research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of zwitterionic 2-{[(4-imin­iumyl-3-methyl-1,4-di­hydro­pyridin-1-yl)meth­yl]carbamo­yl}benzoate hemihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570 028, India, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, dInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: ckquah@usm.my, khalil.i@najah.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 19 May 2017; accepted 26 May 2017; online 2 June 2017)

The asymmetric unit of the title compound, C15H15N3O3·0.5H2O, comprises two 2-{[(4-iminiumyl-3-methyl-1,4-di­hydro­pyridin-1-yl)meth­yl]carbamo­yl}benzoate zwitterions (A and B) and a water mol­ecule. The dihedral angles between the pyridine and phenyl rings in the zwitterions are 53.69 (10) and 73.56 (11)° in A and B, respectively. In the crystal, mol­ecules are linked by N—H⋯O, O—H⋯O, C—H⋯O and C—H⋯π(ring) hydrogen bonds into a three-dimensional network. The crystal structure also features ππ inter­actions involving the centroids of the pyridine and phenyl rings [centroid–centroid distances = 3.5618 (12) Å in A and 3.8182 (14) Å in B].

1. Chemical context

Zwitterions are high-performance materials that can be used as drug protein stabilizers without affecting the activity of the drug (Keefe & Jiang, 2012[Keefe, A. J. & Jiang, S. (2012). Nat. Chem. 4, 59-63.]). Drug protein stabilizers not only maintain the native chemical structure, but the native secondary and higher order structures necessary for biological activity and can increase the stability of the therapeutic protein and enhancs protein–substrate hydrophobic interactions without affecting the activity of the drugs. Zwitterionic polymers grafted from polysulfone (PSF) membranes show improved protein anti-­fouling properties, together with good blood compatibility and cytocompatibility in comparison with the pristine PSF membrane (Yue et al., 2013[Yue, W.-W., Li, H.-J., Xiang, T., Qin, H., Sun, S.-D. & Zhao, C.-S. (2013). J. Membr. Sci. 446, 79-91.]). Furthermore, zwitterionic nanocarrier drugs showed excellent biocompatibility and non-fouling properties, and were found to extend blood circulation times in vivo. The study and synthesis of new zwitterions is therefore important in the search for new biomedical applications (Jin et al., 2014[Jin, Q., Chen, Y., Wang, Y. & Ji, J. (2014). Colloids Surf. B, 124, 80-86.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound comprises two crystallographically independent 2-{[(4-iminiumyl-3-methyl-1,4-di­hydro­pyridin-1-yl)meth­yl]carbamo­yl}benzoate zwitterions (mol­ecules A and B) and a cocrystallized water mol­ecule, as shown in Fig. 1[link]. The zwitterions are formed through protonation of the imine substituent on the pyridine ring and deprotonation of the carboxyl­ate substituent on the benzene ring. The bond lengths and angles (Table 1[link]) in the title compound (Fig. 1[link]) are generally within normal ranges. However, the N3—C3 [1.335 (3) Å in both molecules] are shorter than expected for an NH2—Car single bond [1.38 (3) Å], but are similar to those found in related compounds with an N+=C double bond (Sharmila et al., 2014[Sharmila, N., Sundar, T. V., Yasodha, A., Puratchikody, A. & Sridhar, B. (2014). Acta Cryst. E70, o1293-o1294.]; Sun et al., 2015[Sun, X., Yang, H., Xu, H.-Y., Liu, J.-L., Zhou, L.-C. & Ren, X.-M. (2015). Synth. Met. 209, 112-118.]). The C—O bonds in the carboxyl­ate units [C15A—O3A = 1.247 (3) Å and C15A—O2A = 1.257 (3) Å] in mol­ecule A, with comparable values in mol­ecule B, are similar to values found in other deprotonated carboxyl­ate groups (Hemamalini & Fun, 2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1843-o1844.]).

Table 1
Selected geometric parameters (Å, °)

O1A—C8A 1.220 (3) O1B—C8B 1.222 (3)
O2A—C15A 1.257 (3) O2B—C15B 1.244 (3)
O3A—C15A 1.247 (3) O3B—C15B 1.249 (3)
N1A—C1A 1.346 (3) N1B—C7B 1.484 (3)
N1A—C7A 1.480 (3) N1B—C1B 1.341 (3)
N1A—C5A 1.355 (3) N1B—C5B 1.351 (3)
N2A—C8A 1.353 (3) N2B—C7B 1.435 (3)
N2A—C7A 1.430 (3) N2B—C8B 1.349 (3)
N3A—C3A 1.335 (3) N3B—C3B 1.335 (3)
       
C1A—N1A—C5A 119.30 (18) C1B—N1B—C5B 119.32 (18)
C5A—N1A—C7A 119.47 (17) C1B—N1B—C7B 120.78 (18)
C1A—N1A—C7A 121.19 (17) C5B—N1B—C7B 119.84 (17)
C7A—N2A—C8A 119.71 (18) C7B—N2B—C8B 120.11 (19)
N1A—C1A—C2A 121.03 (19) N1B—C1B—C2B 121.2 (2)
N3A—C3A—C2A 121.5 (2) N3B—C3B—C2B 122.2 (2)
N3A—C3A—C4A 121.5 (2) N3B—C3B—C4B 120.95 (19)
N1A—C5A—C4A 123.08 (19) N1B—C5B—C4B 123.12 (19)
N1A—C7A—N2A 113.36 (16) N1B—C7B—N2B 113.19 (19)
O1A—C8A—N2A 121.8 (2) O1B—C8B—C9B 121.33 (19)
N2A—C8A—C9A 116.71 (18) N2B—C8B—C9B 116.39 (18)
O1A—C8A—C9A 121.54 (18) O1B—C8B—N2B 122.1 (2)
O3A—C15A—C14A 117.7 (2) O2B—C15B—C14B 117.17 (17)
O2A—C15A—O3A 126.7 (2) O2B—C15B—O3B 125.5 (2)
O2A—C15A—C14A 115.5 (2) O3B—C15B—C14B 117.32 (19)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, mol­ecules are linked by N—H⋯O, C—H⋯O and O—H⋯O hydrogen bonds (Table 2[link]) into a three-dimensional network. Inter­molecular N3A—H1N3⋯O3A, N3A—H2N3⋯O3B, N3B—H3N3⋯O3A and N3B—H4N3⋯O3B hydrogen bonds generate R42(8) ring motifs (Fig. 2[link]), while N2A—H2N2⋯O2B and N2B—H1N2⋯O2A hydrogen bonds form dimers with R22(14) ring motifs (Fig. 3[link]). Mol­ecule A is connected to mol­ecule B through a C2A—H2AACg1 inter­action, while mol­ecules of B are linked by C11B—H11BCg2 inter­actions (Cg1 and Cg2 are the centroids of the C9B–C14B and N1B/C1B–C5B rings) (Fig. 4[link]). The crystal structure also features ππ inter­actions [Cg3⋯Cg3(−x, y, −z + [{1\over 2}]) = 3.5618 (12) Å; Cg1⋯Cg4 = 3.8182 (14) Å, where Cg3 and Cg4 are the centroids of the N1A/C1A–C5A and C9A–C14A rings] (Fig. 5[link]). An overall packing diagram, showing the three-dimensional array of parallel sheet of mol­ecules in the ac plane is shown in Fig. 6[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9B–C14B and N1B/C1B–C5B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2N2⋯O2B 0.88 (2) 2.03 (2) 2.897 (2) 173 (2)
N3A—H2N3⋯O3Bi 0.93 (3) 1.95 (3) 2.864 (3) 168 (2)
N3A—H1N3⋯O3Aii 0.90 (2) 2.01 (3) 2.864 (3) 157 (2)
N2B—H1N2⋯O2A 0.90 (3) 2.12 (3) 3.006 (3) 171 (3)
N3B—H4N3⋯O3Biii 0.89 (2) 2.01 (3) 2.887 (3) 167 (2)
N3B—H3N3⋯O3Aiv 0.95 (3) 2.03 (3) 2.935 (3) 161 (3)
O1W—H1W1⋯O2B 0.87 1.87 2.681 (3) 155
O1W—H2W1⋯O2Av 0.86 1.81 2.581 (3) 147
C1A—H1AA⋯O1Bvi 0.93 2.53 3.355 (3) 147
C5A—H5AA⋯O1W 0.93 2.27 3.083 (3) 146
C7A—H7AA⋯O1W 0.97 2.47 3.139 (3) 126
C7A—H7AB⋯O1Bvi 0.97 2.40 3.336 (3) 162
C1B—H1BA⋯O1Av 0.93 2.20 3.053 (3) 152
C2A—H2AACg1i 0.93 2.95 3.831 (2) 158
C11B—H11BCg2vii 0.93 2.94 3.721 (3) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram, with an R42(8) ring motif generated by N—H⋯O hydrogen bonds (dotted lines).
[Figure 3]
Figure 3
A dimer with an R22(14) ring motif generated by N—H⋯O hydrogen bonds (dotted lines).
[Figure 4]
Figure 4
A partial packing diagram of the title compound, with C—H⋯π inter­actions (dotted lines).
[Figure 5]
Figure 5
The mol­ecular packing in the title compound with two kinds of ππ inter­actions (dotted lines).
[Figure 6]
Figure 6
The overall packing of the title compound, viewed along the b-axis direction, showing parallel sheets in the ac plane linked into a three-dimensional network along b.

4. Database survey

Eight structures containing carbamoylbenzoates were found in a search of the Cambridge Structural Database (Version 3.57; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): N-[2-(4,5,6,7-tetra­hydro­benz­imid­azol-2-­yl)eth­yl]phthalamic acid tetra­hydrate (Elz et al., 1983[Elz, S., Buschauer, A., Drager, M. & Schunack, W. (1983). Z. Naturforsch. Teil B, 38, 1203-1207.]), 2-(phenyl­carbamo­yl)benzoic acid (Smith et al., 1983[Smith, G., Kennard, C. & Katekar, G. (1983). Aust. J. Chem. 36, 2455-2463.]), N-(4-chloro­phen­yl)phthalamic acid (Mornon, 1970[Mornon, J.-P. (1970). Acta Cryst. B26, 1985-1999.]), 2-(pyridin-4-ylcarbamo­yl)benzoate 4-amino­pyridinium monohydrate (Zhu et al., 2010[Zhu, X.-W., Hou, H.-W., Qian, H.-Y. & Zhang, C.-X. (2010). Z. Kristallogr. New Cryst. Struct. 225, 593-594.]), phthalimide–phthalamate monohydrate (Barrett et al., 1998[Barrett, D.-M.-Y., Kahwa, I.-A., Raduchel, B., White, A.-J.-P. & Williams, D.-J.-J. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 1851-1856.]), bi­cyclo­[2.2.1]heptan-2-aminium (R)-2-[(1-phenyl­eth­yl)carbamo­yl]benzoate (Caille et al., 2009[Caille, S., Cui, S., Hwang, T.-L., Wang, X. & Faul, M.-M. (2009). J. Org. Chem. 74, 3833-3842.]), bis­(tri­methyl­ammonium) 7-[2-(carboxyl­ato)benzamido­eth­yl]-7,8-di­carba-nido-undeca­borate(10) (Batsanov et al., 2001[Batsanov, A.-S., Goeta, A.-E., Howard, J.-A.-K., Hughes, A.-K. & Malget, J.-M. (2001). J. Chem. Soc. Dalton Trans. 12, 1820-1826.]) and (R)-1-phenyl­ethanaminium 2-{[(2R,3R)-2,3-dimeth­oxy-2,3-di­methyl-2,3-di­hydro-1,4-benzodioxin-6-yl]carbamo­yl}benzoate (Ramarao et al., 2012[Ramarao, C., Nandipati, R., Navakoti, R. & Kottamasu, R. (2012). Tetrahedron Lett. 53, 637-640.]).

A search for imino­pyridine derivatives using 4-(λ4-aza­nyl­idene)-4H-1λ2-pyridine as the skeleton gave 15 hits, although none of these were zwitterionic derivatives comparable to the title compound. Of these, only three had aromatic rings in the cation in addition to the imino­poyridine unit (Sharmila et al., 2014[Sharmila, N., Sundar, T. V., Yasodha, A., Puratchikody, A. & Sridhar, B. (2014). Acta Cryst. E70, o1293-o1294.]; Pei et al., 2013[Pei, W.-B., Wu, J.-S., Ning, W.-H., Tian, Z.-F., Liu, J.-L. & Ren, X.-M. (2013). Inorg. Chim. Acta, 398, 28-39.])

5. Synthesis and crystallization

The title compound was obtained unexpectedly from the reaction of 0.01 mol of N-(bromo­meth­yl)phthalimide and 0.01 mol of 4-amino-3-methyl­pyridine in 10 ml of di­methyl­formamide with a catalytic amount of potassium carbonate. The mixture was stirred in a 50 ml round-bottomed flask at room temperature for about 3 h. The progress of the reaction was monitored by thin-layer chromatography and the mixture was poured into cold water once the reaction was complete. The resulting precipitate was filtered off, washed successively with distilled water, and recrystallized from acetone solution by slow evaporation to obtain colourless block-shaped single crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N- and O- bound H atoms were located from difference Fourier maps and the former were refined freely [N—H = 0.88 (2)–0.95 (3) Å], whereas for the latter, the distances from atom O1W were fixed at 0.86 Å, the H⋯H distance was fixed at 1.34 Å and the H atoms were refined with a riding model [Uiso(H) = 1.5Ueq(O), and O—H = 0.864 and 0.865 Å]. The C-bound H atoms were positioned geometrically using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.93, 0.96 and 0.97 Å). A rotating-group model was applied to the methyl groups.

Table 3
Experimental details

Crystal data
Chemical formula C15H15N3O3·0.5H2O
Mr 294.31
Crystal system, space group Monoclinic, C2/c
Temperature (K) 294
a, b, c (Å) 21.3157 (18), 11.9883 (8), 22.8642 (15)
β (°) 103.729 (2)
V3) 5675.8 (7)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.28 × 0.26 × 0.13
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.962, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 65196, 5430, 3849
Rint 0.052
(sin θ/λ)max−1) 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.04
No. of reflections 5430
No. of parameters 414
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-{[(4-Iminiumyl-3-methyl-1,4-dihydropyridin-1-yl)methyl]carbamoyl}benzoate hemihydrate top
Crystal data top
C15H15N3O3·0.5H2OF(000) = 2480
Mr = 294.31Dx = 1.378 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8600 reflections
a = 21.3157 (18) Åθ = 2.4–21.2°
b = 11.9883 (8) ŵ = 0.10 mm1
c = 22.8642 (15) ÅT = 294 K
β = 103.729 (2)°Block, colourless
V = 5675.8 (7) Å30.28 × 0.26 × 0.13 mm
Z = 16
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5430 independent reflections
Radiation source: Rotating Anode3849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 18.4 pixels mm-1θmax = 25.8°, θmin = 1.8°
φ and ω scansh = 2525
Absorption correction: multi-scan
SADABS 2014/5
k = 1414
Tmin = 0.962, Tmax = 0.996l = 2727
65196 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 W = 1/[Σ2(FO2) + (0.0647P)2 + 3.8981P]
where P = (FO2 + 2FC2)/3
S = 1.04(Δ/σ)max < 0.001
5430 reflectionsΔρmax = 0.48 e Å3
414 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.22583 (8)0.40107 (12)0.40032 (7)0.0547 (5)
O2A0.34333 (10)0.40853 (15)0.33565 (7)0.0715 (7)
O3A0.38535 (9)0.53318 (14)0.40709 (8)0.0686 (7)
N1A0.11034 (8)0.25855 (14)0.31440 (7)0.0374 (5)
N2A0.22652 (8)0.23844 (15)0.35155 (8)0.0410 (6)
N3A0.06918 (9)0.2157 (2)0.34758 (9)0.0475 (7)
C1A0.07352 (10)0.34764 (17)0.31936 (9)0.0411 (7)
C2A0.01405 (10)0.33503 (17)0.32906 (9)0.0409 (7)
C3A0.01122 (10)0.22851 (17)0.33576 (8)0.0379 (6)
C4A0.02754 (10)0.13531 (17)0.32905 (9)0.0414 (7)
C5A0.08670 (10)0.15470 (17)0.31853 (9)0.0422 (7)
C6A0.00423 (13)0.01857 (19)0.33375 (14)0.0650 (10)
C7A0.17511 (10)0.27198 (19)0.30229 (9)0.0433 (7)
C8A0.25260 (10)0.31309 (17)0.39486 (9)0.0395 (7)
C9A0.31568 (10)0.28213 (16)0.43608 (9)0.0384 (6)
C10A0.32083 (12)0.19564 (18)0.47694 (10)0.0488 (8)
C11A0.37896 (13)0.1736 (2)0.51714 (10)0.0577 (9)
C12A0.43176 (13)0.2375 (2)0.51666 (10)0.0598 (9)
C13A0.42725 (11)0.3252 (2)0.47687 (10)0.0521 (8)
C14A0.36955 (10)0.34807 (18)0.43589 (9)0.0414 (7)
C15A0.36504 (11)0.43856 (19)0.38932 (11)0.0494 (8)
O1B0.33946 (9)0.04329 (13)0.23061 (7)0.0606 (6)
O2B0.29329 (7)0.02903 (12)0.34775 (7)0.0534 (6)
O3B0.35853 (8)0.10987 (13)0.38676 (8)0.0601 (6)
N1B0.29345 (8)0.24185 (14)0.13343 (8)0.0420 (6)
N2B0.32218 (9)0.22607 (16)0.24284 (8)0.0446 (6)
N3B0.35284 (10)0.27772 (19)0.02411 (9)0.0498 (7)
C1B0.29850 (10)0.15205 (18)0.09987 (10)0.0450 (7)
C2B0.31782 (10)0.16157 (17)0.04763 (10)0.0443 (7)
C3B0.33333 (9)0.26616 (17)0.02691 (9)0.0391 (6)
C4B0.32668 (10)0.36049 (16)0.06271 (9)0.0401 (7)
C5B0.30681 (10)0.34382 (17)0.11433 (9)0.0424 (7)
C6B0.33867 (14)0.47561 (19)0.04276 (11)0.0590 (9)
C7B0.27054 (11)0.2309 (2)0.18961 (10)0.0491 (8)
C8B0.35212 (10)0.12839 (17)0.26047 (9)0.0410 (7)
C9B0.40518 (10)0.13125 (17)0.31648 (9)0.0399 (6)
C10B0.45840 (12)0.1987 (2)0.31831 (12)0.0596 (9)
C11B0.51180 (13)0.1928 (3)0.36621 (14)0.0736 (11)
C12B0.51240 (12)0.1204 (2)0.41257 (13)0.0659 (10)
C13B0.45962 (11)0.0541 (2)0.41153 (10)0.0515 (8)
C14B0.40539 (9)0.05834 (16)0.36407 (9)0.0371 (6)
C15B0.34765 (10)0.01351 (16)0.36602 (9)0.0386 (7)
O1W0.18224 (9)0.0223 (2)0.26300 (9)0.0921 (9)
H2N20.2484 (10)0.1778 (19)0.3480 (9)0.036 (6)*
H2N30.0890 (14)0.279 (2)0.3580 (12)0.074 (9)*
H1N30.0822 (13)0.148 (2)0.3573 (12)0.071 (8)*
H1AA0.089400.419000.316000.0490*
H2AA0.010800.397900.331400.0490*
H5AA0.112200.093800.313900.0510*
H6AA0.037200.009100.306300.0980*
H6AB0.000400.004900.374100.0980*
H6AC0.034500.033100.323800.0980*
H7AA0.177200.228200.267100.0520*
H10A0.284900.152000.477400.0590*
H7AB0.181200.349600.293100.0520*
H11A0.382100.115200.544500.0690*
H12A0.471000.221900.543300.0720*
H13A0.463300.369400.477500.0630*
H10B0.458200.248400.287000.0720*
H11B0.547400.238200.366900.0880*
H1N20.3306 (14)0.285 (3)0.2678 (14)0.086 (10)*
H12B0.548500.116100.444700.0790*
H4N30.3539 (12)0.218 (2)0.0473 (12)0.061 (7)*
H13B0.460300.005300.443300.0620*
H3N30.3629 (13)0.348 (3)0.0382 (12)0.077 (9)*
H1BA0.288600.082000.112600.0540*
H2BA0.320900.098000.025200.0530*
H5BA0.302200.405500.137600.0510*
H6BA0.310800.489800.003900.0890*
H6BB0.382900.482000.040300.0890*
H6BC0.330100.528900.071200.0890*
H7BA0.243000.293900.192800.0590*
H7BB0.244700.163700.187300.0590*
H1W10.222200.014100.282000.1380*
H2W10.176000.036400.240400.1380*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0601 (10)0.0382 (8)0.0649 (10)0.0109 (7)0.0128 (8)0.0017 (7)
O2A0.0976 (14)0.0641 (11)0.0488 (10)0.0138 (10)0.0096 (9)0.0080 (8)
O3A0.0942 (14)0.0495 (10)0.0758 (12)0.0161 (9)0.0477 (10)0.0041 (9)
N1A0.0341 (9)0.0401 (9)0.0390 (9)0.0023 (7)0.0105 (7)0.0026 (7)
N2A0.0343 (9)0.0373 (10)0.0516 (11)0.0018 (8)0.0104 (8)0.0016 (8)
N3A0.0398 (11)0.0490 (12)0.0581 (12)0.0002 (9)0.0204 (9)0.0038 (10)
C1A0.0438 (12)0.0375 (11)0.0418 (11)0.0019 (9)0.0099 (9)0.0025 (9)
C2A0.0434 (12)0.0381 (11)0.0424 (11)0.0060 (9)0.0127 (9)0.0021 (9)
C3A0.0367 (11)0.0444 (11)0.0323 (10)0.0001 (9)0.0074 (8)0.0020 (8)
C4A0.0411 (12)0.0400 (11)0.0452 (12)0.0026 (9)0.0143 (9)0.0010 (9)
C5A0.0411 (12)0.0389 (11)0.0480 (12)0.0040 (9)0.0133 (9)0.0003 (9)
C6A0.0618 (16)0.0428 (13)0.100 (2)0.0044 (12)0.0381 (15)0.0023 (13)
C7A0.0366 (11)0.0497 (12)0.0452 (12)0.0024 (9)0.0129 (9)0.0045 (9)
C8A0.0425 (12)0.0339 (11)0.0455 (11)0.0015 (9)0.0171 (9)0.0052 (9)
C9A0.0413 (11)0.0391 (11)0.0365 (10)0.0014 (9)0.0127 (9)0.0008 (8)
C10A0.0564 (14)0.0443 (12)0.0490 (13)0.0002 (10)0.0192 (11)0.0044 (10)
C11A0.0724 (17)0.0582 (15)0.0419 (12)0.0077 (13)0.0126 (12)0.0107 (11)
C12A0.0611 (16)0.0770 (17)0.0366 (12)0.0135 (14)0.0022 (11)0.0013 (12)
C13A0.0444 (13)0.0623 (15)0.0491 (13)0.0056 (11)0.0099 (10)0.0072 (11)
C14A0.0432 (12)0.0459 (12)0.0370 (11)0.0001 (9)0.0134 (9)0.0022 (9)
C15A0.0519 (14)0.0446 (13)0.0573 (14)0.0082 (10)0.0242 (11)0.0001 (11)
O1B0.0794 (12)0.0455 (9)0.0485 (9)0.0102 (8)0.0015 (8)0.0085 (7)
O2B0.0394 (9)0.0426 (9)0.0765 (11)0.0006 (7)0.0102 (8)0.0035 (8)
O3B0.0658 (11)0.0423 (9)0.0775 (11)0.0070 (8)0.0277 (9)0.0203 (8)
N1B0.0431 (10)0.0390 (10)0.0444 (10)0.0052 (8)0.0116 (8)0.0069 (8)
N2B0.0538 (11)0.0369 (10)0.0439 (10)0.0061 (8)0.0133 (9)0.0066 (8)
N3B0.0584 (12)0.0475 (12)0.0461 (11)0.0049 (10)0.0176 (9)0.0073 (10)
C1B0.0418 (12)0.0378 (12)0.0522 (13)0.0000 (9)0.0046 (10)0.0054 (10)
C2B0.0418 (12)0.0376 (11)0.0492 (12)0.0057 (9)0.0025 (10)0.0055 (9)
C3B0.0315 (10)0.0432 (11)0.0405 (11)0.0067 (9)0.0044 (9)0.0004 (9)
C4B0.0432 (12)0.0358 (11)0.0412 (11)0.0028 (9)0.0100 (9)0.0011 (9)
C5B0.0483 (12)0.0362 (11)0.0433 (11)0.0045 (9)0.0120 (9)0.0030 (9)
C6B0.0861 (18)0.0434 (13)0.0516 (14)0.0042 (12)0.0246 (13)0.0004 (10)
C7B0.0484 (13)0.0529 (13)0.0495 (13)0.0062 (10)0.0189 (11)0.0153 (10)
C8B0.0494 (12)0.0362 (11)0.0401 (11)0.0022 (9)0.0161 (9)0.0025 (9)
C9B0.0391 (11)0.0382 (11)0.0443 (11)0.0002 (9)0.0140 (9)0.0035 (9)
C10B0.0575 (15)0.0606 (15)0.0652 (16)0.0133 (12)0.0235 (13)0.0054 (12)
C11B0.0470 (15)0.080 (2)0.091 (2)0.0225 (14)0.0111 (14)0.0056 (16)
C12B0.0423 (14)0.0819 (19)0.0674 (17)0.0056 (13)0.0008 (12)0.0084 (15)
C13B0.0473 (13)0.0583 (14)0.0463 (12)0.0031 (11)0.0062 (10)0.0013 (11)
C14B0.0378 (11)0.0362 (10)0.0379 (11)0.0035 (9)0.0105 (9)0.0040 (8)
C15B0.0435 (12)0.0343 (11)0.0396 (11)0.0032 (9)0.0131 (9)0.0008 (9)
O1W0.0648 (12)0.1316 (19)0.0752 (13)0.0212 (12)0.0074 (10)0.0386 (12)
Geometric parameters (Å, º) top
O1A—C8A1.220 (3)C14A—C15A1.507 (3)
O2A—C15A1.257 (3)C1A—H1AA0.9300
O3A—C15A1.247 (3)C2A—H2AA0.9300
O1W—H1W10.8700C5A—H5AA0.9300
O1W—H2W10.8600C6A—H6AB0.9600
N1A—C1A1.346 (3)C6A—H6AA0.9600
N1A—C7A1.480 (3)C6A—H6AC0.9600
N1A—C5A1.355 (3)C7A—H7AB0.9700
N2A—C8A1.353 (3)C7A—H7AA0.9700
N2A—C7A1.430 (3)C10A—H10A0.9300
N3A—C3A1.335 (3)C11A—H11A0.9300
N2A—H2N20.88 (2)C12A—H12A0.9300
N3A—H1N30.90 (2)C13A—H13A0.9300
N3A—H2N30.93 (3)C1B—C2B1.358 (3)
O1B—C8B1.222 (3)C2B—C3B1.407 (3)
O2B—C15B1.244 (3)C3B—C4B1.423 (3)
O3B—C15B1.249 (3)C4B—C6B1.494 (3)
N1B—C7B1.484 (3)C4B—C5B1.360 (3)
N1B—C1B1.341 (3)C8B—C9B1.494 (3)
N1B—C5B1.351 (3)C9B—C10B1.386 (3)
N2B—C7B1.435 (3)C9B—C14B1.395 (3)
N2B—C8B1.349 (3)C10B—C11B1.381 (4)
N3B—C3B1.335 (3)C11B—C12B1.368 (4)
N2B—H1N20.90 (3)C12B—C13B1.373 (4)
N3B—H3N30.95 (3)C13B—C14B1.386 (3)
N3B—H4N30.89 (2)C14B—C15B1.512 (3)
C1A—C2A1.346 (3)C1B—H1BA0.9300
C2A—C3A1.408 (3)C2B—H2BA0.9300
C3A—C4A1.419 (3)C5B—H5BA0.9300
C4A—C6A1.498 (3)C6B—H6BB0.9600
C4A—C5A1.359 (3)C6B—H6BA0.9600
C8A—C9A1.494 (3)C6B—H6BC0.9600
C9A—C10A1.383 (3)C7B—H7BB0.9700
C9A—C14A1.395 (3)C7B—H7BA0.9700
C10A—C11A1.382 (4)C10B—H10B0.9300
C11A—C12A1.364 (4)C11B—H11B0.9300
C12A—C13A1.379 (3)C12B—H12B0.9300
C13A—C14A1.385 (3)C13B—H13B0.9300
H1W1—O1W—H2W1102.00C12A—C11A—H11A120.00
C1A—N1A—C5A119.30 (18)C13A—C12A—H12A120.00
C5A—N1A—C7A119.47 (17)C11A—C12A—H12A120.00
C1A—N1A—C7A121.19 (17)C14A—C13A—H13A120.00
C7A—N2A—C8A119.71 (18)C12A—C13A—H13A120.00
C7A—N2A—H2N2119.0 (13)C1B—N1B—C5B119.32 (18)
C8A—N2A—H2N2118.7 (14)C1B—N1B—C7B120.78 (18)
C3A—N3A—H2N3117.3 (18)C5B—N1B—C7B119.84 (17)
H2N3—N3A—H1N3119 (2)C7B—N2B—C8B120.11 (19)
C3A—N3A—H1N3120.5 (18)N1B—C1B—C2B121.2 (2)
C8B—N2B—H1N2119 (2)C1B—C2B—C3B121.04 (19)
C7B—N2B—H1N2120 (2)N3B—C3B—C2B122.2 (2)
C3B—N3B—H3N3122.2 (18)N3B—C3B—C4B120.95 (19)
C3B—N3B—H4N3119.5 (17)C2B—C3B—C4B116.82 (18)
H4N3—N3B—H3N3118 (2)C3B—C4B—C5B118.46 (18)
N1A—C1A—C2A121.03 (19)C3B—C4B—C6B120.72 (19)
C1A—C2A—C3A121.3 (2)C5B—C4B—C6B120.77 (19)
C2A—C3A—C4A117.04 (19)N1B—C5B—C4B123.12 (19)
N3A—C3A—C2A121.5 (2)N1B—C7B—N2B113.19 (19)
N3A—C3A—C4A121.5 (2)O1B—C8B—C9B121.33 (19)
C3A—C4A—C6A121.1 (2)N2B—C8B—C9B116.39 (18)
C3A—C4A—C5A118.23 (19)O1B—C8B—N2B122.1 (2)
C5A—C4A—C6A120.7 (2)C10B—C9B—C14B119.4 (2)
N1A—C5A—C4A123.08 (19)C8B—C9B—C10B119.14 (19)
N1A—C7A—N2A113.36 (16)C8B—C9B—C14B121.05 (19)
O1A—C8A—N2A121.8 (2)C9B—C10B—C11B120.6 (2)
N2A—C8A—C9A116.71 (18)C10B—C11B—C12B120.1 (3)
O1A—C8A—C9A121.54 (18)C11B—C12B—C13B119.8 (3)
C8A—C9A—C14A118.39 (18)C12B—C13B—C14B121.3 (2)
C10A—C9A—C14A119.6 (2)C9B—C14B—C13B118.78 (19)
C8A—C9A—C10A121.9 (2)C9B—C14B—C15B121.88 (18)
C9A—C10A—C11A120.5 (2)C13B—C14B—C15B119.32 (18)
C10A—C11A—C12A119.9 (2)O2B—C15B—C14B117.17 (17)
C11A—C12A—C13A120.4 (2)O2B—C15B—O3B125.5 (2)
C12A—C13A—C14A120.6 (2)O3B—C15B—C14B117.32 (19)
C9A—C14A—C15A119.71 (19)C2B—C1B—H1BA119.00
C13A—C14A—C15A121.2 (2)N1B—C1B—H1BA119.00
C9A—C14A—C13A119.0 (2)C1B—C2B—H2BA119.00
O3A—C15A—C14A117.7 (2)C3B—C2B—H2BA119.00
O2A—C15A—O3A126.7 (2)C4B—C5B—H5BA118.00
O2A—C15A—C14A115.5 (2)N1B—C5B—H5BA118.00
C2A—C1A—H1AA119.00C4B—C6B—H6BA109.00
N1A—C1A—H1AA119.00C4B—C6B—H6BC110.00
C3A—C2A—H2AA119.00H6BA—C6B—H6BB109.00
C1A—C2A—H2AA119.00C4B—C6B—H6BB109.00
N1A—C5A—H5AA118.00H6BB—C6B—H6BC110.00
C4A—C5A—H5AA119.00H6BA—C6B—H6BC110.00
C4A—C6A—H6AC109.00N1B—C7B—H7BB109.00
H6AA—C6A—H6AB109.00N2B—C7B—H7BA109.00
C4A—C6A—H6AB110.00N1B—C7B—H7BA109.00
C4A—C6A—H6AA109.00H7BA—C7B—H7BB108.00
H6AA—C6A—H6AC110.00N2B—C7B—H7BB109.00
H6AB—C6A—H6AC109.00C9B—C10B—H10B120.00
H7AA—C7A—H7AB108.00C11B—C10B—H10B120.00
N2A—C7A—H7AB109.00C12B—C11B—H11B120.00
N2A—C7A—H7AA109.00C10B—C11B—H11B120.00
N1A—C7A—H7AA109.00C11B—C12B—H12B120.00
N1A—C7A—H7AB109.00C13B—C12B—H12B120.00
C11A—C10A—H10A120.00C12B—C13B—H13B119.00
C9A—C10A—H10A120.00C14B—C13B—H13B119.00
C10A—C11A—H11A120.00
C5A—N1A—C1A—C2A0.8 (3)C9A—C10A—C11A—C12A0.0 (4)
C7A—N1A—C1A—C2A178.52 (18)C10A—C11A—C12A—C13A1.0 (4)
C1A—N1A—C5A—C4A1.7 (3)C11A—C12A—C13A—C14A1.6 (4)
C7A—N1A—C5A—C4A179.45 (18)C12A—C13A—C14A—C15A175.7 (2)
C1A—N1A—C7A—N2A112.8 (2)C12A—C13A—C14A—C9A1.0 (3)
C5A—N1A—C7A—N2A69.5 (2)C9A—C14A—C15A—O2A51.8 (3)
C8A—N2A—C7A—N1A88.4 (2)C13A—C14A—C15A—O3A52.1 (3)
C7A—N2A—C8A—O1A15.1 (3)C9A—C14A—C15A—O3A131.2 (2)
C7A—N2A—C8A—C9A165.31 (18)C13A—C14A—C15A—O2A125.0 (2)
C7B—N1B—C5B—C4B178.6 (2)N1B—C1B—C2B—C3B0.1 (3)
C1B—N1B—C7B—N2B97.4 (2)C1B—C2B—C3B—N3B179.6 (2)
C5B—N1B—C7B—N2B85.4 (2)C1B—C2B—C3B—C4B1.0 (3)
C5B—N1B—C1B—C2B1.1 (3)N3B—C3B—C4B—C5B179.8 (2)
C7B—N1B—C1B—C2B178.3 (2)N3B—C3B—C4B—C6B2.6 (3)
C1B—N1B—C5B—C4B1.4 (3)C2B—C3B—C4B—C5B0.8 (3)
C8B—N2B—C7B—N1B83.4 (2)C2B—C3B—C4B—C6B176.8 (2)
C7B—N2B—C8B—O1B4.4 (3)C3B—C4B—C5B—N1B0.4 (3)
C7B—N2B—C8B—C9B179.84 (19)C6B—C4B—C5B—N1B178.0 (2)
N1A—C1A—C2A—C3A1.5 (3)O1B—C8B—C9B—C10B115.5 (3)
C1A—C2A—C3A—N3A177.5 (2)O1B—C8B—C9B—C14B57.2 (3)
C1A—C2A—C3A—C4A2.8 (3)N2B—C8B—C9B—C10B60.3 (3)
N3A—C3A—C4A—C5A178.40 (19)N2B—C8B—C9B—C14B127.0 (2)
C2A—C3A—C4A—C6A178.4 (2)C8B—C9B—C10B—C11B171.8 (2)
C2A—C3A—C4A—C5A2.0 (3)C14B—C9B—C10B—C11B1.1 (4)
N3A—C3A—C4A—C6A1.3 (3)C8B—C9B—C14B—C13B171.6 (2)
C6A—C4A—C5A—N1A179.4 (2)C8B—C9B—C14B—C15B10.1 (3)
C3A—C4A—C5A—N1A0.3 (3)C10B—C9B—C14B—C13B1.2 (3)
O1A—C8A—C9A—C10A111.7 (2)C10B—C9B—C14B—C15B177.2 (2)
N2A—C8A—C9A—C14A116.8 (2)C9B—C10B—C11B—C12B0.4 (4)
O1A—C8A—C9A—C14A63.6 (3)C10B—C11B—C12B—C13B0.4 (4)
N2A—C8A—C9A—C10A67.9 (3)C11B—C12B—C13B—C14B0.4 (4)
C14A—C9A—C10A—C11A0.5 (3)C12B—C13B—C14B—C9B0.4 (3)
C8A—C9A—C14A—C13A175.42 (19)C12B—C13B—C14B—C15B178.0 (2)
C8A—C9A—C14A—C15A7.8 (3)C9B—C14B—C15B—O2B38.6 (3)
C10A—C9A—C14A—C13A0.0 (3)C9B—C14B—C15B—O3B142.6 (2)
C10A—C9A—C14A—C15A176.8 (2)C13B—C14B—C15B—O2B139.7 (2)
C8A—C9A—C10A—C11A175.8 (2)C13B—C14B—C15B—O3B39.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9B–C14B and N1B/C1B–C5B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2A—H2N2···O2B0.88 (2)2.03 (2)2.897 (2)173 (2)
N3A—H2N3···O3Bi0.93 (3)1.95 (3)2.864 (3)168 (2)
N3A—H1N3···O3Aii0.90 (2)2.01 (3)2.864 (3)157 (2)
N2B—H1N2···O2A0.90 (3)2.12 (3)3.006 (3)171 (3)
N3B—H4N3···O3Biii0.89 (2)2.01 (3)2.887 (3)167 (2)
N3B—H3N3···O3Aiv0.95 (3)2.03 (3)2.935 (3)161 (3)
O1W—H1W1···O2B0.871.872.681 (3)155
O1W—H2W1···O2Av0.861.812.581 (3)147
C1A—H1AA···O1Bvi0.932.533.355 (3)147
C5A—H5AA···O1W0.932.273.083 (3)146
C7A—H7AA···O1W0.972.473.139 (3)126
C7A—H7AB···O1Bvi0.972.403.336 (3)162
C1B—H1BA···O1Av0.932.203.053 (3)152
C2A—H2AA···Cg1i0.932.953.831 (2)158
C11B—H11B···Cg2vii0.932.943.721 (3)142
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x, y, z1/2; (iv) x, y+1, z1/2; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1, y, z+1/2.
 

Acknowledgements

AJS and HCK thank the Malaysian Government for MyBrain15 scholarships. CSCK extends his appreciation to Vidya Vikas Research & Development Centre for facilities and encouragement.

References

First citationBarrett, D.-M.-Y., Kahwa, I.-A., Raduchel, B., White, A.-J.-P. & Williams, D.-J.-J. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 1851–1856.  Web of Science CSD CrossRef Google Scholar
First citationBatsanov, A.-S., Goeta, A.-E., Howard, J.-A.-K., Hughes, A.-K. & Malget, J.-M. (2001). J. Chem. Soc. Dalton Trans. 12, 1820–1826.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaille, S., Cui, S., Hwang, T.-L., Wang, X. & Faul, M.-M. (2009). J. Org. Chem. 74, 3833–3842.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationElz, S., Buschauer, A., Drager, M. & Schunack, W. (1983). Z. Naturforsch. Teil B, 38, 1203–1207.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1843–o1844.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Q., Chen, Y., Wang, Y. & Ji, J. (2014). Colloids Surf. B, 124, 80–86.  Web of Science CrossRef CAS Google Scholar
First citationKeefe, A. J. & Jiang, S. (2012). Nat. Chem. 4, 59–63.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMornon, J.-P. (1970). Acta Cryst. B26, 1985–1999.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPei, W.-B., Wu, J.-S., Ning, W.-H., Tian, Z.-F., Liu, J.-L. & Ren, X.-M. (2013). Inorg. Chim. Acta, 398, 28–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamarao, C., Nandipati, R., Navakoti, R. & Kottamasu, R. (2012). Tetrahedron Lett. 53, 637–640.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharmila, N., Sundar, T. V., Yasodha, A., Puratchikody, A. & Sridhar, B. (2014). Acta Cryst. E70, o1293–o1294.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G., Kennard, C. & Katekar, G. (1983). Aust. J. Chem. 36, 2455–2463.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X., Yang, H., Xu, H.-Y., Liu, J.-L., Zhou, L.-C. & Ren, X.-M. (2015). Synth. Met. 209, 112–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationYue, W.-W., Li, H.-J., Xiang, T., Qin, H., Sun, S.-D. & Zhao, C.-S. (2013). J. Membr. Sci. 446, 79–91.  Web of Science CrossRef CAS Google Scholar
First citationZhu, X.-W., Hou, H.-W., Qian, H.-Y. & Zhang, C.-X. (2010). Z. Kristallogr. New Cryst. Struct. 225, 593–594.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds