research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an ep­­oxy­sterol: 9α,11α-ep­­oxy-5α-cholest-7-ene-3β,5,6α-triol 3,6-di­acetate

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
*Correspondence e-mail: vinpicci@unina.it, roberto.centore@unina.it

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 9 September 2017; accepted 19 September 2017; online 6 October 2017)

The title compound, C31H48O6, is a polyoxygenated ep­oxy steroid obtained by a multi-step synthesis involving oxidation of 7-de­hydro­cholesterol. It crystallizes in the P212121 space group; however, the absolute structure of the molecule in the crystal could not be determined by resonant scattering. The configuration at the C5 and C6 positions is in both cases of the α-type, as is that of the C atoms of the ep­oxy ring. Mol­ecules in the crystal form chains parallel to the b axis by hydrogen bonding between O—H donors and carbonyl O-atom acceptors. Some atoms of the alkyl chain are disordered over two orientations, with a refined occupancy ratio of 0.511 (10):0.489 (10).

1. Chemical context

Polyoxygenated steroids (Fig. 1[link]) are metabolites both of terrestrial and marine origin possessing a number of remarkable biological activities (D'Auria et al., 1993[D'Auria, M. V., Minale, L. & Riccio, R. (1993). Chem. Rev. 93, 1839-1895.]). Our previous studies in this field focused on the isolation and synthesis of a number of such substances possessing new nuclear oxygenation patterns (Madaio et al., 1988[Madaio, A., Piccialli, V. & Sica, D. (1988). Tetrahedron Lett. 29, 5999-6000.]; Migliuolo et al., 1992[Migliuolo, A., Piccialli, V. & Sica, D. (1992). Steroids, 57, 344-347.]). In this context, new ruthenium tetroxide-catalysed oxidation methods (Bifulco et al., 2003a[Bifulco, G., Caserta, T., Gomez-Paloma, L. & Piccialli, V. (2003a). Tetrahedron Lett. 44, 5499-5503.],b[Bifulco, G., Caserta, T., Gomez-Paloma, L. & Piccialli, V. (2003b). Tetrahedron Lett. 44, 3429-3429.]; Piccialli et al., 2007[Piccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131-5135.], 2010[Piccialli, V., Zaccaria, S., Borbone, N., Oliviero, G., D'Errico, S., Hemminki, A., Cerullo, V., Romano, V., Tuzi, A. & Centore, R. (2010). Tetrahedron, 66, 9370-9378.]; Piccialli, 2014[Piccialli, V. (2014). Molecules, 19, 6534-6582.]) were developed to introduce suitable oxygenated functionalities in the B, C and D rings of the steroid nucleus. Among others, 9,11-ep­oxy­sterols have been isolated from various marine organisms (Gunasekera et al., 1983[Gunasekera, S. P. & Schmitz, F. J. (1983). J. Org. Chem. 48, 885-886.]) and display diverse biological activities. In particular, the 3-deacetyl analogue of the title compound (Fig. 1[link]) has shown to inhibit the binding of [I125] IL-8 to the human recombinant IL-8 receptor type A (de Almeida Leone et al., 2000[Almeida Leone, P. de, Redburn, J., Hooper, J. N. A. & Quinn, R. J. (2000). J. Nat. Prod. 63, 694-697.]).

[Figure 1]
Figure 1
Selected biologically active polyoxygenated steroids of marine origin.

We are carrying out a broad research program aimed at discovering new biologically active substances. In recent years, we have synthesized and studied, among others, purine nucleoside analogues (D'Errico et al., 2011[D'Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2011). Molecules, 16, 8110-8118.], 2012a[D'Errico, S., Oliviero, G., Amato, J., Borbone, N., Cerullo, V., Hemminki, A., Piccialli, V., Zaccaria, S., Mayol, L. & Piccialli, G. (2012a). Chem. Commun. 48, 9310-9312.],b[D'Errico, S., Oliviero, G., Borbone, N., Amato, J., D'Alonzo, D., Piccialli, V., Mayol, L. & Piccialli, G. (2012b). Molecules, 17, 13036-13044.]; D'Atri et al., 2012[D'Atri, V., Oliviero, G., Amato, J., Borbone, N., D'Errico, S., Mayol, L., Piccialli, V., Haider, S., Hoorelbeke, B., Balzarini, J. & Piccialli, G. (2012). Chem. Commun. 48, 9516-9518.]; Oliviero et al., 2008[Oliviero, G., Amato, J., Borbone, N., D'Errico, S., Piccialli, G., Bucci, E., Piccialli, V. & Mayol, L. (2008). Tetrahedron, 64, 6475-6481.], 2010a[Oliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Piccialli, G. & Mayol, L. (2010a). Eur. J. Org. Chem. pp. 1517-1524.],b[Oliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Varra, M., Piccialli, G. & Mayol, L. (2010b). Tetrahedron, 66, 1931-1936.]), cyclic ethers and polyethers (Piccialli et al., 2007[Piccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131-5135.], 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.]; Piccialli, D'Errico et al., 2013[Piccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781-1789.]; Piccialli, 2014[Piccialli, V. (2014). Molecules, 19, 6534-6582.]) and nitro­gen-rich fused-ring compounds (Centore et al., 2013[Centore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. pp. 3721-3728.]). Within this program, and on the basis of the reduced amount of direct structural information available on ep­oxy steroids, we have synthesized the title compound (1), by di­acetyl­ation of 3, in turn obtained from cheap commercially available 7-de­hydro­cholesterol (2) (see Fig. 2[link]), according to a previously reported procedure (Migliuolo et al., 1991[Migliuolo, A., Notaro, G., Piccialli, V. & Sica, D. (1991). Steroids, 56, 154-158.]). In particular, during the synthesis, two diastereomers, with opposite configuration at C6, were obtained, with predominance of the trans-isomer (5α-OH/6β-OH). The structural analysis was performed in order to unambiguously assign the configuration of the title compound.

[Scheme 1]
[Figure 2]
Figure 2
Synthesis of the title compound.

2. Structural commentary

The crystallographically independent mol­ecule is shown in Fig. 3[link]. From the figure it is evident that the two acet­yloxy groups have a different stereochemical orientation (3β,6α) and that the stereochemical orientation of the hy­droxy group is the same as that of the acet­yloxy group at C6 (5α,6α). In addition, the orientation of the ep­oxy oxygen atom is on the opposite side as compared with the methyl groups C18 and C19 (9α,11α-ep­oxy) and on the same side of the hy­droxy group bonded to C5. The stereoselectivity in the formation of the ep­oxy ring is probably related to the steric hindrance due to the methyl groups.

[Figure 3]
Figure 3
ORTEP view of the mol­ecular structure of the title compound. Displacement ellipsoids are drawn at 30% probability level. Only the most populated orientation of the disordered chain is shown.

We have reported the crystal structure of a steroid closely related to the title compound (Piccialli, Tuzi et al., 2013[Piccialli, V., Tuzi, A., Oliviero, G., Borbone, N. & Centore, R. (2013). Acta Cryst. E69, o1109-o1110.]), in which the two acet­yloxy groups, the C18 and C19 methyl groups and the alkyl tail have the same configuration as in the present one, and, moreover, an α hy­droxy group at C9 and a keto group at C11 are present. In Fig. 4[link] the two mol­ecular structures are superimposed. The superposition is very good, apart for a small difference in the torsion angle for the acetyl group at C3.

[Figure 4]
Figure 4
Overlay of the X-ray mol­ecular structure of the title compound with the previously reported 3β,6α-diacet­oxy-5,9α-dihy­droxy-5α-cholest-7-en-11-one (Piccialli, Tuzi et al., 2013[Piccialli, V., Tuzi, A., Oliviero, G., Borbone, N. & Centore, R. (2013). Acta Cryst. E69, o1109-o1110.]).

3. Supra­molecular features

The crystal packing of the title compound is shown in Fig. 5[link]. Mol­ecules in the crystal form chains by hydrogen bonding between the alcohol O1—H donor and the O4 carbonyl acceptor (Table 1[link]). The chains run parallel to the b axis and are wrapped around a 21 crystallographic screw axes. Adjacent chains along the a axis are held by weak hydrogen bonding between C29—H donor and O6 carbonyl acceptor.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29B⋯O6i 0.98 2.61 3.567 (6) 166
O1—H1O⋯O4ii 0.81 (3) 2.16 (4) 2.923 (3) 158 (4)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Partial crystal packing of the title compound. Only the most populated orientation of the disordered chain is shown.

In order to detect additional packing features, we have examined the Hirshfeld surface (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer 3.1. University of Western Australia.]). In Fig. 6[link] the Hirshfeld fingerprint plot of the independent mol­ecule is reported. In the plot, for each point of the Hirshfeld surface enveloping the mol­ecule in the crystal, the distance di to the nearest atom inside the surface and the distance de to the nearest atom outside the surface are shown. The color of each point in the plot is related to the abundance of that inter­action, from blue (low) to green (high) to red (very high).

[Figure 6]
Figure 6
Hirshfeld fingerprint plot of the crystallographically independent mol­ecule of the title compound.

A distinctive feature of the plot is represented by the two blue spikes at di + de = 2.0 Å, pointing to the lower left of the plot and symmetrically disposed with respect to the diagonal. They correspond to the strong hydrogen bonds present in the packing. Another feature is the central green strip along the diagonal, centered at di + de = 3.2 Å, indicating a large number of loose H⋯H contacts. As expected, they are the predominant inter­molecular contacts in the packing of the title compound. The central green strip ends up in the blue sting at at di = de = 1.0 Å, which reflects points on the Hirshfeld surface that involve nearly head-to-head close H⋯H contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.38, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave no match for the title compound. We have searched, within steroids with a double bond at C7 (122 hits in total), for an additional ep­oxy group in any of the A, B, C and D rings of the steroid moiety. We found eight hits, with the following refcodes and position of the ep­oxy ring: EZELAX (4β,5β-ep­oxy), DIZPUY and FIWYUG (9α,11α-ep­oxy), RUGDIH (9α,13α-ep­oxy), POHDEW (9α,14α-ep­oxy), QULRAS and QULRIA (13α,17α-ep­oxy), BEXCHO (14α,15α-ep­oxy).

5. Synthesis and crystallization

5α-Cholest-7-ene-3β,5,6α-triol 3,6-di­acetate was obtained from 7-de­hydro­cholesterol as described (Fieser et al., 1953[Fieser, M., Quilico, A., Nickon, A., Rosen, W. E., Tarlton, E. J. & Fieser, L. F. (1953). J. Am. Chem. Soc. 75, 4066-4071.]; Migliuolo et al., 1991[Migliuolo, A., Notaro, G., Piccialli, V. & Sica, D. (1991). Steroids, 56, 154-158.]), followed by acetyl­ation. Mercuric acetate de­hydrogenation gave the Δ7,9(11)-analogue. Hydrolytic de­acetyl­ation, MnO2 oxidation at C6 and subsequent meta-chloro­perbenzoic acid epoxidation at the C9—C11 double bond gave 9α,11α-ep­oxy-3β,5-dihy­droxy-5α-cholest-7-en-6-one. LiAlH4 reduction of the C6 ketone function in the latter, followed by acetyl­ation with Ac2O/py, furnished the title compound 1 and its C6 epimer, in a 1:4 ratio. The pure title compound was obtained by HPLC separation (CHCl3/MeOH, 96:4 v/v). The compound was dissolved in a minimal amount of CHCl3 and the solution was left to evaporate slowly at room temperature to give crystals suitable for X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were generated stereochemically and were refined by the riding model. The alcohol H atom was refined freely with Uiso(H) =1.2Ueq(O). All other H atoms were refined with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for most methyl groups. The C25 and C26 atoms of the alkyl chain are disordered over two orientations. The two split positions were refined by applying DFIX and SAME restraints on bond lengths. The final refined occupancy factors of the two components of disorder are 0.511 (10) and 0.489 (10).

Table 2
Experimental details

Crystal data
Chemical formula C31H48O6
Mr 516.69
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 9.8990 (13), 10.1030 (16), 28.961 (6)
V3) 2896.4 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.50 × 0.30 × 0.10
 
Data collection
Diffractometer Bruker–Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.949, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 14033, 5983, 3810
Rint 0.060
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.121, 1.02
No. of reflections 5983
No. of parameters 364
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.19
Absolute structure Flack x determined using 3518 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −1.6 (8)
Computer programs: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[ Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

9α,11α-Epoxy-5α-cholest-7-ene-3β,5,6α-triol 3,6-diacetate top
Crystal data top
C31H48O6Dx = 1.185 Mg m3
Mr = 516.69Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 125 reflections
a = 9.8990 (13) Åθ = 4.7–20.3°
b = 10.1030 (16) ŵ = 0.08 mm1
c = 28.961 (6) ÅT = 173 K
V = 2896.4 (8) Å3Prism, colourless
Z = 40.50 × 0.30 × 0.10 mm
F(000) = 1128
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5983 independent reflections
Radiation source: normal-focus sealed tube3810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD rotation images, thick slices scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1313
Tmin = 0.949, Tmax = 0.980l = 3734
14033 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1235P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5983 reflectionsΔρmax = 0.19 e Å3
364 parametersΔρmin = 0.19 e Å3
9 restraintsAbsolute structure: Flack x determined using 3518 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 1.6 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Some atoms of the alkyl chain are disordered over two orientations. The two split positions were refined by applying DFIX and SAME restraints on bond lengths.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5882 (4)0.0382 (4)0.39740 (12)0.0315 (9)
H1A0.5782780.0207160.4308680.038*
H1B0.5030010.0786430.3863680.038*
C20.6100 (4)0.0926 (4)0.37238 (11)0.0332 (9)
H2A0.6890790.1383330.3858980.040*
H2B0.5299030.1497650.3769630.040*
C30.6330 (3)0.0730 (4)0.32144 (12)0.0312 (9)
H30.5477680.0426750.3062080.037*
C40.7455 (4)0.0246 (3)0.31225 (11)0.0292 (8)
H4A0.7517800.0409590.2786170.035*
H4B0.8323040.0142540.3225060.035*
C50.7231 (3)0.1563 (3)0.33721 (11)0.0245 (8)
C60.8402 (3)0.2523 (4)0.32857 (10)0.0261 (8)
H60.9282320.2071180.3348020.031*
C70.8297 (4)0.3746 (4)0.35694 (11)0.0284 (8)
H70.8811400.4494690.3477310.034*
C80.7527 (3)0.3857 (3)0.39442 (10)0.0253 (8)
C90.6743 (3)0.2708 (4)0.41170 (11)0.0268 (8)
C100.7045 (3)0.1369 (4)0.39006 (11)0.0253 (8)
C110.6195 (4)0.2791 (4)0.45941 (12)0.0352 (9)
H110.603 (4)0.188 (4)0.4759 (11)0.042*
C120.6379 (4)0.3972 (4)0.49048 (12)0.0365 (10)
H12A0.6589410.3658610.5220480.044*
H12B0.5517750.4469460.4919380.044*
C130.7498 (3)0.4907 (3)0.47455 (10)0.0246 (8)
C140.7382 (4)0.5105 (3)0.42192 (11)0.0284 (8)
H140.6450430.5447470.4158910.034*
C150.8356 (4)0.6248 (4)0.41196 (12)0.0371 (9)
H15A0.8069300.6748540.3842570.045*
H15B0.9286340.5916590.4071430.045*
C160.8273 (4)0.7115 (4)0.45544 (11)0.0375 (9)
H16A0.7853980.7978610.4479900.045*
H16B0.9189150.7277500.4679610.045*
C170.7402 (4)0.6359 (3)0.49123 (10)0.0275 (8)
H170.6445730.6646450.4863400.033*
C180.8863 (3)0.4285 (4)0.48704 (11)0.0306 (9)
H18A0.8907600.4142130.5204770.046*
H18B0.9594170.4880290.4775860.046*
H18C0.8959250.3435640.4710510.046*
C190.8353 (3)0.0858 (4)0.41279 (11)0.0308 (9)
H19A0.9070440.1517050.4089560.046*
H19B0.8625710.0026240.3981080.046*
H19C0.8193230.0706640.4457690.046*
C200.7777 (4)0.6741 (3)0.54075 (10)0.0292 (9)
H200.8765470.6573380.5448560.035*
C210.7026 (5)0.5940 (4)0.57697 (13)0.0500 (12)
H21A0.6050850.6052090.5726990.075*
H21B0.7282570.6248970.6078260.075*
H21C0.7260930.5002110.5737520.075*
C220.7531 (4)0.8226 (3)0.54731 (11)0.0347 (9)
H22A0.8105820.8703550.5248390.042*
H22B0.6579930.8409760.5389660.042*
C230.7786 (5)0.8819 (4)0.59447 (12)0.0444 (11)
H23A0.7216810.8356380.6174890.053*
H23B0.8742920.8672340.6030210.053*
C24A0.7485 (4)1.0284 (4)0.59630 (11)0.0338 (9)0.489 (10)
H24A0.6499731.0402630.5921320.041*0.489 (10)
H24B0.7935531.0709030.5696250.041*0.489 (10)
C25A0.7905 (9)1.1033 (6)0.6400 (2)0.032 (3)0.489 (10)
H25A0.8911861.1077700.6420780.038*0.489 (10)
C26A0.7327 (11)1.0433 (8)0.6837 (2)0.053 (3)0.489 (10)
H26A0.7627301.0949870.7104630.080*0.489 (10)
H26B0.6338341.0444210.6821560.080*0.489 (10)
H26C0.7642810.9518150.6868270.080*0.489 (10)
C27A0.7307 (5)1.2442 (4)0.63715 (13)0.0569 (12)0.489 (10)
H27A0.7645701.2884140.6093520.085*0.489 (10)
H27B0.6319601.2388000.6357990.085*0.489 (10)
H27C0.7577361.2947180.6645170.085*0.489 (10)
C24B0.7485 (4)1.0284 (4)0.59630 (11)0.0338 (9)0.511 (10)
H24C0.6665321.0447270.5775620.041*0.511 (10)
H24D0.8240451.0754460.5810510.041*0.511 (10)
C25B0.7268 (9)1.0915 (8)0.6433 (3)0.045 (3)0.511 (10)
H25B0.6381041.0632870.6565740.054*0.511 (10)
C26B0.8410 (10)1.0565 (8)0.6758 (3)0.053 (3)0.511 (10)
H26D0.8251271.0981500.7058800.080*0.511 (10)
H26E0.8452210.9602440.6795770.080*0.511 (10)
H26F0.9265891.0885950.6629890.080*0.511 (10)
C27B0.7307 (5)1.2442 (4)0.63715 (13)0.0569 (12)0.511 (10)
H27D0.6581271.2716250.6162390.085*0.511 (10)
H27E0.7184281.2869450.6672300.085*0.511 (10)
H27F0.8181321.2702410.6241240.085*0.511 (10)
C280.5848 (4)0.2749 (4)0.28055 (11)0.0342 (9)
C290.6447 (4)0.4026 (4)0.26568 (15)0.0505 (12)
H29A0.6228440.4713710.2883560.076*
H29B0.7430440.3933410.2633660.076*
H29C0.6078760.4275600.2355010.076*
C300.9279 (4)0.2477 (5)0.25108 (13)0.0432 (11)
C310.9098 (5)0.3112 (5)0.20457 (13)0.0621 (14)
H31A0.9252150.4067010.2071540.093*
H31B0.8176270.2951170.1935190.093*
H31C0.9745730.2731290.1827080.093*
O10.5995 (2)0.2137 (2)0.32194 (8)0.0315 (6)
H1O0.603 (4)0.228 (4)0.2944 (12)0.038*
O20.5323 (2)0.3002 (3)0.42006 (9)0.0422 (7)
O30.6766 (2)0.1988 (2)0.30181 (8)0.0344 (6)
O40.4689 (3)0.2405 (3)0.27494 (9)0.0496 (7)
O50.8345 (2)0.2948 (2)0.28049 (7)0.0348 (6)
O61.0105 (3)0.1650 (4)0.26133 (10)0.0613 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0277 (19)0.034 (2)0.0332 (19)0.0058 (18)0.0024 (16)0.0028 (17)
C20.032 (2)0.033 (2)0.034 (2)0.0058 (19)0.0011 (17)0.0019 (17)
C30.026 (2)0.032 (2)0.035 (2)0.0013 (17)0.0072 (16)0.0072 (17)
C40.0267 (18)0.035 (2)0.0264 (18)0.0015 (18)0.0013 (15)0.0047 (16)
C50.0174 (17)0.032 (2)0.0243 (17)0.0050 (16)0.0050 (14)0.0002 (15)
C60.0251 (18)0.034 (2)0.0190 (17)0.0006 (17)0.0008 (14)0.0001 (16)
C70.0250 (18)0.033 (2)0.0268 (18)0.0060 (17)0.0078 (15)0.0021 (16)
C80.0210 (18)0.033 (2)0.0218 (17)0.0045 (17)0.0086 (15)0.0004 (15)
C90.0146 (16)0.038 (2)0.0276 (18)0.0034 (17)0.0025 (14)0.0034 (17)
C100.0209 (18)0.032 (2)0.0227 (17)0.0027 (17)0.0039 (14)0.0008 (15)
C110.028 (2)0.042 (3)0.035 (2)0.0083 (19)0.0067 (16)0.0087 (19)
C120.030 (2)0.043 (2)0.036 (2)0.0077 (19)0.0080 (16)0.0075 (19)
C130.0193 (17)0.032 (2)0.0228 (17)0.0012 (17)0.0012 (14)0.0012 (15)
C140.0248 (18)0.033 (2)0.0276 (18)0.0048 (17)0.0059 (15)0.0001 (16)
C150.054 (2)0.030 (2)0.028 (2)0.001 (2)0.0026 (18)0.0053 (17)
C160.056 (2)0.030 (2)0.0264 (19)0.001 (2)0.0036 (18)0.0008 (17)
C170.0255 (19)0.0276 (19)0.0293 (18)0.0029 (18)0.0049 (15)0.0006 (15)
C180.031 (2)0.031 (2)0.0293 (18)0.0057 (19)0.0062 (16)0.0013 (17)
C190.0287 (19)0.036 (2)0.0280 (19)0.0028 (19)0.0064 (16)0.0031 (17)
C200.032 (2)0.032 (2)0.0231 (18)0.0006 (18)0.0029 (15)0.0012 (15)
C210.074 (3)0.043 (3)0.032 (2)0.007 (2)0.009 (2)0.0058 (19)
C220.037 (2)0.033 (2)0.0340 (19)0.0020 (19)0.0040 (18)0.0020 (16)
C230.066 (3)0.037 (2)0.030 (2)0.004 (2)0.0018 (19)0.0041 (18)
C24A0.030 (2)0.039 (2)0.033 (2)0.0053 (19)0.0006 (17)0.0044 (16)
C25A0.039 (6)0.036 (6)0.019 (5)0.005 (5)0.009 (4)0.007 (4)
C26A0.074 (8)0.054 (6)0.032 (5)0.021 (6)0.004 (5)0.003 (4)
C27A0.080 (4)0.038 (3)0.052 (2)0.017 (3)0.004 (2)0.012 (2)
C24B0.030 (2)0.039 (2)0.033 (2)0.0053 (19)0.0006 (17)0.0044 (16)
C25B0.033 (6)0.057 (7)0.045 (6)0.000 (5)0.019 (4)0.013 (5)
C26B0.058 (7)0.058 (6)0.042 (5)0.013 (5)0.006 (5)0.010 (5)
C27B0.080 (4)0.038 (3)0.052 (2)0.017 (3)0.004 (2)0.012 (2)
C280.037 (2)0.036 (2)0.0290 (19)0.006 (2)0.0048 (17)0.0032 (18)
C290.048 (3)0.044 (3)0.059 (3)0.003 (2)0.007 (2)0.018 (2)
C300.043 (3)0.053 (3)0.033 (2)0.015 (2)0.0098 (19)0.009 (2)
C310.077 (3)0.082 (3)0.027 (2)0.029 (3)0.013 (2)0.004 (2)
O10.0238 (12)0.0406 (16)0.0301 (13)0.0059 (12)0.0096 (11)0.0015 (13)
O20.0173 (12)0.0556 (18)0.0536 (16)0.0015 (13)0.0003 (12)0.0183 (14)
O30.0298 (13)0.0327 (14)0.0408 (14)0.0015 (13)0.0065 (11)0.0113 (12)
O40.0353 (16)0.0547 (19)0.0588 (17)0.0004 (15)0.0166 (14)0.0149 (15)
O50.0382 (14)0.0442 (16)0.0220 (12)0.0035 (14)0.0021 (11)0.0003 (12)
O60.0466 (18)0.086 (2)0.0515 (19)0.0110 (19)0.0178 (15)0.0129 (18)
Geometric parameters (Å, º) top
C1—C21.522 (5)C19—H19C0.9800
C1—C101.537 (5)C20—C211.519 (5)
C1—H1A0.9900C20—C221.532 (5)
C1—H1B0.9900C20—H201.0000
C2—C31.506 (5)C21—H21A0.9800
C2—H2A0.9900C21—H21B0.9800
C2—H2B0.9900C21—H21C0.9800
C3—O31.458 (4)C22—C231.513 (5)
C3—C41.511 (5)C22—H22A0.9900
C3—H31.0000C22—H22B0.9900
C4—C51.530 (5)C23—C24B1.511 (5)
C4—H4A0.9900C23—C24A1.511 (5)
C4—H4B0.9900C23—H23A0.9900
C5—O11.425 (4)C23—H23B0.9900
C5—C61.532 (5)C24A—C25A1.531 (7)
C5—C101.554 (4)C24A—H24A0.9900
C6—O51.458 (4)C24A—H24B0.9900
C6—C71.487 (5)C25A—C26A1.516 (7)
C6—H61.0000C25A—C27A1.543 (7)
C7—C81.331 (4)C25A—H25A1.0000
C7—H70.9500C26A—H26A0.9800
C8—C91.482 (5)C26A—H26B0.9800
C8—C141.499 (5)C26A—H26C0.9800
C9—O21.457 (4)C27A—H27A0.9800
C9—C111.487 (5)C27A—H27B0.9800
C9—C101.521 (5)C27A—H27C0.9800
C10—C191.542 (4)C24B—C25B1.518 (8)
C11—O21.445 (4)C24B—H24C0.9900
C11—C121.506 (5)C24B—H24D0.9900
C11—H111.05 (4)C25B—C26B1.513 (9)
C12—C131.528 (5)C25B—C27B1.553 (9)
C12—H12A0.9900C25B—H25B1.0000
C12—H12B0.9900C26B—H26D0.9800
C13—C181.533 (5)C26B—H26E0.9800
C13—C141.542 (4)C26B—H26F0.9800
C13—C171.547 (5)C27B—H27D0.9800
C14—C151.532 (5)C27B—H27E0.9800
C14—H141.0000C27B—H27F0.9800
C15—C161.536 (5)C28—O41.210 (4)
C15—H15A0.9900C28—O31.340 (4)
C15—H15B0.9900C28—C291.484 (5)
C16—C171.550 (5)C29—H29A0.9800
C16—H16A0.9900C29—H29B0.9800
C16—H16B0.9900C29—H29C0.9800
C17—C201.531 (4)C30—O61.206 (5)
C17—H171.0000C30—O51.344 (4)
C18—H18A0.9800C30—C311.503 (6)
C18—H18B0.9800C31—H31A0.9800
C18—H18C0.9800C31—H31B0.9800
C19—H19A0.9800C31—H31C0.9800
C19—H19B0.9800O1—H1O0.81 (3)
C2—C1—C10113.0 (3)C10—C19—H19A109.5
C2—C1—H1A109.0C10—C19—H19B109.5
C10—C1—H1A109.0H19A—C19—H19B109.5
C2—C1—H1B109.0C10—C19—H19C109.5
C10—C1—H1B109.0H19A—C19—H19C109.5
H1A—C1—H1B107.8H19B—C19—H19C109.5
C3—C2—C1112.0 (3)C21—C20—C17113.2 (3)
C3—C2—H2A109.2C21—C20—C22111.0 (3)
C1—C2—H2A109.2C17—C20—C22108.9 (3)
C3—C2—H2B109.2C21—C20—H20107.8
C1—C2—H2B109.2C17—C20—H20107.8
H2A—C2—H2B107.9C22—C20—H20107.8
O3—C3—C2108.2 (3)C20—C21—H21A109.5
O3—C3—C4106.4 (3)C20—C21—H21B109.5
C2—C3—C4111.7 (3)H21A—C21—H21B109.5
O3—C3—H3110.2C20—C21—H21C109.5
C2—C3—H3110.2H21A—C21—H21C109.5
C4—C3—H3110.2H21B—C21—H21C109.5
C3—C4—C5112.2 (3)C23—C22—C20118.3 (3)
C3—C4—H4A109.2C23—C22—H22A107.7
C5—C4—H4A109.2C20—C22—H22A107.7
C3—C4—H4B109.2C23—C22—H22B107.7
C5—C4—H4B109.2C20—C22—H22B107.7
H4A—C4—H4B107.9H22A—C22—H22B107.1
O1—C5—C4109.4 (3)C24B—C23—C22112.8 (3)
O1—C5—C6110.0 (3)C24A—C23—C22112.8 (3)
C4—C5—C6111.3 (3)C24A—C23—H23A109.0
O1—C5—C10104.8 (2)C22—C23—H23A109.0
C4—C5—C10111.9 (3)C24A—C23—H23B109.0
C6—C5—C10109.3 (2)C22—C23—H23B109.0
O5—C6—C7106.3 (3)H23A—C23—H23B107.8
O5—C6—C5108.2 (2)C23—C24A—C25A117.3 (4)
C7—C6—C5112.5 (3)C23—C24A—H24A108.0
O5—C6—H6109.9C25A—C24A—H24A108.0
C7—C6—H6109.9C23—C24A—H24B108.0
C5—C6—H6109.9C25A—C24A—H24B108.0
C8—C7—C6124.1 (3)H24A—C24A—H24B107.2
C8—C7—H7118.0C26A—C25A—C24A113.0 (6)
C6—C7—H7118.0C26A—C25A—C27A105.6 (6)
C7—C8—C9120.6 (3)C24A—C25A—C27A107.9 (5)
C7—C8—C14124.0 (3)C26A—C25A—H25A110.1
C9—C8—C14115.4 (3)C24A—C25A—H25A110.1
O2—C9—C8113.7 (3)C27A—C25A—H25A110.1
O2—C9—C1158.8 (2)C25A—C26A—H26A109.5
C8—C9—C11117.4 (3)C25A—C26A—H26B109.5
O2—C9—C10116.0 (3)H26A—C26A—H26B109.5
C8—C9—C10117.0 (3)C25A—C26A—H26C109.5
C11—C9—C10120.3 (3)H26A—C26A—H26C109.5
C9—C10—C1111.9 (3)H26B—C26A—H26C109.5
C9—C10—C19106.6 (3)C25A—C27A—H27A109.5
C1—C10—C19110.7 (3)C25A—C27A—H27B109.5
C9—C10—C5108.5 (3)H27A—C27A—H27B109.5
C1—C10—C5107.9 (3)C25A—C27A—H27C109.5
C19—C10—C5111.3 (3)H27A—C27A—H27C109.5
O2—C11—C959.6 (2)H27B—C27A—H27C109.5
O2—C11—C12115.2 (3)C23—C24B—C25B118.1 (4)
C9—C11—C12123.8 (3)C23—C24B—H24C107.8
O2—C11—H11113 (2)C25B—C24B—H24C107.8
C9—C11—H11115.4 (19)C23—C24B—H24D107.8
C12—C11—H11116.3 (19)C25B—C24B—H24D107.8
C11—C12—C13113.4 (3)H24C—C24B—H24D107.1
C11—C12—H12A108.9C26B—C25B—C24B110.7 (6)
C13—C12—H12A108.9C26B—C25B—C27B106.5 (6)
C11—C12—H12B108.9C24B—C25B—C27B108.1 (5)
C13—C12—H12B108.9C26B—C25B—H25B110.5
H12A—C12—H12B107.7C24B—C25B—H25B110.5
C12—C13—C18108.3 (3)C27B—C25B—H25B110.5
C12—C13—C14108.9 (3)C25B—C26B—H26D109.5
C18—C13—C14110.6 (3)C25B—C26B—H26E109.5
C12—C13—C17116.6 (3)H26D—C26B—H26E109.5
C18—C13—C17111.7 (3)C25B—C26B—H26F109.5
C14—C13—C17100.4 (3)H26D—C26B—H26F109.5
C8—C14—C15118.3 (3)H26E—C26B—H26F109.5
C8—C14—C13114.2 (3)C25B—C27B—H27D109.5
C15—C14—C13103.7 (3)C25B—C27B—H27E109.5
C8—C14—H14106.7H27D—C27B—H27E109.5
C15—C14—H14106.7C25B—C27B—H27F109.5
C13—C14—H14106.7H27D—C27B—H27F109.5
C14—C15—C16104.0 (3)H27E—C27B—H27F109.5
C14—C15—H15A111.0O4—C28—O3122.7 (4)
C16—C15—H15A111.0O4—C28—C29126.2 (3)
C14—C15—H15B111.0O3—C28—C29111.2 (3)
C16—C15—H15B111.0C28—C29—H29A109.5
H15A—C15—H15B109.0C28—C29—H29B109.5
C15—C16—C17107.3 (3)H29A—C29—H29B109.5
C15—C16—H16A110.3C28—C29—H29C109.5
C17—C16—H16A110.3H29A—C29—H29C109.5
C15—C16—H16B110.3H29B—C29—H29C109.5
C17—C16—H16B110.3O6—C30—O5123.8 (4)
H16A—C16—H16B108.5O6—C30—C31126.7 (4)
C20—C17—C13121.1 (3)O5—C30—C31109.5 (4)
C20—C17—C16111.6 (3)C30—C31—H31A109.5
C13—C17—C16102.9 (3)C30—C31—H31B109.5
C20—C17—H17106.8H31A—C31—H31B109.5
C13—C17—H17106.8C30—C31—H31C109.5
C16—C17—H17106.8H31A—C31—H31C109.5
C13—C18—H18A109.5H31B—C31—H31C109.5
C13—C18—H18B109.5C5—O1—H1O110 (3)
H18A—C18—H18B109.5C11—O2—C961.6 (2)
C13—C18—H18C109.5C28—O3—C3118.6 (3)
H18A—C18—H18C109.5C30—O5—C6118.3 (3)
H18B—C18—H18C109.5
C10—C1—C2—C355.8 (4)C9—C11—C12—C1316.5 (5)
C1—C2—C3—O3170.0 (3)C11—C12—C13—C1876.6 (4)
C1—C2—C3—C453.2 (4)C11—C12—C13—C1443.8 (4)
O3—C3—C4—C5171.5 (3)C11—C12—C13—C17156.5 (3)
C2—C3—C4—C553.7 (4)C7—C8—C14—C1511.4 (5)
C3—C4—C5—O159.9 (3)C9—C8—C14—C15168.5 (3)
C3—C4—C5—C6178.4 (3)C7—C8—C14—C13133.8 (3)
C3—C4—C5—C1055.7 (4)C9—C8—C14—C1346.1 (4)
O1—C5—C6—O551.4 (3)C12—C13—C14—C860.6 (4)
C4—C5—C6—O569.9 (3)C18—C13—C14—C858.3 (4)
C10—C5—C6—O5165.9 (3)C17—C13—C14—C8176.4 (3)
O1—C5—C6—C765.7 (3)C12—C13—C14—C15169.3 (3)
C4—C5—C6—C7172.9 (3)C18—C13—C14—C1571.8 (3)
C10—C5—C6—C748.8 (4)C17—C13—C14—C1546.3 (3)
O5—C6—C7—C8136.3 (3)C8—C14—C15—C16160.6 (3)
C5—C6—C7—C818.0 (5)C13—C14—C15—C1633.1 (4)
C6—C7—C8—C92.5 (5)C14—C15—C16—C177.0 (4)
C6—C7—C8—C14177.6 (3)C12—C13—C17—C2076.3 (4)
C7—C8—C9—O2129.4 (3)C18—C13—C17—C2049.0 (4)
C14—C8—C9—O250.7 (4)C14—C13—C17—C20166.3 (3)
C7—C8—C9—C11164.8 (3)C12—C13—C17—C16158.4 (3)
C14—C8—C9—C1115.1 (4)C18—C13—C17—C1676.4 (3)
C7—C8—C9—C1010.2 (5)C14—C13—C17—C1640.9 (3)
C14—C8—C9—C10169.7 (3)C15—C16—C17—C20152.8 (3)
O2—C9—C10—C121.3 (4)C15—C16—C17—C1321.4 (4)
C8—C9—C10—C1159.9 (3)C13—C17—C20—C2154.0 (4)
C11—C9—C10—C146.2 (4)C16—C17—C20—C21175.3 (3)
O2—C9—C10—C19142.4 (3)C13—C17—C20—C22178.0 (3)
C8—C9—C10—C1979.0 (3)C16—C17—C20—C2260.7 (4)
C11—C9—C10—C1974.9 (4)C21—C20—C22—C2352.5 (5)
O2—C9—C10—C597.7 (3)C17—C20—C22—C23177.8 (3)
C8—C9—C10—C541.0 (4)C20—C22—C23—C24B179.2 (4)
C11—C9—C10—C5165.2 (3)C20—C22—C23—C24A179.2 (4)
C2—C1—C10—C9174.8 (3)C22—C23—C24A—C25A171.0 (5)
C2—C1—C10—C1966.5 (4)C23—C24A—C25A—C26A55.2 (8)
C2—C1—C10—C555.5 (4)C23—C24A—C25A—C27A171.5 (5)
O1—C5—C10—C958.2 (3)C22—C23—C24B—C25B161.2 (5)
C4—C5—C10—C9176.6 (3)C23—C24B—C25B—C26B50.8 (9)
C6—C5—C10—C959.6 (3)C23—C24B—C25B—C27B167.2 (5)
O1—C5—C10—C163.2 (3)C12—C11—O2—C9115.8 (3)
C4—C5—C10—C155.2 (4)C8—C9—O2—C11108.8 (3)
C6—C5—C10—C1179.0 (3)C10—C9—O2—C11111.1 (3)
O1—C5—C10—C19175.2 (3)O4—C28—O3—C33.8 (5)
C4—C5—C10—C1966.4 (4)C29—C28—O3—C3176.0 (3)
C6—C5—C10—C1957.4 (4)C2—C3—O3—C2898.5 (3)
C8—C9—C11—O2102.4 (3)C4—C3—O3—C28141.4 (3)
C10—C9—C11—O2103.9 (3)O6—C30—O5—C65.5 (5)
O2—C9—C11—C12101.7 (4)C31—C30—O5—C6175.9 (3)
C8—C9—C11—C120.7 (5)C7—C6—O5—C30131.4 (3)
C10—C9—C11—C12154.4 (4)C5—C6—O5—C30107.5 (3)
O2—C11—C12—C1385.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29B···O6i0.982.613.567 (6)166
O1—H1O···O4ii0.81 (3)2.16 (4)2.923 (3)158 (4)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Centro Regionale di Competenza NTAP of Regione Campania (Italy) for the X-ray facility.

References

First citationAlmeida Leone, P. de, Redburn, J., Hooper, J. N. A. & Quinn, R. J. (2000). J. Nat. Prod. 63, 694–697.  Web of Science PubMed
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBifulco, G., Caserta, T., Gomez-Paloma, L. & Piccialli, V. (2003a). Tetrahedron Lett. 44, 5499–5503.  Web of Science CrossRef CAS
First citationBifulco, G., Caserta, T., Gomez-Paloma, L. & Piccialli, V. (2003b). Tetrahedron Lett. 44, 3429–3429.  Web of Science CrossRef CAS
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCentore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. pp. 3721–3728.  Web of Science CSD CrossRef
First citationD'Atri, V., Oliviero, G., Amato, J., Borbone, N., D'Errico, S., Mayol, L., Piccialli, V., Haider, S., Hoorelbeke, B., Balzarini, J. & Piccialli, G. (2012). Chem. Commun. 48, 9516–9518.  CAS
First citationD'Auria, M. V., Minale, L. & Riccio, R. (1993). Chem. Rev. 93, 1839–1895.  CAS
First citationD'Errico, S., Oliviero, G., Amato, J., Borbone, N., Cerullo, V., Hemminki, A., Piccialli, V., Zaccaria, S., Mayol, L. & Piccialli, G. (2012a). Chem. Commun. 48, 9310–9312.  CAS
First citationD'Errico, S., Oliviero, G., Borbone, N., Amato, J., D'Alonzo, D., Piccialli, V., Mayol, L. & Piccialli, G. (2012b). Molecules, 17, 13036–13044.  Web of Science CAS PubMed
First citationD'Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2011). Molecules, 16, 8110–8118.  Web of Science CAS PubMed
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFieser, M., Quilico, A., Nickon, A., Rosen, W. E., Tarlton, E. J. & Fieser, L. F. (1953). J. Am. Chem. Soc. 75, 4066–4071.  CrossRef CAS Web of Science
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationGunasekera, S. P. & Schmitz, F. J. (1983). J. Org. Chem. 48, 885–886.  CrossRef CAS Web of Science
First citation[ Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.] Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMadaio, A., Piccialli, V. & Sica, D. (1988). Tetrahedron Lett. 29, 5999–6000.  CrossRef CAS Web of Science
First citationMigliuolo, A., Notaro, G., Piccialli, V. & Sica, D. (1991). Steroids, 56, 154–158.  CrossRef CAS PubMed Web of Science
First citationMigliuolo, A., Piccialli, V. & Sica, D. (1992). Steroids, 57, 344–347.  CrossRef PubMed CAS Web of Science
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOliviero, G., Amato, J., Borbone, N., D'Errico, S., Piccialli, G., Bucci, E., Piccialli, V. & Mayol, L. (2008). Tetrahedron, 64, 6475–6481.  Web of Science CrossRef CAS
First citationOliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Piccialli, G. & Mayol, L. (2010a). Eur. J. Org. Chem. pp. 1517–1524.  Web of Science CrossRef
First citationOliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Varra, M., Piccialli, G. & Mayol, L. (2010b). Tetrahedron, 66, 1931–1936.  Web of Science CrossRef CAS
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationPiccialli, V. (2014). Molecules, 19, 6534–6582.  Web of Science CrossRef PubMed
First citationPiccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131–5135.  Web of Science CSD CrossRef CAS
First citationPiccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781–1789.  Web of Science CSD CrossRef
First citationPiccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036–3039.  Web of Science CSD CrossRef CAS
First citationPiccialli, V., Tuzi, A., Oliviero, G., Borbone, N. & Centore, R. (2013). Acta Cryst. E69, o1109–o1110.  CSD CrossRef CAS IUCr Journals
First citationPiccialli, V., Zaccaria, S., Borbone, N., Oliviero, G., D'Errico, S., Hemminki, A., Cerullo, V., Romano, V., Tuzi, A. & Centore, R. (2010). Tetrahedron, 66, 9370–9378.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer 3.1. University of Western Australia.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds