research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Hy­dr­oxy­phenyl)-2,2,4-tri­methyl-7,8-benzo­thia­chroman, a fused-ring counterpart of thia-Dianin's compound

CROSSMARK_Color_square_no_text.svg

aWolfson Centre for Materials Processing, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, England, and bSchool of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: chris.frampton@brunel.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 October 2017; accepted 10 October 2017; online 20 October 2017)

The title compound, C22H22OS [systematic name: 4-(1,3,3-trimethyl-2,3-di­hydro-1H-4-thia­phenanthren-1-yl)phenol], crystallizes unsolvated from nitro­methane as colourless prisms (m.p. 425–427 K) in the polar monoclinic space group Ia with Z′ = 2 (mol­ecules A and B). Both independent mol­ecules possess a very similar proximal conformation, this referring to the juxtaposition of the 4-hy­droxy­phenyl substituent with respect to the syn-related methyl group. In the crystal, mol­ecule A is linked to mol­ecule B by an O—H⋯O hydrogen bond. In turn, mol­ecule B exhibits a weak O—H⋯π inter­action with the phenolic group of mol­ecule A related by a-glide symmetry. Together, these lead to [100] chains.

1. Chemical context

As part of a detailed study of clathrate formation by systems related to Dianin's compound (Frampton et al., 2013[Frampton, C. S., Ketuly, K. A., Hadi, A. H. A., Gall, J. H. & MacNicol, D. D. (2013). Chem. Commun. 49, 7198-7200.], 2017a[Frampton, C. S., Ketuly, K. K., Ali, H. B. M., Azizan, A. H. S., Gall, J. H. & MacNicol, D. D. (2017a). CrystEngComm, 19, 2653-2659.],b[Frampton, C. S., Gall, J. H. & MacNicol, D. D. (2017b). CrystEngComm, doi: 10.1039/C7CE01275F. In the press.]; MacNicol, 1984[MacNicol, D. D. (1984). Inclusion Compounds, Vol. 2, edited by J. L. Atwood, J. E. D. Davies & D. D. MacNicol, ch. 1, pp. 12-32. New York: Academic Press.]), we have investigated structural modifications of thia-Dianin's compound 2, the direct thia­chroman counterpart of Dianin's compound itself, 3. This led to inter­esting and diverse outcomes: (i) oxidation of 2 gave the colourless and beautifully crystalline sulfone 4, which crystallises in the polar space group Cc with Z′ = 1; (ii) crystals of 4 exhibit a significant second-harmonic generation (SHG) effect (Frampton et al., 1992[Frampton, C. S., MacNicol, D. D., Mallinson, P. R. & White, J. D. (1992). J. Crystallogr. Spectrosc. Res. 22, 551-555.]); (iii) introduction of a methyl group at position carbon-7 led to spontaneous resolution with a structure in P212121, Z′ = 1; and (iv) introduction of a methyl group at either the 6- or 8-position yielded new clathrate systems isomorphous with 2 and 3, space group R[\overline{3}] (Hardy et al., 1979[Hardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1072-1077.]). The latter clathrate networks are comprised of columns formed from infinite stacking of hexa­meric hydrogen-bonded [OH]6 units along the c-axial direction, with clathrate formation being dependent upon efficient packing with adjacent threefold screw-related columns. Compound 1 was prepared to establish the effect on the resulting crystal packing of substanti­ally extending the mol­ecular skeleton of 2; the introduction of the bulky benzo group was expected to cause serious disruption to the inter­column packing.

2. Structural commentary

The crystal structure of 1 is monoclinic, space group Ia, with two independent mol­ecules in the asymmetric unit (Z′ = 2). For clarity, each independent mol­ecule is labelled with the suffix A or B, respectively. Figs. 1[link] and 2[link] show displacement ellipsoid plots for the two independent mol­ecules. Both independent mol­ecules possess a very similar proximal conformation, this referring to the juxtaposition of the 4-hy­droxy­phenyl substituent with respect to the syn-related methyl group. The C2—C3—C4—C11 torsion angles for mol­ecules A and B are 79.5 (4) and 81.4 (4)°, respectively; the corresponding torsion angle for racemic Dianin's compound has magnitude 80.67° (Lee et al., 2014[Lee, J. J., Sobolev, A. N., Turner, M. J., Fuller, R. O., Iversen, B. B., Koutsantonis, G. A. & Spackman, M. A. (2014). Cryst. Growth Des. 14, 1296-1306.]). The expected torsion angle value for a distal conformation is ∼160°. The torsion angle S1—C2—C3—C4, defining the heterocyclic ring chirality, has values of 62.8 (3) and 63.3 (3)° for A and B, respectively. Fig. 3[link] shows an overlay (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) of mol­ecules A and B shown in blue and brown, respectively, with an r.m.s. displace­ment of 0.0789 Å. In addition to showing the proximal conformation of both mol­ecules, it can be seen that the two mol­ecules differ only in the directional orientation of the phenolic H atom. The dihedral angles between the naphthalene C5–C10/C20–C23 ring system and the C11–C16 phenol ring are 74.25 (9) and 70.57 (9)° for mol­ecules A and B, respectively. It is clear that the addition of the fused benzo ring to the thia-Dianin framework across positions C7 and C8 has caused significant disruption to the inter­column packing to prevent formation of the conventional R[\overline{3}] host lattice.

[Scheme 1]
[Figure 1]
Figure 1
View of mol­ecule A of the asymmetric unit with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View of mol­ecule B of the asymmetric unit with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
View of the overlay of mol­ecule A (blue) and mol­ecule B (brown).

3. Supra­molecular features

A view of the crystal packing down the c axis is shown in Fig. 4[link]. In the crystal the two independent mol­ecules in the asymmetric unit, A and B, are linked by an O—H⋯O hydrogen bond (Table 1[link]). Mol­ecule B exhibits a weak O—H⋯π inter­action, shortest length H1B⋯C16A = 2.54 (6) Å (this being some 0.35 Å less than the Pauling sum of the van der Waals radii of 2.88 Å), with the phenolic group of mol­ecule A related by a-glide symmetry. These two distinct hydrogen-bond inter­actions can be clearly detected in the IR spectrum of 1 with strong OH vibrational frequencies of 3409 and 3527 cm−1, respectively. The result is the formation of an infinite chain of mol­ecules alternately linked by O—H⋯O and O—H⋯π inter­actions that propagates along the a axis of the crystal (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11A–C16A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O1B 0.84 (6) 1.96 (6) 2.777 (4) 162 (6)
O1B—H1BCg1i 0.83 (6) 3.18 (6) 3.959 (4) 158 (6)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+1, z].
[Figure 4]
Figure 4
View of the crystal packing down the c axis. O—H⋯O and O—H⋯π hydrogen bonds are shown as red and blue dotted lines (see Table 1[link] and text).
[Figure 5]
Figure 5
View of the hydrogen-bonded chain that propagates along the a axis of the crystal. The O—H⋯O and O—H⋯π hydrogen bonds are shown as red and blue dotted lines and the view is down the c axis.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the thia-Dianin framework, 2, yielded 14 hits, all of which were genuine examples of analogues of the material under investigation. Although there are no entries for the empty racemic R[\overline{3}] host of thia-Dianin's compound, there are eight entries for the following host–guest clathrates: ethanol (CSD refcode HPTHCR; MacNicol et al., 1969[MacNicol, D. D., Mills, H. H. & Wilson, F. B. (1969). J. Chem. Soc. D, pp. 1332-1333.]), 2,5,5-tri­methyl­hex-3-yn-2-ol (TCHHXO; MacNicol & Wilson, 1971[MacNicol, D. D. & Wilson, F. B. (1971). J. Chem. Soc. D, pp. 786-787.]), cyclo­pentane and cyclo­octane (METCCP and MSOCYO10, repectively; Hardy et al., 1979[Hardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1072-1077.]), and propan-2-ol at four different temperatures demonstrating three commensurate phase changes in the host lattice (VANFOI, 371 K, VANFOI01, 295 K, VANFOI02, 200 K, and VANFUO, 90 K; Frampton et al., 2017).

Thia-Dianin's compound, 2, was also found in the 1:1 quasi-racemic R3 host with Dianin's compound, 3, in the following three entries: apohost (BIBNAD and BIBNAD01) and CCl4/H2O (HIDQAO) (Frampton et al., 2013[Frampton, C. S., Ketuly, K. A., Hadi, A. H. A., Gall, J. H. & MacNicol, D. D. (2013). Chem. Commun. 49, 7198-7200.]).

The structure and absolute stereochemistry determination of the resolved S-enantio­mer of thia-Dianin's compound was used in the formation of the quasi-racemates above (BIBNEH; Frampton et al., 2013[Frampton, C. S., Ketuly, K. A., Hadi, A. H. A., Gall, J. H. & MacNicol, D. D. (2013). Chem. Commun. 49, 7198-7200.]).

Two further examples demonstrating a slightly modified framework include the 7-methyl analogue (HPMTCM; Hardy et al., 1977[Hardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1145-1147.]) and the oxidized sulfone, 4 (KUTDUY; Frampton et al., 1992[Frampton, C. S., MacNicol, D. D., Mallinson, P. R. & White, J. D. (1992). J. Crystallogr. Spectrosc. Res. 22, 551-555.]).

5. Synthesis and crystallization

Compound 1 was produced, as described in the literature, by the action of gaseous hydrogen chloride on a mixture of phenol and 4-methyl-4-(1-naphthyl­sulfanyl)pentan-2-one (Hardy et al., 1979[Hardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1072-1077.]). Unsolvated colourless prisms suitable for X-ray diffraction were obtained by recrystallisation from nitro­methane solution, m.p. 425–427 K.

6. Refinement

The positional coordinates of the O-bound H atom were located from a difference Fourier map and freely refined along with an isotropic displacement parameter. All the remaining H atoms were placed geometrically in idealized positions and refined using a riding model (including free rotation about the methyl C—C bond), with C–H = 0.95–0.99 Å and Uiso(H) = 1.5Ueq(C) for methyl groups, or 1.2Ueq(C) for other H atoms. Initial refinements demonstrated that the crystal was a near-perfect twin rotated 179° about the [001] direction. The refinement for the twinned data set (Rint = 0.0747) converged with R[F2 > 2σ(F2)], wR(F2), S = 0.0611, 0.2328, 1.115, Flack x = 0.01 (4) (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) by classical fit to all intensities. Deconvolution of the twin yielded a data set that was 91.7% complete to 0.80 Å after the reflections where the overlap was greater than 0.8 were removed. Crystal data, data collection, and structure refinement details for the full data set with individual twin components are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H22OS
Mr 334.45
Crystal system, space group Monoclinic, Ia
Temperature (K) 100
a, b, c (Å) 10.3190 (3), 20.6009 (7), 15.8756 (5)
β (°) 91.640 (3)
V3) 3373.5 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.72
Crystal size (mm) 0.36 × 0.14 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dualflex, AtlasS2
Absorption correction Analytical [CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordhsire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.740, 0.914
No. of measured, independent and observed [I > 2σ(I)] reflections 7560, 7560, 7158
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.02
No. of reflections 7560
No. of parameters 447
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.26
Absolute structure Classical Flack method preferred over Parsons because s.u. lower. Value quoted is from the twinned data set
Absolute structure parameter 0.01 (4)
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordhsire, England.]), SHELXD2014/6 and SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXD2014/6 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

4-(1,3,3-Trimethyl-2,3-dihydro-1H-4-thiaphenanthren-1-yl)phenol top
Crystal data top
C22H22OSF(000) = 1424
Mr = 334.45Dx = 1.317 Mg m3
Monoclinic, IaCu Kα radiation, λ = 1.54184 Å
a = 10.3190 (3) ÅCell parameters from 5117 reflections
b = 20.6009 (7) Åθ = 3.5–76.6°
c = 15.8756 (5) ŵ = 1.72 mm1
β = 91.640 (3)°T = 100 K
V = 3373.5 (2) Å3Plate, colourless
Z = 80.36 × 0.14 × 0.05 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dualflex, AtlasS2
diffractometer
7560 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray source7158 reflections with I > 2σ(I)
Detector resolution: 5.2921 pixels mm-1θmax = 74.5°, θmin = 3.5°
ω scansh = 1212
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
k = 2525
Tmin = 0.740, Tmax = 0.914l = 1919
7560 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0825P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.29 e Å3
7560 reflectionsΔρmin = 0.26 e Å3
447 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower. Value quoted is from the twinned data set
2 restraintsAbsolute structure parameter: 0.01 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component perfect twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.51009 (7)0.35123 (4)0.09817 (5)0.01486 (18)
O1A0.0378 (2)0.43051 (14)0.46900 (15)0.0178 (5)
H1A0.052 (6)0.470 (3)0.477 (4)0.049 (18)*
C2A0.3492 (3)0.32341 (17)0.1298 (2)0.0147 (6)
C3A0.3674 (3)0.27563 (16)0.20243 (19)0.0135 (6)
H3AA0.42030.23900.18220.016*
H3AB0.28110.25790.21540.016*
C4A0.4307 (3)0.30021 (16)0.28593 (19)0.0121 (6)
C5A0.6335 (3)0.35373 (16)0.3449 (2)0.0148 (6)
H5AA0.60580.33910.39820.018*
C6A0.7480 (3)0.38594 (17)0.3417 (2)0.0153 (7)
H6AA0.79830.39310.39190.018*
C7A0.7925 (3)0.40907 (16)0.2631 (2)0.0142 (6)
C8A0.7129 (3)0.39895 (16)0.1893 (2)0.0135 (6)
C9A0.5928 (3)0.36405 (16)0.1954 (2)0.0124 (6)
C10A0.5526 (3)0.34068 (16)0.2725 (2)0.0124 (6)
C11A0.3310 (3)0.33736 (16)0.33830 (19)0.0123 (6)
C12A0.2219 (3)0.30484 (16)0.36687 (19)0.0148 (6)
H12A0.21260.25980.35550.018*
C13A0.1268 (3)0.33628 (17)0.4112 (2)0.0149 (6)
H13A0.05410.31270.43020.018*
C14A0.1377 (3)0.40280 (17)0.42807 (18)0.0133 (6)
C15A0.2463 (3)0.43601 (17)0.40170 (19)0.0141 (6)
H15A0.25610.48090.41400.017*
C16A0.3413 (3)0.40343 (16)0.35715 (19)0.0126 (6)
H16A0.41490.42680.33920.015*
C17A0.4708 (3)0.23763 (17)0.3346 (2)0.0158 (6)
H17A0.54270.21660.30620.024*
H17B0.39680.20790.33590.024*
H17C0.49820.24900.39240.024*
C18A0.2637 (3)0.38209 (17)0.1493 (2)0.0171 (7)
H18A0.18110.36700.17120.026*
H18B0.24740.40720.09770.026*
H18C0.30790.40950.19160.026*
C19A0.2932 (4)0.28720 (18)0.0526 (2)0.0176 (7)
H19A0.20370.27420.06310.026*
H19B0.34560.24850.04220.026*
H19C0.29430.31580.00330.026*
C20A0.9137 (4)0.44096 (18)0.2562 (2)0.0190 (7)
H20A0.96630.44780.30550.023*
C21A0.9561 (4)0.46198 (18)0.1802 (2)0.0206 (7)
H21A1.03800.48270.17650.025*
C22A0.8771 (4)0.45259 (19)0.1076 (2)0.0208 (7)
H22A0.90640.46720.05460.025*
C23A0.7588 (3)0.42281 (18)0.1118 (2)0.0167 (7)
H23A0.70650.41800.06190.020*
S1B0.52638 (7)0.64688 (4)0.89907 (5)0.01474 (18)
O1B0.0356 (3)0.56057 (13)0.51496 (15)0.0181 (5)
H1B0.014 (6)0.585 (3)0.488 (4)0.047 (16)*
C2B0.3602 (3)0.67165 (16)0.8687 (2)0.0138 (6)
C3B0.3668 (3)0.72023 (16)0.79605 (19)0.0135 (6)
H3BA0.41950.75770.81600.016*
H3BB0.27790.73650.78420.016*
C4B0.4223 (3)0.69694 (16)0.71187 (19)0.0124 (6)
C5B0.6165 (4)0.64319 (16)0.6496 (2)0.0152 (6)
H5BA0.57980.65590.59660.018*
C6B0.7329 (4)0.61284 (18)0.6515 (2)0.0163 (7)
H6BA0.77650.60580.60040.020*
C7B0.7904 (3)0.59146 (16)0.7290 (2)0.0148 (6)
C8B0.7207 (3)0.60154 (16)0.8042 (2)0.0129 (6)
C9B0.5974 (3)0.63472 (16)0.8002 (2)0.0124 (6)
C10B0.5467 (3)0.65688 (16)0.7238 (2)0.0131 (6)
C11B0.3193 (3)0.66021 (17)0.65836 (19)0.0136 (6)
C12B0.2095 (3)0.69261 (16)0.62686 (19)0.0148 (6)
H12B0.19930.73750.63880.018*
C13B0.1148 (3)0.66103 (18)0.5785 (2)0.0162 (7)
H13B0.04090.68410.55770.019*
C14B0.1287 (3)0.59546 (17)0.56087 (19)0.0151 (6)
C15B0.2358 (3)0.56191 (17)0.5911 (2)0.0158 (6)
H15B0.24510.51700.57920.019*
C16B0.3308 (3)0.59444 (17)0.6394 (2)0.0162 (7)
H16B0.40480.57120.65980.019*
C17B0.4583 (3)0.76053 (18)0.6652 (2)0.0164 (6)
H17D0.48250.75020.60750.025*
H17E0.53150.78150.69500.025*
H17F0.38360.78990.66380.025*
C18B0.2769 (3)0.61185 (17)0.8491 (2)0.0171 (7)
H18D0.19100.62560.82820.026*
H18E0.26790.58610.90060.026*
H18F0.31840.58550.80620.026*
C19B0.3099 (4)0.70637 (18)0.9469 (2)0.0173 (6)
H19D0.21740.71590.93850.026*
H19E0.35770.74700.95590.026*
H19F0.32230.67830.99640.026*
C20B0.9126 (4)0.56092 (18)0.7331 (2)0.0179 (7)
H20B0.95810.55420.68260.021*
C21B0.9672 (4)0.54077 (17)0.8083 (2)0.0187 (7)
H21B1.04990.52040.81000.022*
C22B0.8995 (4)0.55050 (17)0.8832 (2)0.0186 (7)
H22B0.93740.53710.93560.022*
C23B0.7789 (3)0.57927 (17)0.8812 (2)0.0158 (6)
H23B0.73380.58430.93210.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0142 (4)0.0190 (4)0.0113 (4)0.0012 (3)0.0001 (3)0.0011 (3)
O1A0.0157 (12)0.0184 (13)0.0196 (11)0.0003 (10)0.0041 (9)0.0050 (9)
C2A0.0134 (15)0.0158 (17)0.0149 (15)0.0004 (13)0.0000 (11)0.0002 (12)
C3A0.0138 (16)0.0114 (16)0.0152 (14)0.0009 (12)0.0008 (11)0.0025 (11)
C4A0.0130 (15)0.0099 (15)0.0134 (14)0.0002 (12)0.0010 (11)0.0003 (10)
C5A0.0170 (17)0.0138 (16)0.0137 (15)0.0024 (12)0.0018 (12)0.0003 (11)
C6A0.0170 (17)0.0131 (17)0.0157 (16)0.0009 (13)0.0021 (12)0.0030 (12)
C7A0.0131 (16)0.0099 (16)0.0194 (16)0.0026 (13)0.0009 (12)0.0009 (11)
C8A0.0139 (16)0.0099 (16)0.0167 (16)0.0020 (13)0.0024 (11)0.0008 (11)
C9A0.0115 (16)0.0116 (15)0.0140 (14)0.0030 (12)0.0008 (11)0.0005 (11)
C10A0.0143 (17)0.0105 (15)0.0126 (15)0.0016 (13)0.0011 (11)0.0016 (11)
C11A0.0149 (16)0.0124 (15)0.0095 (13)0.0006 (13)0.0011 (11)0.0009 (11)
C12A0.0180 (16)0.0137 (16)0.0127 (14)0.0023 (13)0.0009 (11)0.0015 (11)
C13A0.0148 (16)0.0153 (16)0.0145 (15)0.0022 (13)0.0004 (11)0.0009 (12)
C14A0.0138 (15)0.0166 (16)0.0095 (14)0.0013 (12)0.0007 (10)0.0010 (11)
C15A0.0192 (17)0.0108 (15)0.0122 (14)0.0007 (12)0.0005 (12)0.0012 (11)
C16A0.0122 (15)0.0125 (16)0.0129 (15)0.0028 (12)0.0012 (11)0.0022 (11)
C17A0.0177 (16)0.0120 (16)0.0175 (15)0.0006 (12)0.0023 (12)0.0014 (11)
C18A0.0178 (17)0.0154 (17)0.0180 (16)0.0034 (13)0.0005 (12)0.0014 (12)
C19A0.0200 (17)0.0190 (18)0.0135 (15)0.0002 (13)0.0013 (12)0.0008 (12)
C20A0.0170 (17)0.0149 (18)0.0251 (17)0.0011 (14)0.0003 (12)0.0020 (12)
C21A0.0165 (17)0.0136 (17)0.032 (2)0.0022 (13)0.0031 (13)0.0003 (13)
C22A0.0212 (18)0.0188 (18)0.0227 (17)0.0032 (14)0.0071 (13)0.0024 (13)
C23A0.0172 (16)0.0142 (17)0.0188 (16)0.0004 (13)0.0023 (12)0.0001 (12)
S1B0.0136 (4)0.0194 (4)0.0112 (4)0.0009 (3)0.0001 (3)0.0008 (3)
O1B0.0176 (13)0.0176 (13)0.0187 (12)0.0001 (10)0.0071 (9)0.0017 (9)
C2B0.0143 (15)0.0122 (16)0.0148 (14)0.0010 (12)0.0000 (11)0.0007 (11)
C3B0.0147 (16)0.0108 (16)0.0150 (15)0.0002 (12)0.0015 (11)0.0026 (11)
C4B0.0134 (15)0.0111 (16)0.0125 (14)0.0012 (12)0.0007 (11)0.0008 (11)
C5B0.0192 (18)0.0140 (16)0.0122 (15)0.0001 (13)0.0002 (12)0.0012 (11)
C6B0.0179 (17)0.0166 (17)0.0145 (15)0.0006 (13)0.0031 (12)0.0013 (12)
C7B0.0154 (17)0.0098 (16)0.0191 (16)0.0006 (13)0.0014 (12)0.0017 (11)
C8B0.0129 (16)0.0087 (15)0.0170 (16)0.0027 (12)0.0001 (11)0.0005 (11)
C9B0.0131 (16)0.0104 (15)0.0136 (14)0.0011 (12)0.0011 (11)0.0009 (11)
C10B0.0144 (17)0.0122 (16)0.0127 (15)0.0001 (13)0.0006 (12)0.0029 (11)
C11B0.0178 (17)0.0127 (15)0.0101 (14)0.0006 (13)0.0006 (11)0.0002 (11)
C12B0.0190 (17)0.0137 (16)0.0117 (14)0.0022 (13)0.0004 (11)0.0020 (11)
C13B0.0171 (17)0.0176 (17)0.0138 (15)0.0032 (13)0.0001 (12)0.0000 (12)
C14B0.0185 (16)0.0180 (17)0.0087 (14)0.0039 (13)0.0002 (11)0.0012 (11)
C15B0.0201 (17)0.0115 (16)0.0156 (15)0.0005 (13)0.0021 (12)0.0007 (11)
C16B0.0186 (17)0.0145 (17)0.0152 (15)0.0019 (13)0.0026 (12)0.0011 (12)
C17B0.0171 (16)0.0158 (17)0.0164 (15)0.0009 (13)0.0004 (11)0.0005 (12)
C18B0.0175 (17)0.0158 (18)0.0178 (16)0.0026 (13)0.0007 (12)0.0010 (12)
C19B0.0184 (16)0.0175 (17)0.0159 (15)0.0005 (13)0.0008 (11)0.0013 (12)
C20B0.0189 (18)0.0123 (17)0.0226 (17)0.0023 (13)0.0025 (13)0.0017 (12)
C21B0.0143 (17)0.0122 (17)0.0296 (18)0.0001 (12)0.0006 (13)0.0004 (13)
C22B0.0192 (18)0.0136 (17)0.0226 (17)0.0014 (13)0.0056 (13)0.0039 (13)
C23B0.0164 (17)0.0141 (16)0.0166 (16)0.0020 (13)0.0012 (12)0.0002 (11)
Geometric parameters (Å, º) top
S1A—C9A1.762 (3)S1B—C9B1.768 (3)
S1A—C2A1.839 (4)S1B—C2B1.840 (3)
O1A—C14A1.360 (4)O1B—C14B1.389 (4)
O1A—H1A0.84 (6)O1B—H1B0.83 (6)
C2A—C3A1.524 (4)C2B—C18B1.529 (5)
C2A—C19A1.533 (4)C2B—C3B1.530 (4)
C2A—C18A1.534 (5)C2B—C19B1.537 (4)
C3A—C4A1.546 (4)C3B—C4B1.545 (4)
C3A—H3AA0.9900C3B—H3BA0.9900
C3A—H3AB0.9900C3B—H3BB0.9900
C4A—C10A1.529 (5)C4B—C10B1.533 (5)
C4A—C11A1.544 (4)C4B—C11B1.540 (4)
C4A—C17A1.553 (4)C4B—C17B1.555 (5)
C5A—C6A1.357 (5)C5B—C6B1.353 (5)
C5A—C10A1.427 (5)C5B—C10B1.427 (4)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.424 (5)C6B—C7B1.421 (5)
C6A—H6AA0.9500C6B—H6BA0.9500
C7A—C20A1.419 (5)C7B—C20B1.409 (5)
C7A—C8A1.427 (4)C7B—C8B1.426 (5)
C8A—C23A1.419 (5)C8B—C23B1.423 (5)
C8A—C9A1.439 (5)C8B—C9B1.444 (5)
C9A—C10A1.390 (5)C9B—C10B1.385 (5)
C11A—C16A1.397 (5)C11B—C16B1.394 (5)
C11A—C12A1.397 (5)C11B—C12B1.396 (5)
C12A—C13A1.384 (5)C12B—C13B1.387 (5)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.400 (5)C13B—C14B1.388 (5)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.388 (5)C14B—C15B1.379 (5)
C15A—C16A1.397 (5)C15B—C16B1.398 (5)
C15A—H15A0.9500C15B—H15B0.9500
C16A—H16A0.9500C16B—H16B0.9500
C17A—H17A0.9800C17B—H17D0.9800
C17A—H17B0.9800C17B—H17E0.9800
C17A—H17C0.9800C17B—H17F0.9800
C18A—H18A0.9800C18B—H18D0.9800
C18A—H18B0.9800C18B—H18E0.9800
C18A—H18C0.9800C18B—H18F0.9800
C19A—H19A0.9800C19B—H19D0.9800
C19A—H19B0.9800C19B—H19E0.9800
C19A—H19C0.9800C19B—H19F0.9800
C20A—C21A1.365 (5)C20B—C21B1.370 (5)
C20A—H20A0.9500C20B—H20B0.9500
C21A—C22A1.407 (5)C21B—C22B1.411 (5)
C21A—H21A0.9500C21B—H21B0.9500
C22A—C23A1.370 (5)C22B—C23B1.378 (5)
C22A—H22A0.9500C22B—H22B0.9500
C23A—H23A0.9500C23B—H23B0.9500
C9A—S1A—C2A103.04 (15)C9B—S1B—C2B102.31 (15)
C14A—O1A—H1A111 (4)C14B—O1B—H1B111 (4)
C3A—C2A—C19A109.0 (3)C18B—C2B—C3B114.3 (3)
C3A—C2A—C18A114.5 (3)C18B—C2B—C19B109.7 (3)
C19A—C2A—C18A109.8 (3)C3B—C2B—C19B109.2 (3)
C3A—C2A—S1A108.4 (2)C18B—C2B—S1B110.1 (2)
C19A—C2A—S1A104.8 (2)C3B—C2B—S1B108.5 (2)
C18A—C2A—S1A109.8 (2)C19B—C2B—S1B104.6 (2)
C2A—C3A—C4A118.5 (3)C2B—C3B—C4B118.3 (3)
C2A—C3A—H3AA107.7C2B—C3B—H3BA107.7
C4A—C3A—H3AA107.7C4B—C3B—H3BA107.7
C2A—C3A—H3AB107.7C2B—C3B—H3BB107.7
C4A—C3A—H3AB107.7C4B—C3B—H3BB107.7
H3AA—C3A—H3AB107.1H3BA—C3B—H3BB107.1
C10A—C4A—C11A111.6 (3)C10B—C4B—C11B111.5 (3)
C10A—C4A—C3A112.8 (3)C10B—C4B—C3B112.9 (3)
C11A—C4A—C3A110.6 (3)C11B—C4B—C3B111.3 (3)
C10A—C4A—C17A108.3 (3)C10B—C4B—C17B107.6 (3)
C11A—C4A—C17A108.4 (3)C11B—C4B—C17B108.8 (3)
C3A—C4A—C17A104.8 (3)C3B—C4B—C17B104.5 (3)
C6A—C5A—C10A123.5 (3)C6B—C5B—C10B122.8 (3)
C6A—C5A—H5AA118.2C6B—C5B—H5BA118.6
C10A—C5A—H5AA118.2C10B—C5B—H5BA118.6
C5A—C6A—C7A120.0 (3)C5B—C6B—C7B120.7 (3)
C5A—C6A—H6AA120.0C5B—C6B—H6BA119.7
C7A—C6A—H6AA120.0C7B—C6B—H6BA119.7
C20A—C7A—C6A122.0 (3)C20B—C7B—C6B122.0 (3)
C20A—C7A—C8A119.5 (3)C20B—C7B—C8B119.9 (3)
C6A—C7A—C8A118.5 (3)C6B—C7B—C8B118.1 (3)
C23A—C8A—C7A117.6 (3)C23B—C8B—C7B117.5 (3)
C23A—C8A—C9A122.8 (3)C23B—C8B—C9B122.6 (3)
C7A—C8A—C9A119.6 (3)C7B—C8B—C9B119.9 (3)
C10A—C9A—C8A120.8 (3)C10B—C9B—C8B120.3 (3)
C10A—C9A—S1A124.8 (3)C10B—C9B—S1B125.1 (3)
C8A—C9A—S1A114.4 (2)C8B—C9B—S1B114.6 (2)
C9A—C10A—C5A117.5 (3)C9B—C10B—C5B118.1 (3)
C9A—C10A—C4A125.4 (3)C9B—C10B—C4B125.5 (3)
C5A—C10A—C4A117.1 (3)C5B—C10B—C4B116.4 (3)
C16A—C11A—C12A117.0 (3)C16B—C11B—C12B117.4 (3)
C16A—C11A—C4A123.4 (3)C16B—C11B—C4B122.3 (3)
C12A—C11A—C4A119.5 (3)C12B—C11B—C4B120.2 (3)
C13A—C12A—C11A122.0 (3)C13B—C12B—C11B121.7 (3)
C13A—C12A—H12A119.0C13B—C12B—H12B119.1
C11A—C12A—H12A119.0C11B—C12B—H12B119.1
C12A—C13A—C14A120.1 (3)C12B—C13B—C14B119.5 (3)
C12A—C13A—H13A120.0C12B—C13B—H13B120.2
C14A—C13A—H13A120.0C14B—C13B—H13B120.2
O1A—C14A—C15A124.5 (3)C15B—C14B—C13B120.3 (3)
O1A—C14A—C13A116.4 (3)C15B—C14B—O1B117.3 (3)
C15A—C14A—C13A119.1 (3)C13B—C14B—O1B122.4 (3)
C14A—C15A—C16A120.0 (3)C14B—C15B—C16B119.6 (3)
C14A—C15A—H15A120.0C14B—C15B—H15B120.2
C16A—C15A—H15A120.0C16B—C15B—H15B120.2
C15A—C16A—C11A121.8 (3)C11B—C16B—C15B121.4 (3)
C15A—C16A—H16A119.1C11B—C16B—H16B119.3
C11A—C16A—H16A119.1C15B—C16B—H16B119.3
C4A—C17A—H17A109.5C4B—C17B—H17D109.5
C4A—C17A—H17B109.5C4B—C17B—H17E109.5
H17A—C17A—H17B109.5H17D—C17B—H17E109.5
C4A—C17A—H17C109.5C4B—C17B—H17F109.5
H17A—C17A—H17C109.5H17D—C17B—H17F109.5
H17B—C17A—H17C109.5H17E—C17B—H17F109.5
C2A—C18A—H18A109.5C2B—C18B—H18D109.5
C2A—C18A—H18B109.5C2B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
C2A—C18A—H18C109.5C2B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
C2A—C19A—H19A109.5C2B—C19B—H19D109.5
C2A—C19A—H19B109.5C2B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
C2A—C19A—H19C109.5C2B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
C21A—C20A—C7A121.4 (3)C21B—C20B—C7B121.4 (3)
C21A—C20A—H20A119.3C21B—C20B—H20B119.3
C7A—C20A—H20A119.3C7B—C20B—H20B119.3
C20A—C21A—C22A119.2 (4)C20B—C21B—C22B119.4 (4)
C20A—C21A—H21A120.4C20B—C21B—H21B120.3
C22A—C21A—H21A120.4C22B—C21B—H21B120.3
C23A—C22A—C21A121.2 (3)C23B—C22B—C21B120.7 (3)
C23A—C22A—H22A119.4C23B—C22B—H22B119.7
C21A—C22A—H22A119.4C21B—C22B—H22B119.7
C22A—C23A—C8A121.2 (3)C22B—C23B—C8B121.1 (3)
C22A—C23A—H23A119.4C22B—C23B—H23B119.4
C8A—C23A—H23A119.4C8B—C23B—H23B119.4
C9A—S1A—C2A—C3A42.3 (2)C9B—S1B—C2B—C18B82.3 (2)
C9A—S1A—C2A—C19A158.7 (2)C9B—S1B—C2B—C3B43.5 (2)
C9A—S1A—C2A—C18A83.4 (2)C9B—S1B—C2B—C19B159.9 (2)
C19A—C2A—C3A—C4A176.4 (3)C18B—C2B—C3B—C4B60.1 (4)
C18A—C2A—C3A—C4A60.1 (4)C19B—C2B—C3B—C4B176.7 (3)
S1A—C2A—C3A—C4A62.8 (3)S1B—C2B—C3B—C4B63.3 (3)
C2A—C3A—C4A—C10A46.3 (4)C2B—C3B—C4B—C10B44.8 (4)
C2A—C3A—C4A—C11A79.5 (4)C2B—C3B—C4B—C11B81.4 (4)
C2A—C3A—C4A—C17A163.9 (3)C2B—C3B—C4B—C17B161.4 (3)
C10A—C5A—C6A—C7A0.4 (5)C10B—C5B—C6B—C7B1.5 (6)
C5A—C6A—C7A—C20A177.7 (3)C5B—C6B—C7B—C20B178.7 (3)
C5A—C6A—C7A—C8A1.6 (5)C5B—C6B—C7B—C8B1.4 (5)
C20A—C7A—C8A—C23A1.1 (5)C20B—C7B—C8B—C23B0.5 (5)
C6A—C7A—C8A—C23A179.6 (3)C6B—C7B—C8B—C23B179.4 (3)
C20A—C7A—C8A—C9A177.2 (3)C20B—C7B—C8B—C9B178.0 (3)
C6A—C7A—C8A—C9A2.1 (5)C6B—C7B—C8B—C9B2.1 (5)
C23A—C8A—C9A—C10A179.0 (3)C23B—C8B—C9B—C10B178.3 (3)
C7A—C8A—C9A—C10A0.7 (5)C7B—C8B—C9B—C10B0.1 (5)
C23A—C8A—C9A—S1A1.9 (4)C23B—C8B—C9B—S1B1.3 (4)
C7A—C8A—C9A—S1A176.4 (2)C7B—C8B—C9B—S1B177.2 (2)
C2A—S1A—C9A—C10A15.4 (3)C2B—S1B—C9B—C10B15.7 (3)
C2A—S1A—C9A—C8A167.7 (2)C2B—S1B—C9B—C8B167.4 (2)
C8A—C9A—C10A—C5A1.1 (5)C8B—C9B—C10B—C5B3.0 (5)
S1A—C9A—C10A—C5A177.9 (2)S1B—C9B—C10B—C5B179.7 (3)
C8A—C9A—C10A—C4A176.8 (3)C8B—C9B—C10B—C4B175.3 (3)
S1A—C9A—C10A—C4A0.0 (5)S1B—C9B—C10B—C4B1.4 (5)
C6A—C5A—C10A—C9A1.8 (5)C6B—C5B—C10B—C9B3.8 (5)
C6A—C5A—C10A—C4A176.3 (3)C6B—C5B—C10B—C4B174.7 (3)
C11A—C4A—C10A—C9A114.1 (4)C11B—C4B—C10B—C9B117.2 (4)
C3A—C4A—C10A—C9A11.2 (5)C3B—C4B—C10B—C9B8.9 (5)
C17A—C4A—C10A—C9A126.6 (3)C17B—C4B—C10B—C9B123.7 (3)
C11A—C4A—C10A—C5A67.9 (4)C11B—C4B—C10B—C5B64.5 (4)
C3A—C4A—C10A—C5A166.8 (3)C3B—C4B—C10B—C5B169.4 (3)
C17A—C4A—C10A—C5A51.3 (4)C17B—C4B—C10B—C5B54.6 (4)
C10A—C4A—C11A—C16A11.0 (4)C10B—C4B—C11B—C16B12.2 (4)
C3A—C4A—C11A—C16A115.5 (3)C3B—C4B—C11B—C16B114.8 (3)
C17A—C4A—C11A—C16A130.2 (3)C17B—C4B—C11B—C16B130.7 (3)
C10A—C4A—C11A—C12A171.1 (3)C10B—C4B—C11B—C12B167.8 (3)
C3A—C4A—C11A—C12A62.4 (4)C3B—C4B—C11B—C12B65.2 (4)
C17A—C4A—C11A—C12A51.9 (4)C17B—C4B—C11B—C12B49.4 (4)
C16A—C11A—C12A—C13A0.6 (5)C16B—C11B—C12B—C13B0.0 (5)
C4A—C11A—C12A—C13A177.4 (3)C4B—C11B—C12B—C13B179.9 (3)
C11A—C12A—C13A—C14A0.5 (5)C11B—C12B—C13B—C14B0.1 (5)
C12A—C13A—C14A—O1A177.5 (3)C12B—C13B—C14B—C15B0.0 (5)
C12A—C13A—C14A—C15A1.7 (5)C12B—C13B—C14B—O1B178.1 (3)
O1A—C14A—C15A—C16A177.5 (3)C13B—C14B—C15B—C16B0.3 (5)
C13A—C14A—C15A—C16A1.6 (5)O1B—C14B—C15B—C16B178.4 (3)
C14A—C15A—C16A—C11A0.4 (5)C12B—C11B—C16B—C15B0.3 (5)
C12A—C11A—C16A—C15A0.7 (5)C4B—C11B—C16B—C15B179.6 (3)
C4A—C11A—C16A—C15A177.2 (3)C14B—C15B—C16B—C11B0.4 (5)
C6A—C7A—C20A—C21A179.0 (3)C6B—C7B—C20B—C21B179.7 (3)
C8A—C7A—C20A—C21A0.3 (5)C8B—C7B—C20B—C21B0.4 (5)
C7A—C20A—C21A—C22A0.9 (5)C7B—C20B—C21B—C22B0.3 (5)
C20A—C21A—C22A—C23A0.0 (6)C20B—C21B—C22B—C23B0.8 (5)
C21A—C22A—C23A—C8A1.5 (6)C21B—C22B—C23B—C8B1.7 (5)
C7A—C8A—C23A—C22A2.1 (5)C7B—C8B—C23B—C22B1.6 (5)
C9A—C8A—C23A—C22A176.2 (3)C9B—C8B—C23B—C22B176.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11A–C16A ring.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1B0.84 (6)1.96 (6)2.777 (4)162 (6)
O1B—H1B···Cg1i0.83 (6)3.18 (6)3.959 (4)158 (6)
Symmetry code: (i) x1/2, y+1, z.
 

References

First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationFrampton, C. S., Gall, J. H. & MacNicol, D. D. (2017b). CrystEngComm, doi: 10.1039/C7CE01275F. In the press.
First citationFrampton, C. S., Ketuly, K. K., Ali, H. B. M., Azizan, A. H. S., Gall, J. H. & MacNicol, D. D. (2017a). CrystEngComm, 19, 2653–2659.  CAS
First citationFrampton, C. S., Ketuly, K. A., Hadi, A. H. A., Gall, J. H. & MacNicol, D. D. (2013). Chem. Commun. 49, 7198–7200.  CAS
First citationFrampton, C. S., MacNicol, D. D., Mallinson, P. R. & White, J. D. (1992). J. Crystallogr. Spectrosc. Res. 22, 551–555.  CSD CrossRef CAS Web of Science
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1145–1147.  CSD CrossRef Web of Science
First citationHardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1072–1077.  CSD CrossRef Web of Science
First citationLee, J. J., Sobolev, A. N., Turner, M. J., Fuller, R. O., Iversen, B. B., Koutsantonis, G. A. & Spackman, M. A. (2014). Cryst. Growth Des. 14, 1296–1306.  Web of Science CSD CrossRef CAS
First citationMacNicol, D. D. (1984). Inclusion Compounds, Vol. 2, edited by J. L. Atwood, J. E. D. Davies & D. D. MacNicol, ch. 1, pp. 12–32. New York: Academic Press.
First citationMacNicol, D. D., Mills, H. H. & Wilson, F. B. (1969). J. Chem. Soc. D, pp. 1332–1333.
First citationMacNicol, D. D. & Wilson, F. B. (1971). J. Chem. Soc. D, pp. 786–787.
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordhsire, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds