research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a CoII coordination polymer with a di­pyridyl ligand: catena-poly[[bis­­(nitrato-κ2O,O′)cobalt(II)]-μ-N-(pyridin-2-ylmeth­yl)pyridine-3-amine-κ3N,N′:N′′]

CROSSMARK_Color_square_no_text.svg

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 6 September 2017; accepted 12 October 2017; online 20 October 2017)

The asymmetric unit of the title compound, [Co(NO3)2L]n, L = N-(pyridine-2-ylmeth­yl)pyridine-3-amine (C11H11N3), contains one CoII centre, two nitrate anions and one L ligand in which the Cpy—C—N—Cpy moiety adopts a trans conformation with a torsion angle of −173.1 (3) Å. The coordination geometry of the CoII atom is a distorted penta­gonal bipyramid. One amine N atom from the L ligand and four O atoms from two η2-nitrato ligands form the basal plane and two pyridyl N atoms from two symmetry-related L ligands occupy the apical positions [N—Co—N = 171.86 (11)°]. The displacement of the central CoII atom from the basal plane (r.m.s. deviation = 0.085 Å) is 0.1491 (12) Å. Each bidentate nitrate group is bonded asymmetrically to the cobalt atom in an chelating fashion. The CoII ions are linked by the L ligands to form a zigzag chain propagating along the c-axis direction. Within the zigzag chain, C—H⋯O hydrogen bonds between the ligands and the nitrate anions are observed. Adjacent zigzag chains are connected via inter­molecular ππ stacking inter­actions [centroid-to-centroid distance = 3.844 (2) Å] between the pyridine rings together with N/C—H⋯O hydrogen bonds.

1. Chemical context

Over the past few decades, the continuous efforts have been devoted to the design and development of metal–organic frameworks (MOFs) obtained by linking transition metal centers with several organic bridging ligands. In particular, rigid or flexible dipyridyl-type ligands have been widely used to construct MOFs with attractive structures and potential applications in materials chemistry (Silva et al., 2015[Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774-6803.]; Furukawa et al., 2014[Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700-5734.]; Wang et al., 2012[Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084-1104.]; Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]). Our group has also tried to develop diverse dipyridyl-type MOFs with intriguing topologies including a cyclic dimer (Moon et al., 2011[Moon, S.-H., Kim, T. H. & Park, K.-M. (2011). Acta Cryst. E67, m1769-m1770.]), zigzag chain (Moon et al., 2016[Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513-1516.]), double helical chain (Lee et al., 2015[Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532-1535.]), helical looped-chain (Ju et al., 2014[Ju, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658-3660.]) and two-dimensional pseudo-polyrotaxane network (Im et al., 2017[Im, H., Lee, E., Moon, S.-H., Lee, S. S., Kim, T. H. & Park, K.-M. (2017). Bull. Korean Chem. Soc. 38, 127-129.]), and reported their crystal structures. As a part of our ongoing efforts to develop dipyridyl-type MOFs with different structural motifs, we prepared the title compound obtained by the reaction of cobalt(II) nitrate with a dipyridyl ligand, namely N-(pyridine-2-ylmeth­yl)pyridine-3-amine. Herein, we report its crystal structure, which is the first example of a CoII complex with an N-(pyridine-2-ylmeth­yl)pyridine-3-amine ligand.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound comprises one CoII atom, one L ligand and two nitrate anions, which coordinate the cobalt ion in a bidentate chelating fashion. The coordin­ation geometry of the CoII atom is distorted penta­gonal bipyramidal with the five basal sites being occupied by one amine N atom from the L ligand and four O atoms from two η2-nitrato ligands and the two apical positions occupied by two pyridyl N atoms from two symmetry-related L ligands [N1—Co1—N3i = 171.86 (11)°; symmetry code: (i) x, −y + [{1\over 2}], z − [{1\over 2}]] (Fig. 1[link]). The central CoII atom is displaced by 0.1491 (12) Å from the basal plane (r.m.s. deviation = 0.085 Å). The Co—N distances in apical positions [Co1—N1 = 2.120 (3), Co1—N3i = 2.125 (3) Å] are slightly shorter than that of the basal [Co1—N2 = 2.191 (3) Å]. The largest deviations from the NO4 basal plane around the cobalt center involve the angles O2—Co1—O3 [55.81 (11)°] and N2—Co1—O5 [84.19 (9)°]. This distortion may reflect the narrow bite angles of the bidentate nitrate ions.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom-numbering scheme [symmetry codes: (i) x, −y + [{1\over 2}], z − [{1\over 2}]; (ii) x, −y + [{1\over 2}], z + [{1\over 2}]]. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

The L ligand adopts a stretched trans conformation with the C5—C6—N2—C7 torsion angle being −173.1 (3) Å. The terminal pyridine rings of the L ligand are nearly perpendic­ular to each other, with the dihedral angle between their mean planes being 76.74 (12)°. Each bidentate nitrate group is bonded asymmetrically to the cobalt atom [Co1—O2 = 2.139 (3), Co1—O3 = 2.327 (3), Co1—O5 = 2.365 (2) and Co1—O6 = 2.167 (2) Å]. Each L ligand is bridged by the CoII ions, forming –(Co-L)n– zigzag chains propagating along the c-axis direction (Figs. 2[link] and 3[link]). The zigzag chain is reinforced by several C—H⋯O hydrogen bonds (Table 2[link]; green dashed lines in Fig. 2[link]) between the L ligands and the nitrate O atoms.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O5ii 0.96 2.11 2.987 (4) 151
C1—H1⋯O2iii 0.93 2.57 3.186 (5) 124
C6—H6A⋯O6iv 0.97 2.54 3.413 (4) 149
C8—H8⋯O3v 0.93 2.53 3.163 (4) 126
C9—H9⋯O5v 0.93 2.49 3.164 (4) 130
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) x, y, z+1; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The zigzag chain formed through C—H⋯O hydrogen bonds (green dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
The three-dimensional structure formed through inter­molecular ππ stacking inter­actions (black dashed lines) and N/C—H⋯O hydrogen bonds (green dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

3. Supra­molecular features

In the crystal of the title compound, adjacent zigzag chains are linked by inter­molecular ππ stacking inter­actions [black dashed lines in Fig. 3[link]; Cg1⋯Cg1ii = 3.844 (2) Å; Cg1 is the centroid of the N1/C1–C5 ring; symmetry code: (ii) −x, −y + 1, −z + 1] between the pyridine rings and C—H⋯O hydrogen bonds between pyridyl H atoms and nitrate O atoms (Table 1[link]; green dashed lines in Fig. 3[link]), forming layers extending parallel to the (100) plane. The layers are further connected by inter­molecular N—H⋯O hydrogen bonds (Table 2[link]; green dashed lines in Fig. 3[link]) between amine H atoms and nitrate O atoms.

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.120 (3) Co1—N2 2.191 (3)
Co1—N3i 2.125 (3) Co1—O3 2.327 (3)
Co1—O2 2.139 (3) Co1—O5 2.365 (2)
Co1—O6 2.167 (2)    
       
N1—Co1—N3i 171.86 (11) N3i—Co1—O3 92.35 (10)
N1—Co1—O2 90.67 (11) O2—Co1—O3 55.81 (11)
N3i—Co1—O2 97.46 (11) O6—Co1—O3 135.30 (10)
N1—Co1—O6 90.57 (10) N2—Co1—O3 84.11 (10)
N3i—Co1—O6 90.67 (10) N1—Co1—O5 81.99 (10)
O2—Co1—O6 79.58 (11) N3i—Co1—O5 92.07 (10)
N1—Co1—N2 77.43 (10) O2—Co1—O5 134.56 (10)
N3i—Co1—N2 96.52 (10) O6—Co1—O5 55.89 (9)
O2—Co1—N2 137.86 (11) N2—Co1—O5 84.19 (9)
O6—Co1—N2 139.71 (10) O3—Co1—O5 167.89 (10)
N1—Co1—O3 92.42 (10)    
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the compounds obtained by the reaction of transition metal ions and the L ligand gave 11 hits. Three (AQEGAG, AQEGEK, AQEGIO) are HgII complexes and seven (CEZPAA, DURFON, POFKUS, PONTUJ, VIPTOF, WIHWUH, WIHXOC) of them are AgI complexes. The remaining one is a ZnII complex (DUVPER). There are no metal complexes that are similar to the structure of the CoII complex described above. Therefore, the title compound is the first example of a CoII complex with an L ligand.

5. Synthesis and crystallization

The L ligand was synthesized according to a literature method (Lee et al., 2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]). X-ray-quality single crystals of the title compound were obtained by slow evaporation of an aceto­nitrile solution of the L ligand with Co(NO3)2·6H2O in the molar ratio 1:1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The amine H atom was located from a difference-Fourier map and refined with riding constraints [d(N—H) = 0.96 Å]. All other H atoms were positioned geometrically and refined as riding, with d(C—H) = 0.93 Å for Csp2—H and 0.97 Å for methyl­ene C—H. For all H atoms, Uiso(H) = 1.2Ueq of the parent atom.

Table 3
Experimental details

Crystal data
Chemical formula [Co(NO3)2(C11H11N3)]
Mr 368.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 10.4550 (13), 17.662 (2), 7.9653 (10)
β (°) 108.160 (3)
V3) 1397.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.27
Crystal size (mm) 0.32 × 0.27 × 0.23
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.644, 0.725
No. of measured, independent and observed [I > 2σ(I)] reflections 7841, 2737, 1695
Rint 0.070
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.087, 0.96
No. of reflections 2737
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

catena-Poly[[bis(nitrato-κ2O,O')cobalt(II)]-µ-N-(pyridin-2-ylmethyl)pyridine-3-amine-κ3N,N':N''] top
Crystal data top
[Co(NO3)2(C11H11N3)]F(000) = 748
Mr = 368.18Dx = 1.750 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.4550 (13) ÅCell parameters from 2739 reflections
b = 17.662 (2) Åθ = 2.1–26.0°
c = 7.9653 (10) ŵ = 1.27 mm1
β = 108.160 (3)°T = 298 K
V = 1397.6 (3) Å3Block, violet
Z = 40.32 × 0.27 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
1695 reflections with I > 2σ(I)
φ and ω scansRint = 0.070
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.0°, θmin = 2.4°
Tmin = 0.644, Tmax = 0.725h = 812
7841 measured reflectionsk = 2118
2737 independent reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0331P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2737 reflectionsΔρmax = 0.26 e Å3
208 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.27153 (4)0.39860 (2)0.26458 (6)0.03391 (16)
N10.1788 (3)0.48757 (15)0.3629 (3)0.0358 (7)
N20.3601 (3)0.38625 (14)0.5512 (3)0.0326 (7)
H2N0.43980.41640.57640.039*
N30.3901 (3)0.18597 (14)0.6941 (3)0.0343 (7)
C10.1212 (4)0.54840 (19)0.2707 (5)0.0431 (9)
H10.10170.54740.14860.052*
C20.0893 (4)0.6122 (2)0.3468 (5)0.0471 (10)
H20.05160.65410.27860.057*
C30.1144 (4)0.6125 (2)0.5272 (5)0.0471 (10)
H30.09400.65500.58290.056*
C40.1700 (3)0.5495 (2)0.6242 (5)0.0398 (9)
H40.18690.54880.74590.048*
C50.2005 (3)0.48701 (18)0.5379 (4)0.0330 (8)
C60.2606 (4)0.41626 (18)0.6310 (4)0.0383 (9)
H6A0.30420.42680.75520.046*
H6B0.19050.37900.62130.046*
C70.4171 (3)0.31400 (18)0.6103 (4)0.0303 (8)
C80.3417 (3)0.25586 (18)0.6498 (4)0.0345 (8)
H80.25330.26600.64530.041*
C90.5162 (4)0.1726 (2)0.6967 (5)0.0453 (9)
H90.55010.12380.72240.054*
C100.5989 (4)0.2273 (2)0.6632 (5)0.0489 (10)
H100.68700.21600.66890.059*
C110.5489 (4)0.2985 (2)0.6216 (5)0.0427 (9)
H110.60350.33660.60080.051*
N40.0418 (3)0.32781 (17)0.1539 (4)0.0423 (8)
O10.0745 (3)0.30287 (19)0.0943 (4)0.0832 (10)
O20.0852 (3)0.37335 (16)0.0660 (4)0.0661 (8)
O30.1166 (3)0.30993 (15)0.2978 (4)0.0628 (8)
N50.3877 (3)0.50903 (17)0.1413 (4)0.0412 (8)
O40.4248 (3)0.56412 (17)0.0738 (4)0.0752 (9)
O50.4407 (3)0.49125 (14)0.2962 (3)0.0500 (7)
O60.2877 (3)0.47059 (14)0.0518 (3)0.0517 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0436 (3)0.0265 (2)0.0319 (3)0.0006 (2)0.0121 (2)0.0005 (2)
N10.0423 (18)0.0294 (16)0.0357 (18)0.0051 (13)0.0120 (14)0.0007 (14)
N20.0346 (16)0.0276 (16)0.0370 (16)0.0011 (12)0.0132 (13)0.0031 (13)
N30.044 (2)0.0293 (16)0.0318 (17)0.0018 (13)0.0147 (14)0.0016 (13)
C10.052 (2)0.039 (2)0.040 (2)0.0139 (17)0.0157 (18)0.0057 (18)
C20.054 (2)0.033 (2)0.053 (3)0.0097 (17)0.015 (2)0.0066 (18)
C30.049 (2)0.037 (2)0.056 (3)0.0076 (17)0.019 (2)0.0097 (19)
C40.042 (2)0.042 (2)0.037 (2)0.0042 (16)0.0146 (18)0.0065 (17)
C50.034 (2)0.0311 (19)0.036 (2)0.0020 (14)0.0133 (16)0.0005 (16)
C60.047 (2)0.035 (2)0.035 (2)0.0059 (16)0.0164 (17)0.0011 (16)
C70.034 (2)0.0294 (19)0.0264 (18)0.0007 (15)0.0080 (15)0.0005 (15)
C80.034 (2)0.032 (2)0.040 (2)0.0017 (15)0.0142 (17)0.0049 (16)
C90.058 (3)0.031 (2)0.049 (2)0.0120 (18)0.020 (2)0.0066 (17)
C100.041 (2)0.043 (2)0.070 (3)0.0103 (18)0.028 (2)0.013 (2)
C110.044 (3)0.036 (2)0.053 (2)0.0016 (17)0.0217 (19)0.0038 (18)
N40.047 (2)0.0347 (19)0.047 (2)0.0007 (15)0.0167 (18)0.0056 (16)
O10.057 (2)0.088 (3)0.096 (3)0.0211 (18)0.0120 (18)0.014 (2)
O20.065 (2)0.067 (2)0.0587 (19)0.0084 (15)0.0074 (15)0.0029 (16)
O30.064 (2)0.061 (2)0.061 (2)0.0070 (15)0.0166 (17)0.0011 (16)
N50.057 (2)0.0290 (18)0.043 (2)0.0088 (15)0.0227 (17)0.0023 (15)
O40.102 (3)0.059 (2)0.066 (2)0.0244 (17)0.0285 (18)0.0130 (16)
O50.0670 (19)0.0443 (16)0.0382 (16)0.0091 (12)0.0155 (14)0.0042 (13)
O60.0631 (19)0.0502 (17)0.0423 (16)0.0101 (14)0.0173 (14)0.0049 (13)
Geometric parameters (Å, º) top
Co1—N12.120 (3)C3—H30.9300
Co1—N3i2.125 (3)C4—C51.389 (4)
Co1—O22.139 (3)C4—H40.9300
Co1—O62.167 (2)C5—C61.488 (4)
Co1—N22.191 (3)C6—H6A0.9700
Co1—O32.327 (3)C6—H6B0.9700
Co1—O52.365 (2)C7—C111.381 (4)
N1—C11.334 (4)C7—C81.389 (4)
N1—C51.341 (4)C8—H80.9300
N2—C71.425 (4)C9—C101.378 (5)
N2—C61.475 (4)C9—H90.9300
N2—H2N0.9565C10—C111.362 (5)
N3—C91.334 (4)C10—H100.9300
N3—C81.339 (4)C11—H110.9300
N3—Co1ii2.125 (3)N4—O31.211 (4)
C1—C21.368 (4)N4—O11.240 (4)
C1—H10.9300N4—O21.241 (4)
C2—C31.378 (5)N5—O51.226 (3)
C2—H20.9300N5—O41.232 (3)
C3—C41.376 (5)N5—O61.263 (4)
N1—Co1—N3i171.86 (11)C4—C3—H3120.2
N1—Co1—O290.67 (11)C2—C3—H3120.2
N3i—Co1—O297.46 (11)C3—C4—C5119.1 (3)
N1—Co1—O690.57 (10)C3—C4—H4120.4
N3i—Co1—O690.67 (10)C5—C4—H4120.4
O2—Co1—O679.58 (11)N1—C5—C4121.2 (3)
N1—Co1—N277.43 (10)N1—C5—C6115.6 (3)
N3i—Co1—N296.52 (10)C4—C5—C6123.2 (3)
O2—Co1—N2137.86 (11)N2—C6—C5109.4 (3)
O6—Co1—N2139.71 (10)N2—C6—H6A109.8
N1—Co1—O392.42 (10)C5—C6—H6A109.8
N3i—Co1—O392.35 (10)N2—C6—H6B109.8
O2—Co1—O355.81 (11)C5—C6—H6B109.8
O6—Co1—O3135.30 (10)H6A—C6—H6B108.2
N2—Co1—O384.11 (10)C11—C7—C8117.7 (3)
N1—Co1—O581.99 (10)C11—C7—N2120.4 (3)
N3i—Co1—O592.07 (10)C8—C7—N2121.9 (3)
O2—Co1—O5134.56 (10)N3—C8—C7123.1 (3)
O6—Co1—O555.89 (9)N3—C8—H8118.4
N2—Co1—O584.19 (9)C7—C8—H8118.4
O3—Co1—O5167.89 (10)N3—C9—C10123.3 (3)
C1—N1—C5118.6 (3)N3—C9—H9118.3
C1—N1—Co1125.0 (2)C10—C9—H9118.3
C5—N1—Co1115.4 (2)C11—C10—C9118.6 (3)
C7—N2—C6117.2 (2)C11—C10—H10120.7
C7—N2—Co1115.52 (19)C9—C10—H10120.7
C6—N2—Co1106.71 (19)C10—C11—C7119.9 (3)
C7—N2—H2N100.5C10—C11—H11120.0
C6—N2—H2N113.2C7—C11—H11120.0
Co1—N2—H2N102.7O3—N4—O1122.4 (3)
C9—N3—C8117.3 (3)O3—N4—O2117.5 (3)
C9—N3—Co1ii121.8 (2)O1—N4—O2120.1 (4)
C8—N3—Co1ii120.9 (2)N4—O2—Co197.3 (2)
N1—C1—C2123.4 (3)N4—O3—Co189.1 (2)
N1—C1—H1118.3O5—N5—O4122.4 (3)
C2—C1—H1118.3O5—N5—O6117.7 (3)
C1—C2—C3118.1 (3)O4—N5—O6119.7 (3)
C1—C2—H2120.9N5—O5—Co188.92 (19)
C3—C2—H2120.9N5—O6—Co197.3 (2)
C4—C3—C2119.5 (3)
C5—N1—C1—C23.5 (5)C9—N3—C8—C71.1 (5)
Co1—N1—C1—C2165.0 (3)Co1ii—N3—C8—C7177.1 (2)
N1—C1—C2—C32.0 (5)C11—C7—C8—N31.4 (5)
C1—C2—C3—C40.1 (5)N2—C7—C8—N3175.4 (3)
C2—C3—C4—C50.5 (5)C8—N3—C9—C102.6 (5)
C1—N1—C5—C43.0 (5)Co1ii—N3—C9—C10175.6 (3)
Co1—N1—C5—C4166.5 (2)N3—C9—C10—C111.5 (6)
C1—N1—C5—C6177.9 (3)C9—C10—C11—C71.3 (5)
Co1—N1—C5—C612.5 (4)C8—C7—C11—C102.6 (5)
C3—C4—C5—N11.1 (5)N2—C7—C11—C10174.2 (3)
C3—C4—C5—C6179.9 (3)O3—N4—O2—Co16.4 (3)
C7—N2—C6—C5173.1 (3)O1—N4—O2—Co1173.0 (3)
Co1—N2—C6—C541.8 (3)O1—N4—O3—Co1173.5 (3)
N1—C5—C6—N237.5 (4)O2—N4—O3—Co15.8 (3)
C4—C5—C6—N2141.5 (3)O4—N5—O5—Co1173.0 (3)
C6—N2—C7—C11145.9 (3)O6—N5—O5—Co14.0 (3)
Co1—N2—C7—C1187.0 (3)O5—N5—O6—Co14.4 (3)
C6—N2—C7—C837.4 (4)O4—N5—O6—Co1172.7 (3)
Co1—N2—C7—C889.8 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O5iii0.962.112.987 (4)151
C1—H1···O2iv0.932.573.186 (5)124
C6—H6A···O6v0.972.543.413 (4)149
C8—H8···O3ii0.932.533.163 (4)126
C9—H9···O5ii0.932.493.164 (4)130
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y, z+1.
 

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410 and NRF-2016R1D1A1B01012630).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFurukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700–5734.  Web of Science CrossRef CAS PubMed
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationIm, H., Lee, E., Moon, S.-H., Lee, S. S., Kim, T. H. & Park, K.-M. (2017). Bull. Korean Chem. Soc. 38, 127–129.  CSD CrossRef CAS
First citationJu, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658–3660.  Web of Science CSD CrossRef CAS
First citationLee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535.  Web of Science CrossRef CAS
First citationLee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480.  Web of Science CSD CrossRef CAS
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed
First citationMoon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513–1516.  Web of Science CSD CrossRef IUCr Journals
First citationMoon, S.-H., Kim, T. H. & Park, K.-M. (2011). Acta Cryst. E67, m1769–m1770.  CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSilva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774–6803.  Web of Science CrossRef CAS PubMed
First citationWang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104.  Web of Science CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds