Elgazwy, A. S. H. (2003). Tetrahedron, 59, 7445-7463.]). In general, the iso­thia­zolyl ring is recognised as a heteroaromatic ring with extensive π-delocalization (incorporating the empty sulfur 3d-orbitals) within the ring leading to almost planar heterocycles.

Derivatives of the oxa­thia­zolone heterocycle have been known since their first preparation fifty years ago (Muhlbauer & Weiss, 1967[Muhlbauer, E. & Weiss, W. (1967). UK Patent 1079348.]). The facile synthesis of the heterocycle from commercially available amides reacting with chloro­carbonyl sulfenyl chloride under a range of conditions has resulted in the publication of significant libraries of substituted oxa­thia­zolone compounds (Senning & Rasmussen, 1973[Senning, A., Rasmussen, J. S., Olsen, J. H., Pajunen, P., Koskikallio, J. & Swahn, C. (1973). Acta Chem. Scand. 27, 2161-2170.]; Howe et al., 1978[Howe, R. K., Gruner, T. A., Carter, L. G., Black, L. L. & Franz, J. E. (1978). J. Org. Chem. 43, 3736-3742.]; Lin et al., 2009[Lin, G., Li, D., de Carvalho, L. P. S., Deng, H., Tao, H., Vogt, G., Wu, K., Schneider, J., Chidawanyika, T., Warren, J. D., Li, H. & Nathan, C. (2009). Nature, 461, 621-626.]; Fordyce et al., 2010[Fordyce, E. A., Morrison, A. J., Sharp, R. D. & Paton, R. M. (2010). Tetrahedron, 66, 7192-7197.]; Russo et al., 2015[Russo, F., Gising, J., Åkerbladh, L., Roos, A. K., Naworyta, A., Mowbray, S. L., Sokolowski, A., Henderson, I., Alling, T., Bailey, M. A., Files, M., Parish, T., Karlen, A. & Larhed, M. (2015). Chemistry Open, 4, 342-362.]) leading to hundreds of known oxa­thia­zolone derivatives. The predominant chemistry of the heterocycle has been the thermal cyclo­reversion to the short lived nitrile sulfide [R—C≡N(+)—S(−)] , a propargyl allenyl 1,3-dipole, which can be trapped by electron-deficient π bonds in reasonable yield to give families of new heterocycles (Paton, 1989[Paton, R. M. (1989). Chem. Soc. Rev. 18, 33-52.]), including iso­thia­zole derivatives. As a result of the electronic properties of the short-lived nitrile sulfide inter­mediates, optimal conditions for cyclization require trapping reactions with electron-deficient dipolariphiles. Industrially, various derivatives of the oxa­thia­zolone heterocycle have been reported as potential fungicides (Klaus et al., 1965[Klaus, S., Ludwig, E. & Richard, W. (1965). US Patent No. 3182068. Washington, DC: US Patent and Trademark Office.]), pesticides (Hölzl, 2004[Hölzl, W. & Schnyder, M. (2004). US Patent No. 6689372. Washington, DC: US Patent and Trademark Office.]) and as polymer additives (Crosby 1978[Crosby, J. (1978). US Patent No. 4067862. Washington, DC: US Patent and Trademark Office.]). More recently, the medicinal properties of the oxa­thia­zolone heterocycle have been explored as selective inhibitors for tuberculosis (Lin et al., 2009[Lin, G., Li, D., de Carvalho, L. P. S., Deng, H., Tao, H., Vogt, G., Wu, K., Schneider, J., Chidawanyika, T., Warren, J. D., Li, H. & Nathan, C. (2009). Nature, 461, 621-626.]), inflammatory diseases (Fan et al., 2014[Fan, H., Angelo, N. G., Warren, J. D., Nathan, C. F. & Lin, G. (2014). ACS Med. Chem. Lett. 5, 405-410.]) and as proteasome inhibitors (Russo et al., 2015[Russo, F., Gising, J., Åkerbladh, L., Roos, A. K., Naworyta, A., Mowbray, S. L., Sokolowski, A., Henderson, I., Alling, T., Bailey, M. A., Files, M., Parish, T., Karlen, A. & Larhed, M. (2015). Chemistry Open, 4, 342-362.]).

In previous structural studies on oxa­thia­zolone compounds, the non-aromatic heterocyclic rings were found to be planar with largely localized C=N and C=O double bonds. The extent of π-delocalization within the oxa­thia­zolone ring and to the substituent group and the effect on the structure and chemical properties have been discussed spectroscopically (Markgraf et al., 2007[Markgraf, J. H., Hong, L., Richardson, D. P. & Schofield, M. H. (2007). Magn. Reson. Chem. 45, 985-988.]) and structurally (Krayushkin et al., 2010a[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. C. 46, 484-489.],b[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610-617.]). Our inter­est in this system was prompted by the possibility that catenated systems of iso­thia­zolone heterocycles may have useful electronic properties as the number of π systems is increased.

[Scheme 1]

2. Structural commentary

There are two independent mol­ecules in the asymmetric unit of (I)[link] (Fig. 1[link]). In general, the two mol­ecules are not significantly different with the exception of the C—S bonds in the oxa­thia­zolone rings. In one of the mol­ecules, the C1—S1 distance [1.762 (2) Å] is longer than the same bond in the second mol­ecule, C12—S3 [1.746 (2) Å]. The difference may arise from the nature of the inter­molecular contacts to the sulfur atoms, with a strong pair of co-planar S⋯N contacts [3.086 (2) Å] in the first mol­ecule but only one S⋯N contact [3.072 (2) Å] in the second mol­ecule (which is also twisted out of the plane of the mol­ecule). These differences are due to the position of the independent mol­ecules in the tetra­mer that will be described below. For the purposes of further structural analysis, we will restrict our discussion to the first mol­ecule in the asymmetric unit. The asymmetric unit of (II)[link] is shown in Fig. 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing 50% probability displacement ellipsoids.

The bond distances and angles within the terminal phenyl rings in compounds (I)[link] and (II)[link] are not significantly different from the those reported for related compounds (Schriver & Zaworotko, 1995[Schriver, M. J. & Zaworotko, M. J. (1995). J. Chem. Crystallogr. 25, 25-28.]; Krayushkin et al., 2010a[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. C. 46, 484-489.],b[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610-617.]). The sum of the endocyclic bond angles in the iso­thia­zole moieties for both (I)[link] and (II)[link] (540.0°) is consistent with planar (ideal sum = 540°) π-delocalized five-membered rings, as expected. The bond lengths of the endocyclic bonds in the iso­thia­zolyl moieties in (I)[link] and (II)[link] are not significantly (δ > 3σ) different from the statistical averages from previous structural studies (Bridson et al., 1994[Bridson, J. N., Copp, S. B., Schriver, M. J., Zhu, S. & Zaworotko, M. J. (1994). Can. J. Chem. 72, 1143-1153.], 1995[Bridson, J. N., Schriver, M. J. & Zhu, S. (1995). Can. J. Chem. 73, 212-222.]). While the C=N bonds in the iso­thia­zolyl rings of (I)[link] [1.327 (3) Å] and (II)[link] [1.321 (2) Å] and the C=C bonds in (I)[link] [1.361 (3) Å] and (II)[link] [1.374 (2) Å] are mostly longer than the statistical averages for C=N [1.308 ± 0.016 Å] and C=C bonds [1.369 ± 0.002 Å], the differences are not sufficient to warrant an assessment of their cause or their effect on the structure.

The bond distances and angles within the oxa­thia­zolone rings in compounds (I)[link] and (II)[link] are not significantly different (δ ≥ 3σ) from the statistical averages for published crystal structures (Schriver & Zaworotko, 1995[Schriver, M. J. & Zaworotko, M. J. (1995). J. Chem. Crystallogr. 25, 25-28.]; Bridson et al. 1994[Bridson, J. N., Copp, S. B., Schriver, M. J., Zhu, S. & Zaworotko, M. J. (1994). Can. J. Chem. 72, 1143-1153.], 1995[Bridson, J. N., Schriver, M. J. & Zhu, S. (1995). Can. J. Chem. 73, 212-222.]; Vorontsova et al., 1996[Vorontsova, L. G., Kurella, M. G., Kalik, M. A. & Krayushkin, M. M. (1996). Crystallogr. Rep. 41, 362-364.]; McMillan et al., 2006[McMillan, K. G., Tackett, M. N., Dawson, A., Fordyce, E. & Paton, R. M. (2006). Carbohydr. Res. 341, 41-48.]; Krayushkin et al., 2010a[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. C. 46, 484-489.],b[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610-617.]; Nason et al., 2017[Nason, T. R., Schriver, M. J., Hendsbee, A. D. & Masuda, J. D. (2017). Acta Cryst. E73, 1298-1301.]). The sum of the endocyclic bond angles in the oxa­thia­zolone rings for both (I)[link] and (II)[link] (540.0°) is consistent with planar rings (ideal sum = 540°). The S—N bonds in the oxa­thia­zolone rings of (I)[link] [1.685 (2) Å] and (II)[link] [1.682 (1) Å], the Csub—O bonds in (I)[link] [1.364 (2) Å] and (II)[link] [1.375 (1) Å] and the inter-ring Csp2—Csp2 bonds in (I)[link] [1.449 (3) Å] and (II)[link] [1.451 (2) Å] are all consistently shorter than the statistical averages for S—N [1.696 ± 0.022 Å], Csub—O [1.392 ± 0.030 Å] and C=C bonds [1.461 ± 0.025 Å]. These differences, however, are not sufficient to warrant an assessment of their cause or their effect on the structure.

The three rings in the mol­ecules of (I)[link] are nearly co-planar, with the dihedral angles between central iso­thia­zolyl ring and the pendant oxa­thia­zolone and phenyl rings being 3.06 (11) and 1.10 (12)°, respectively, for the S1 mol­ecule and 2.62 (9) and 6.84 (10)°, respectively, for the S3 mol­ecule. Overall r.m.s. deviations for the S1 and S3 mol­ecules are 0.032 and 0.063 Å, respectively. In contrast to the near planarity of both asymmetric mol­ecules of (I)[link], the single mol­ecule of (II)[link] features significant twists between the central iso­thia­zolyl ring and the pendant oxa­thia­zolone and phenyl rings [dihedral angles of 13.27 (6) and 61.18 (7)°, respectively], which may be ascribed to steric crowding. It has been argued, based on spectroscopic and structural evidence, that π-delocalization extends between the rings of oxa­thia­zolone heterocycles attached to aromatic rings, resulting in observable differences (Schriver & Zaworotko, 1995[Schriver, M. J. & Zaworotko, M. J. (1995). J. Chem. Crystallogr. 25, 25-28.]; Krayushkin et al., 2010a[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. C. 46, 484-489.],b[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610-617.]; Markgraf et al., 2007[Markgraf, J. H., Hong, L., Richardson, D. P. & Schofield, M. H. (2007). Magn. Reson. Chem. 45, 985-988.]). In this work it can be seen that nearly identical mol­ecules result, even when torsion angles are present that would effectively disrupt any π conjugation between the rings, suggesting that the presence or absence of inter-ring π delocalization does not have a significant effect on the structure of the mol­ecules.

3. Supra­molecular features

In all previous reports on the solid-state structures of compounds containing the oxa­thia­zolone heterocycle, the inter­molecular inter­actions have been ignored or described as insignificant, with the exception of the recent observation of π-stacking in the styryl derivative (Nason et al., 2017[Nason, T. R., Schriver, M. J., Hendsbee, A. D. & Masuda, J. D. (2017). Acta Cryst. E73, 1298-1301.]). The strongest inter­molecular contacts in (I)[link] are S3⋯N3 [3.086 (2) Å], S1⋯N4 [3.072 (2) Å] and S4⋯O1 [3.089 (1) Å] (Fig. 3[link]). The S3⋯N3 contacts assist in the formation of a co-planar pair of identical mol­ecules within the asymmetric unit. The other mol­ecules in the asymmetric unit are connected via the S1⋯N4 [3.072 (2) Å] and S4⋯O1 [3.089 (1) Å] contacts. Taken together, the contacts between two pairs of identical mol­ecules in the asymmetric unit form a centrosymmetric tetra­mer that in turn form π-stacks parallel to the a axis. The inter­molecular contacts between sulfur and nitro­gen and oxygen have been observed in another oxa­thia­zolone ring that also resulted in π-stacking of the planar mol­ecules (Nason et al., 2017[Nason, T. R., Schriver, M. J., Hendsbee, A. D. & Masuda, J. D. (2017). Acta Cryst. E73, 1298-1301.]).

[Figure 3]
Figure 3
A packing diagram of (I)[link] showing ππ stacking parallel to the a-axis direction (top). Co-planar paired head-to-head mol­ecules [green lines, S⋯N distance of 3.086 (2) Å] and paired mol­ecules separated by out-of-plane contacts [blue lines, S⋯N distance of 3.072 (2) Å], violet lines S⋯O distance of 3.089 (1) Å].

The strongest inter­molecular contacts in (II)[link] are S2⋯O2 [3.020 (1) Å], S1⋯C10 [3.299 (2) Å] and C4⋯O2 [3.100 (2) Å] (Fig. 4[link]). The C4⋯O2 contact, while significantly shorter than the sum of van der Waals radii for the atoms, is to some extent, the result of the adjacent stronger S2⋯O2 contact. The geometry of the mol­ecule (II)[link] reduces the opportunity for the formation of π-stacks but it is observed that the centroid of the terminal phenyl ring is 3.632 (2) Å above and parallel to the nearly planar portion of an adjacent mol­ecule formed by the two heterocyclic rings (Fig. 4[link]).

[Figure 4]
Figure 4
A packing diagram of (II)[link] within the unit cell showing mol­ecular pairs linked by S⋯O contacts of 3.020 (1) Å.

3.1. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that eleven crystal structures of oxa­thia­zolone derivatives in peer-reviewed journals have been reported previously (Bridson et al., 1994[Bridson, J. N., Copp, S. B., Schriver, M. J., Zhu, S. & Zaworotko, M. J. (1994). Can. J. Chem. 72, 1143-1153.], 1995[Bridson, J. N., Schriver, M. J. & Zhu, S. (1995). Can. J. Chem. 73, 212-222.]; Schriver & Zaworotko, 1995[Schriver, M. J. & Zaworotko, M. J. (1995). J. Chem. Crystallogr. 25, 25-28.]; Vorontsova et al., 1996[Vorontsova, L. G., Kurella, M. G., Kalik, M. A. & Krayushkin, M. M. (1996). Crystallogr. Rep. 41, 362-364.]; McMillan et al., 2006[McMillan, K. G., Tackett, M. N., Dawson, A., Fordyce, E. & Paton, R. M. (2006). Carbohydr. Res. 341, 41-48.]; Krayushkin et al., 2010a[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. C. 46, 484-489.],b[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610-617.]; Nason et al., 2017[Nason, T. R., Schriver, M. J., Hendsbee, A. D. & Masuda, J. D. (2017). Acta Cryst. E73, 1298-1301.]), which have been partially reviewed (McMillan et al., 2006[McMillan, K. G., Tackett, M. N., Dawson, A., Fordyce, E. & Paton, R. M. (2006). Carbohydr. Res. 341, 41-48.] and Krayushkin et al., 2010a[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. C. 46, 484-489.],b[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610-617.]). An additional five X-ray oxa­thia­zolone crystal structures have been reported in theses (Demas, 1982[Demas, A. (1982). PhD thesis, University Edinburgh, Edinburgh.]; Zhu, 1997[Zhu, S. (1997). PhD thesis, Memorial University of Newfoundland, St. John's, Canada.]). There are also two published gas-phase electron-diffraction structures of oxa­thia­zolone derivatives (Bak et al., 1978[Bak, B., Nielsen, O., Svanholt, H., Almenningen, A., Bastiansen, O., Fernholt, L., Gundersen, G., Nielsen, C. J., Cyvin, B. N. & Cyvin, S. J. (1978). Acta Chem. Scand. 32a, 1005-1016.], 1982[Bak, B., Nielsen, O., Svanholt, H., Almenningen, A., Bastiansen, O., Braathen, G., Fernholt, L., Gundersen, G., Nielsen, C. J., Cyvin, B. N. & Cyvin, S. J. (1982). Acta Chem. Scand. 36a, 283-295.]). The structures fall into two groups: those that feature a Csp2—Csp3 bond between the heterocycle and the saturated organic substituent and those that feature a Csp2—Csp2 bond between the heterocycle and the unsaturated organic substituent (either a phenyl group, heterocyclic ring or alkenyl moiety).

4. Synthesis and crystallization

Compound (I) was prepared following a local variation of literature methods (Howe et al., 1978[Howe, R. K., Gruner, T. A., Carter, L. G., Black, L. L. & Franz, J. E. (1978). J. Org. Chem. 43, 3736-3742.]). 3-Phenyl­iso­thia­zole-4-carbonamide (Zhu, 1997[Zhu, S. (1997). PhD thesis, Memorial University of Newfoundland, St. John's, Canada.]) (2.90 g, 14.2 mmol) was placed in 50 ml of toluene under nitro­gen and chloro­carbonyl sulfenyl chloride (4.20 g, 32.0 mmol, approximately 2 × molar excess) was added dropwise to the stirred solution. The resulting mixture was heated (363–373 K) under nitro­gen for 1.5 h and allowed to evaporate to a solid residue. The evaporate was recrystallized from toluene solution to give colourless needle-shaped crystals (Fig. 5[link]) (3.20 g, 12.2 mmol, 86%). Elemental analysis: calculated % (Found %): 50.35 (50.2); H 2.3 (2.4); N 10.7 (10.7). IR (KBr): 3100 (w), 1812 (w), 1749 (s), 1735 (s), 1598 (s), 1182 (m), 1088 (m), 1014 (w), 959 (s), 884 (ms). 834 (ms), 765 (s), 734 (s), 692 (ms). 1H NMR (400 MHz, CDCl3, δ p.p.m.): 9.28 (5, 1H), 7.61 (m, 2H), 7.46 (m, 3H). 13C NMR (100 MHz, CDCl3, δ p.p.m.): 172.7,167.0, 154.1, 152.1, 134.0, 129.6, 129.0, 128.2, 123.3. MS (EI): C11H6N2O2S2 requires (M+), 262.301, found m/e (%, assign.): 262 (22, M+), 218 (2, M--CO2), 188 (78, M–CONS), 186 (100, C6H5[CCCNS)CN), 160 (1 3, M–COCONS), 135 (26, C6H5CNS), 103 (13, C6H5CN), 77 (29, C6H5). UV–visible spectroscopy (hexa­ne) λxax (log ) : 275–230 nm (4.11), 197 nm (4.72).

[Figure 5]
Figure 5
A photograph of crystals of (I)[link] (5 × 5 mm background grid).

Compound (II) prepared following a local variation of literature methods (Howe et al., 1978[Howe, R. K., Gruner, T. A., Carter, L. G., Black, L. L. & Franz, J. E. (1978). J. Org. Chem. 43, 3736-3742.]). 3-Phenyl­iso­thia­zole-5-carbonamide (Zhu, 1997[Zhu, S. (1997). PhD thesis, Memorial University of Newfoundland, St. John's, Canada.]) (4.08 g, 20.0 mmol) was placed in 50 ml of toluene under nitro­gen and chloro­carbonyl sulfenyl chloride (6.50 g, 50.0 mmol, approximately 2.5 × molar excess) was added dropwise to the stirred solution. The resulting mixture was heated (363–373 K) under nitro­gen for 8.5 h and allowed to evaporate to a solid residue (6.093 g). The evaporate was recrystallized from toluene solution to give colourless block-shaped crystals (Fig. 6[link]) (4.20 g, 20.6 mmol, 83%), Elemental analysis: calculated % (found%) 50.35 (50.0); H 2.3 (2.35); N 10.7 (10.5). IR (KBr): 3097 (w), 3066 (w), 3032 (w), 1813 (ms), 1759 (s), 1738 (s), 1600 (ms), 1590 (ms), 1517 (s), 1496 (s), 1055 (ms), 973 (s), 902 (s), 776 (s), 695 (s) cm−1. 1H NMR (400 MHz, CDCl3, δ p.p.m.): 7.425–7.487 (m, 3H), 7.906–7.937 (m, 2H), 7.976 (5, 1H). 13C NMR (100MHz, CDCl3, δ p.p.m.): 171.5, 167.9, 150.7, 150.5, 133.4, 129.9, 128.9, 126.8, 122.5. MS (EI): C11H6N2O2S2 requires (M+), 262.301, found m/e (%, assign.): 262 (52, M+), 218 (3, M-CO2), 188 (100, M–CONS), 160 (9, M–COCONS), 135 (2, M–HC–C­COCONS). UV–visible spectroscopy (hexa­ne) λxax (log ) : 283 nm (4.25), 248 nm (4.36), 203 nm (94.49).

[Figure 6]
Figure 6
A photograph of crystals of (II)[link] (5 × 5 mm background grid).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

  (I) (II)
Crystal data
Chemical formula C11H6N2O2S2 C11H6N2O2S2
Mr 262.30 262.30
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 7.2739 (7), 11.2713 (11), 14.6909 (15) 9.7202 (6), 9.9723 (6), 11.2165 (7)
α, β, γ (°) 87.562 (1), 78.341 (1), 71.624 (1) 90, 90.399 (1), 90
V3) 1119.16 (19) 1087.22 (12)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.46 0.48
Crystal size (mm) 0.49 × 0.25 × 0.14 0.48 × 0.43 × 0.37
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.804, 0.936 0.719, 0.837
No. of measured, independent and observed [I > 2σ(I)] reflections 7476, 3862, 3485 8041, 2362, 2228
Rint 0.015 0.017
(sin θ/λ)max−1) 0.595 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.106, 1.04 0.030, 0.083, 1.02
No. of reflections 3862 2362
No. of parameters 308 155
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.23 0.37, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

5-(3-Phenylisothiazol-5-yl)-1,3,4-oxathiazol-2-one (I) top
Crystal data top
C11H6N2O2S2Z = 4
Mr = 262.30F(000) = 536
Triclinic, P1Dx = 1.557 Mg m3
a = 7.2739 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2713 (11) ÅCell parameters from 5699 reflections
c = 14.6909 (15) Åθ = 2.4–28.6°
α = 87.562 (1)°µ = 0.46 mm1
β = 78.341 (1)°T = 296 K
γ = 71.624 (1)°Needle, colourless
V = 1119.16 (19) Å30.49 × 0.25 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
3485 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 58
Tmin = 0.804, Tmax = 0.936k = 1313
7476 measured reflectionsl = 1717
3862 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.2729P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.33 e Å3
3862 reflectionsΔρmin = 0.23 e Å3
308 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.031 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85294 (8)0.03895 (4)0.15683 (4)0.05223 (17)
O10.8238 (2)0.18576 (13)0.30252 (9)0.0593 (4)
N10.8263 (3)0.12000 (15)0.05875 (12)0.0510 (4)
C10.8229 (3)0.17293 (17)0.22295 (13)0.0446 (4)
S20.77918 (10)0.29901 (5)0.10629 (4)0.05823 (18)
O20.7971 (2)0.27252 (11)0.16249 (8)0.0443 (3)
N20.7537 (3)0.44255 (17)0.14107 (11)0.0541 (4)
C20.8016 (3)0.23440 (17)0.07498 (12)0.0415 (4)
S30.59888 (8)0.83750 (5)0.55508 (4)0.05152 (17)
O30.6679 (3)0.59670 (16)0.59752 (14)0.0797 (5)
N30.4193 (2)0.89051 (14)0.49359 (11)0.0454 (4)
C30.7806 (3)0.33109 (18)0.00604 (12)0.0415 (4)
S40.09624 (8)0.94818 (4)0.37616 (4)0.05119 (17)
O40.4345 (2)0.68529 (12)0.51338 (9)0.0472 (3)
N40.0487 (3)0.89146 (15)0.33086 (11)0.0479 (4)
C40.7628 (3)0.45417 (17)0.01441 (12)0.0419 (4)
H4B0.76070.49310.06930.050*
C50.7479 (3)0.51552 (18)0.07130 (12)0.0410 (4)
C60.7266 (3)0.64887 (18)0.08776 (13)0.0425 (4)
C70.7228 (3)0.72818 (19)0.01704 (14)0.0503 (5)
H7A0.73480.69690.04180.060*
C80.7015 (3)0.8528 (2)0.03326 (18)0.0604 (6)
H8A0.69800.90500.01490.073*
C90.6854 (3)0.9007 (2)0.12035 (19)0.0652 (6)
H9A0.67190.98470.13120.078*
C100.6895 (4)0.8231 (2)0.19106 (17)0.0658 (6)
H10A0.67840.85510.24980.079*
C110.7101 (3)0.6982 (2)0.17573 (15)0.0553 (5)
H11A0.71290.64670.22420.066*
C120.5796 (3)0.68671 (19)0.56116 (15)0.0526 (5)
C130.3557 (3)0.80060 (16)0.47969 (12)0.0396 (4)
C140.2024 (3)0.81178 (16)0.42756 (12)0.0399 (4)
C150.1224 (3)0.72317 (17)0.40912 (12)0.0411 (4)
H15A0.15760.64150.42990.049*
C160.0219 (3)0.77277 (16)0.35387 (12)0.0400 (4)
C170.1434 (3)0.70474 (18)0.32326 (12)0.0430 (4)
C180.2967 (3)0.7675 (2)0.27896 (14)0.0523 (5)
H18A0.32290.85250.26810.063*
C190.4109 (3)0.7038 (2)0.25083 (15)0.0595 (6)
H19A0.51270.74620.22070.071*
C200.3750 (3)0.5778 (2)0.26715 (16)0.0622 (6)
H20A0.45280.53550.24850.075*
C210.2239 (4)0.5153 (2)0.31101 (18)0.0665 (6)
H21A0.19880.43030.32190.080*
C220.1083 (3)0.5782 (2)0.33915 (16)0.0551 (5)
H22A0.00630.53510.36900.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0666 (4)0.0408 (3)0.0557 (3)0.0208 (2)0.0206 (2)0.0026 (2)
O10.0852 (11)0.0496 (8)0.0412 (8)0.0173 (7)0.0144 (7)0.0018 (6)
N10.0606 (11)0.0476 (9)0.0501 (9)0.0188 (8)0.0199 (8)0.0004 (7)
C10.0459 (10)0.0403 (9)0.0471 (11)0.0130 (8)0.0093 (8)0.0029 (8)
S20.0818 (4)0.0563 (3)0.0435 (3)0.0271 (3)0.0187 (3)0.0022 (2)
O20.0543 (8)0.0386 (7)0.0404 (7)0.0131 (6)0.0127 (6)0.0008 (5)
N20.0673 (11)0.0586 (10)0.0407 (9)0.0234 (9)0.0148 (8)0.0033 (7)
C20.0387 (9)0.0452 (10)0.0420 (9)0.0133 (8)0.0108 (7)0.0007 (7)
S30.0545 (3)0.0546 (3)0.0554 (3)0.0224 (2)0.0255 (2)0.0045 (2)
O30.0906 (13)0.0567 (10)0.1022 (14)0.0145 (9)0.0602 (11)0.0188 (9)
N30.0500 (9)0.0432 (8)0.0505 (9)0.0191 (7)0.0202 (7)0.0050 (7)
C30.0358 (9)0.0496 (10)0.0399 (9)0.0125 (8)0.0105 (7)0.0008 (7)
S40.0666 (3)0.0398 (3)0.0594 (3)0.0221 (2)0.0330 (3)0.0094 (2)
O40.0534 (8)0.0396 (7)0.0538 (8)0.0150 (6)0.0225 (6)0.0052 (6)
N40.0575 (10)0.0443 (9)0.0500 (9)0.0191 (7)0.0244 (7)0.0048 (7)
C40.0408 (10)0.0469 (10)0.0387 (9)0.0130 (8)0.0099 (7)0.0016 (7)
C50.0322 (9)0.0530 (10)0.0381 (9)0.0136 (7)0.0070 (7)0.0002 (8)
C60.0329 (9)0.0512 (10)0.0434 (9)0.0129 (7)0.0084 (7)0.0039 (8)
C70.0424 (10)0.0569 (12)0.0515 (11)0.0151 (9)0.0098 (8)0.0013 (9)
C80.0518 (12)0.0536 (12)0.0756 (15)0.0155 (10)0.0120 (11)0.0060 (10)
C90.0525 (13)0.0535 (12)0.0885 (17)0.0163 (10)0.0142 (11)0.0128 (12)
C100.0649 (15)0.0684 (14)0.0657 (14)0.0224 (11)0.0186 (11)0.0252 (12)
C110.0554 (12)0.0638 (13)0.0487 (11)0.0201 (10)0.0139 (9)0.0073 (9)
C120.0551 (12)0.0499 (11)0.0563 (12)0.0133 (9)0.0248 (9)0.0056 (9)
C130.0423 (10)0.0378 (9)0.0394 (9)0.0129 (7)0.0094 (7)0.0012 (7)
C140.0419 (10)0.0391 (9)0.0399 (9)0.0125 (7)0.0115 (7)0.0016 (7)
C150.0418 (10)0.0377 (9)0.0456 (10)0.0134 (7)0.0119 (8)0.0033 (7)
C160.0411 (10)0.0416 (9)0.0380 (9)0.0139 (7)0.0081 (7)0.0002 (7)
C170.0419 (10)0.0496 (10)0.0391 (9)0.0179 (8)0.0046 (7)0.0051 (7)
C180.0532 (12)0.0622 (12)0.0491 (11)0.0252 (10)0.0164 (9)0.0030 (9)
C190.0531 (12)0.0857 (16)0.0502 (11)0.0313 (11)0.0171 (9)0.0032 (11)
C200.0600 (14)0.0822 (16)0.0566 (12)0.0385 (12)0.0090 (10)0.0175 (11)
C210.0719 (16)0.0575 (13)0.0790 (16)0.0310 (11)0.0153 (12)0.0107 (11)
C220.0540 (12)0.0494 (11)0.0671 (13)0.0195 (9)0.0170 (10)0.0051 (9)
Geometric parameters (Å, º) top
S1—N11.6845 (17)C7—C81.380 (3)
S1—C11.7616 (19)C7—H7A0.9300
O1—C11.185 (2)C8—C91.380 (3)
N1—C21.271 (2)C8—H8A0.9300
C1—O21.391 (2)C9—C101.376 (4)
S2—N21.6406 (18)C9—H9A0.9300
S2—C31.7071 (18)C10—C111.382 (3)
O2—C21.364 (2)C10—H10A0.9300
N2—C51.327 (2)C11—H11A0.9300
C2—C31.449 (3)C13—C141.447 (3)
S3—N31.6790 (16)C14—C151.365 (3)
S3—C121.746 (2)C15—C161.417 (3)
O3—C121.187 (3)C15—H15A0.9300
N3—C131.278 (2)C16—C171.479 (3)
C3—C41.361 (3)C17—C221.386 (3)
S4—N41.6457 (17)C17—C181.387 (3)
S4—C141.7084 (18)C18—C191.384 (3)
O4—C131.361 (2)C18—H18A0.9300
O4—C121.385 (2)C19—C201.380 (4)
N4—C161.329 (2)C19—H19A0.9300
C4—C51.417 (3)C20—C211.371 (4)
C4—H4B0.9300C20—H20A0.9300
C5—C61.476 (3)C21—C221.386 (3)
C6—C71.390 (3)C21—H21A0.9300
C6—C111.398 (3)C22—H22A0.9300
N1—S1—C193.13 (8)C9—C10—H10A119.6
C2—N1—S1109.43 (14)C11—C10—H10A119.6
O1—C1—O2122.21 (17)C10—C11—C6120.3 (2)
O1—C1—S1131.23 (16)C10—C11—H11A119.9
O2—C1—S1106.56 (13)C6—C11—H11A119.9
N2—S2—C394.78 (9)O3—C12—O4122.3 (2)
C2—O2—C1111.28 (14)O3—C12—S3130.15 (18)
C5—N2—S2110.54 (13)O4—C12—S3107.58 (13)
N1—C2—O2119.58 (17)N3—C13—O4120.27 (17)
N1—C2—C3124.86 (17)N3—C13—C14123.90 (17)
O2—C2—C3115.55 (16)O4—C13—C14115.82 (16)
N3—S3—C1293.31 (9)C15—C14—C13128.92 (17)
C13—N3—S3108.63 (13)C15—C14—S4109.41 (14)
C4—C3—C2129.89 (17)C13—C14—S4121.66 (14)
C4—C3—S2108.82 (14)C14—C15—C16110.62 (16)
C2—C3—S2121.28 (14)C14—C15—H15A124.7
N4—S4—C1494.50 (9)C16—C15—H15A124.7
C13—O4—C12110.20 (15)N4—C16—C15115.12 (16)
C16—N4—S4110.35 (13)N4—C16—C17119.36 (16)
C3—C4—C5111.36 (16)C15—C16—C17125.51 (16)
C3—C4—H4B124.3C22—C17—C18118.80 (18)
C5—C4—H4B124.3C22—C17—C16120.93 (18)
N2—C5—C4114.50 (17)C18—C17—C16120.26 (17)
N2—C5—C6119.40 (16)C19—C18—C17120.2 (2)
C4—C5—C6126.10 (16)C19—C18—H18A119.9
C7—C6—C11118.40 (19)C17—C18—H18A119.9
C7—C6—C5121.30 (17)C20—C19—C18120.6 (2)
C11—C6—C5120.29 (18)C20—C19—H19A119.7
C8—C7—C6120.7 (2)C18—C19—H19A119.7
C8—C7—H7A119.7C21—C20—C19119.5 (2)
C6—C7—H7A119.7C21—C20—H20A120.2
C7—C8—C9120.5 (2)C19—C20—H20A120.2
C7—C8—H8A119.7C20—C21—C22120.3 (2)
C9—C8—H8A119.7C20—C21—H21A119.8
C10—C9—C8119.4 (2)C22—C21—H21A119.8
C10—C9—H9A120.3C17—C22—C21120.6 (2)
C8—C9—H9A120.3C17—C22—H22A119.7
C9—C10—C11120.7 (2)C21—C22—H22A119.7
5-(3-Phenylisothiazol-4-yl)-1,3,4-oxathiazol-2-one (II) top
Crystal data top
C11H6N2O2S2F(000) = 536
Mr = 262.30Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7202 (6) ÅCell parameters from 6714 reflections
b = 9.9723 (6) Åθ = 2.7–28.3°
c = 11.2165 (7) ŵ = 0.48 mm1
β = 90.399 (1)°T = 296 K
V = 1087.22 (12) Å3Block, colorless
Z = 40.48 × 0.43 × 0.37 mm
Data collection top
Bruker APEXII CCD
diffractometer
2228 reflections with I > 2σ(I)
φ and ω scansRint = 0.017
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 27.0°, θmin = 2.9°
Tmin = 0.719, Tmax = 0.837h = 1212
8041 measured reflectionsk = 129
2362 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.4061P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.37 e Å3
2362 reflectionsΔρmin = 0.28 e Å3
155 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.018 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.45224 (4)0.17168 (4)0.50567 (3)0.04262 (13)
S10.88687 (4)0.63218 (4)0.59213 (4)0.04650 (14)
O10.65815 (9)0.53305 (10)0.65111 (8)0.0330 (2)
C10.74809 (14)0.63165 (15)0.69017 (12)0.0365 (3)
C30.62185 (13)0.35992 (13)0.50912 (11)0.0288 (3)
O20.72696 (12)0.69783 (14)0.77664 (11)0.0542 (3)
C20.70630 (13)0.47087 (13)0.55025 (10)0.0288 (3)
N20.55493 (14)0.18187 (13)0.38899 (11)0.0427 (3)
N10.82008 (12)0.51010 (13)0.50596 (10)0.0395 (3)
C40.51836 (13)0.30589 (14)0.57667 (12)0.0330 (3)
H40.48940.33840.65010.040*
C50.63936 (13)0.28477 (14)0.40146 (11)0.0325 (3)
C60.74116 (14)0.31005 (14)0.30578 (11)0.0337 (3)
C110.83741 (15)0.21201 (15)0.27851 (13)0.0386 (3)
H11A0.83840.13170.32060.046*
C70.73957 (18)0.42883 (17)0.24153 (14)0.0472 (4)
H7A0.67570.49510.25950.057*
C100.93225 (15)0.23383 (18)0.18830 (14)0.0465 (4)
H10A0.99760.16870.17100.056*
C90.92952 (19)0.3518 (2)0.12467 (15)0.0530 (4)
H9A0.99270.36620.06410.064*
C80.8330 (2)0.4488 (2)0.15076 (15)0.0560 (4)
H8A0.83070.52800.10700.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0448 (2)0.0372 (2)0.0460 (2)0.01130 (15)0.00795 (16)0.00051 (15)
S10.0414 (2)0.0518 (3)0.0465 (2)0.01591 (16)0.01521 (16)0.01786 (17)
O10.0314 (4)0.0366 (5)0.0311 (4)0.0004 (4)0.0070 (3)0.0061 (4)
C10.0343 (6)0.0385 (7)0.0368 (7)0.0007 (5)0.0045 (5)0.0079 (6)
C30.0290 (6)0.0297 (6)0.0277 (6)0.0022 (5)0.0018 (4)0.0015 (5)
O20.0487 (6)0.0632 (7)0.0508 (6)0.0034 (5)0.0123 (5)0.0286 (6)
C20.0309 (6)0.0307 (6)0.0248 (5)0.0034 (5)0.0032 (4)0.0011 (5)
N20.0485 (7)0.0387 (7)0.0409 (6)0.0091 (5)0.0072 (5)0.0070 (5)
N10.0380 (6)0.0447 (7)0.0359 (6)0.0089 (5)0.0103 (5)0.0122 (5)
C40.0341 (6)0.0325 (6)0.0325 (6)0.0005 (5)0.0038 (5)0.0025 (5)
C50.0345 (6)0.0321 (6)0.0310 (6)0.0003 (5)0.0017 (5)0.0014 (5)
C60.0359 (7)0.0375 (7)0.0277 (6)0.0039 (5)0.0018 (5)0.0069 (5)
C110.0390 (7)0.0394 (7)0.0375 (7)0.0018 (6)0.0013 (5)0.0091 (6)
C70.0556 (9)0.0439 (9)0.0422 (8)0.0062 (7)0.0132 (7)0.0012 (7)
C100.0381 (7)0.0568 (10)0.0448 (8)0.0001 (7)0.0056 (6)0.0179 (7)
C90.0525 (9)0.0679 (11)0.0389 (8)0.0095 (8)0.0164 (7)0.0097 (8)
C80.0709 (11)0.0543 (10)0.0432 (8)0.0021 (8)0.0166 (8)0.0065 (7)
Geometric parameters (Å, º) top
S2—N21.6546 (13)C5—C61.4864 (18)
S2—C41.6827 (14)C6—C71.386 (2)
S1—N11.6820 (12)C6—C111.389 (2)
S1—C11.7463 (14)C11—C101.391 (2)
O1—C21.3750 (14)C11—H11A0.9300
O1—C11.3849 (17)C7—C81.383 (2)
C1—O21.1921 (17)C7—H7A0.9300
C3—C41.3737 (18)C10—C91.376 (3)
C3—C51.4324 (17)C10—H10A0.9300
C3—C21.4511 (18)C9—C81.380 (3)
C2—N11.2770 (17)C9—H9A0.9300
N2—C51.3208 (18)C8—H8A0.9300
C4—H40.9300
N2—S2—C495.45 (6)C3—C5—C6127.12 (12)
N1—S1—C193.61 (6)C7—C6—C11119.48 (13)
C2—O1—C1111.27 (10)C7—C6—C5121.01 (13)
O2—C1—O1122.58 (13)C11—C6—C5119.50 (13)
O2—C1—S1130.46 (12)C6—C11—C10120.07 (15)
O1—C1—S1106.96 (9)C6—C11—H11A120.0
C4—C3—C5110.58 (12)C10—C11—H11A120.0
C4—C3—C2122.58 (12)C8—C7—C6120.03 (15)
C5—C3—C2126.64 (11)C8—C7—H7A120.0
N1—C2—O1118.86 (12)C6—C7—H7A120.0
N1—C2—C3126.82 (12)C9—C10—C11120.04 (15)
O1—C2—C3114.23 (11)C9—C10—H10A120.0
C5—N2—S2109.98 (10)C11—C10—H10A120.0
C2—N1—S1109.27 (9)C10—C9—C8119.98 (15)
C3—C4—S2109.25 (10)C10—C9—H9A120.0
C3—C4—H4125.4C8—C9—H9A120.0
S2—C4—H4125.4C9—C8—C7120.40 (17)
N2—C5—C3114.74 (12)C9—C8—H8A119.8
N2—C5—C6118.14 (12)C7—C8—H8A119.8
 

Acknowledgements

SZ and MJS thank John Bridson and David Miller of the Chemistry Department of Memorial University for preliminary crystallographic work. MS would like to acknowledge the work of many student co-workers in the course Chemistry 2113 who worked on the oxa­thia­zolone synthesis and characterization project, and the support of Crandall University. MS would like to acknowledge the Stephen and Ella Steeves Research Fund for operating funds. JDM would like to acknowledge the Canadian Foundation for Innovation Leaders Opportunity fund (CFI–LFO) for upgrades to the diffractometer, the Natural Science and Engineering Council of Canada (NSERC) for operating funds and Saint Mary's University for support.

References

First citationBak, B., Nielsen, O., Svanholt, H., Almenningen, A., Bastiansen, O., Braathen, G., Fernholt, L., Gundersen, G., Nielsen, C. J., Cyvin, B. N. & Cyvin, S. J. (1982). Acta Chem. Scand. 36a, 283–295.  CrossRef
First citationBak, B., Nielsen, O., Svanholt, H., Almenningen, A., Bastiansen, O., Fernholt, L., Gundersen, G., Nielsen, C. J., Cyvin, B. N. & Cyvin, S. J. (1978). Acta Chem. Scand. 32a, 1005–1016.  CrossRef
First citationBridson, J. N., Copp, S. B., Schriver, M. J., Zhu, S. & Zaworotko, M. J. (1994). Can. J. Chem. 72, 1143–1153.  CSD CrossRef CAS Web of Science
First citationBridson, J. N., Schriver, M. J. & Zhu, S. (1995). Can. J. Chem. 73, 212–222.  CSD CrossRef CAS Web of Science
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCrosby, J. (1978). US Patent No. 4067862. Washington, DC: US Patent and Trademark Office.
First citationDemas, A. (1982). PhD thesis, University Edinburgh, Edinburgh.
First citationElgazwy, A. S. H. (2003). Tetrahedron, 59, 7445–7463.
First citationFan, H., Angelo, N. G., Warren, J. D., Nathan, C. F. & Lin, G. (2014). ACS Med. Chem. Lett. 5, 405–410.  CrossRef CAS PubMed
First citationFordyce, E. A., Morrison, A. J., Sharp, R. D. & Paton, R. M. (2010). Tetrahedron, 66, 7192–7197.  CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHölzl, W. & Schnyder, M. (2004). US Patent No. 6689372. Washington, DC: US Patent and Trademark Office.
First citationHowe, R. K., Gruner, T. A., Carter, L. G., Black, L. L. & Franz, J. E. (1978). J. Org. Chem. 43, 3736–3742.  CrossRef CAS
First citationKaberdin, R. V. & Potkin, V. I. (2002). Russ. Chem. Rev. 71, 673–694.  CrossRef CAS
First citationKlaus, S., Ludwig, E. & Richard, W. (1965). US Patent No. 3182068. Washington, DC: US Patent and Trademark Office.
First citationKrayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. C. 46, 484–489.  CrossRef CAS
First citationKrayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610–617.
First citationLin, G., Li, D., de Carvalho, L. P. S., Deng, H., Tao, H., Vogt, G., Wu, K., Schneider, J., Chidawanyika, T., Warren, J. D., Li, H. & Nathan, C. (2009). Nature, 461, 621–626.  Web of Science CrossRef PubMed CAS
First citationMarkgraf, J. H., Hong, L., Richardson, D. P. & Schofield, M. H. (2007). Magn. Reson. Chem. 45, 985–988.  Web of Science CrossRef PubMed CAS
First citationMcMillan, K. G., Tackett, M. N., Dawson, A., Fordyce, E. & Paton, R. M. (2006). Carbohydr. Res. 341, 41–48.  Web of Science CSD CrossRef PubMed CAS
First citationMuhlbauer, E. & Weiss, W. (1967). UK Patent 1079348.
First citationNason, T. R., Schriver, M. J., Hendsbee, A. D. & Masuda, J. D. (2017). Acta Cryst. E73, 1298–1301.  CSD CrossRef IUCr Journals
First citationPaton, R. M. (1989). Chem. Soc. Rev. 18, 33–52.  CrossRef CAS Web of Science
First citationRusso, F., Gising, J., Åkerbladh, L., Roos, A. K., Naworyta, A., Mowbray, S. L., Sokolowski, A., Henderson, I., Alling, T., Bailey, M. A., Files, M., Parish, T., Karlen, A. & Larhed, M. (2015). Chemistry Open, 4, 342–362.  CAS PubMed
First citationSchriver, M. J. & Zaworotko, M. J. (1995). J. Chem. Crystallogr. 25, 25–28.  CSD CrossRef CAS Web of Science
First citationSenning, A., Rasmussen, J. S., Olsen, J. H., Pajunen, P., Koskikallio, J. & Swahn, C. (1973). Acta Chem. Scand. 27, 2161–2170.  CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationVorontsova, L. G., Kurella, M. G., Kalik, M. A. & Krayushkin, M. M. (1996). Crystallogr. Rep. 41, 362–364.
First citationZhu, S. (1997). PhD thesis, Memorial University of Newfoundland, St. John's, Canada.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds