research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(4-oxo-2-sulfanyl­­idene-1,3-thia­zolidin-3-yl)-2-(thio­phen-3-yl)acetamide

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bFaculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam, cDepartment of Chemistry, Hanoi University of Science, 19 Le Thanh Tong Street, Hoan Kiem District, Hanoi, Vietnam, and dDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 April 2017; accepted 23 May 2017; online 31 May 2017)

The title compound, C9H8N2O2S3, crystallizes with two mol­ecules (A and B) in the asymmetric unit. Both have similar conformations (overlay r.m.s. deviation = 0.209 Å) and are linked by an N—H⋯O hydrogen bond. In both mol­ecules, the thio­phene rings show orientational disorder, with occupancy factors of 0.6727 (17) and 0.3273 (17) for mol­ecule A, and 0.7916 (19) and 0.2084 (19) for mol­ecule B. The five-membered rings make an angle of 79.7 (2)° in mol­ecule A and an angle of 66.8 (2)° in mol­ecule B. In the crystal, chains of mol­ecules running along the a-axis direction are linked by N—H⋯O hydrogen bonds. The inter­action of adjacent chains through N—H⋯O hydrogen bonds leads to two types of ring structures containing four mol­ecules and described by the graph-set motifs R44(18) and R42(14).

1. Chemical context

Thio­phene, C4H4S, belongs to a class of aromatic five-membered heterocycles containing one S heteroatom. Thio­phene and its derivatives occur in petroleum or coal (Orr & White, 1990[Orr, W. L. & White, C. M. (1990). Editors. Geochemistry of Sulfur in fossil fuels. Washington, DC: American Chemical Society.]). Thio­phene-based compounds have applications in modern drug design (Santagati et al., 1994[Santagati, A., Modica, M., Santagati, M., Garuso, A. & Cutuli, V. (1994). Pharmazie, 49, 64-65.]), electronic and optoelectronic devices (Barbarella et al., 2005[Barbarella, G., Melucci, M. & Sotgiu, G. (2005). Adv. Mater. 17, 1581-1593.]), and conductive and electroluminescent polymers (Friend et al., 1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121-128.]). Also, several reviews of various aspects of thio­phene coordination and reactivity in transition-metal complexes have been reported (Barbarella et al., 2005[Barbarella, G., Melucci, M. & Sotgiu, G. (2005). Adv. Mater. 17, 1581-1593.]).

[Scheme 1]

Derivatives of rhodanine (or 2-thioxo-1,3-thia­zolidin-4-one) have inter­esting pharmacological properties, such as the drug Epalrestat, which is an aldose reductase inhibitor used to treat diabetic neuropathy (Tomašić & Mašič, 2012[Tomašić, T. & Mašič, L. P. (2012). Expert Opin. Drug Discov. 7, 549-560.]). Some other rhodanine derivatives were designed and synthesized for detecting tau pathology in the brains of patients with Alzheimer's disease (Ono et al., 2011[Ono, M., Hayashi, S., Matsumura, K., Kimura, H., Okamoto, Y., Ihara, M., Takahashi, R., Mori, H. & Saji, H. (2011). ACS Chem. Neurosci. 2, 269-275.]).

As a continuation of our research (Nguyen et al., 2016[Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259-263.]; Vu et al., 2016[Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730-735.]) on the chemical, physical and biological properties of new polythio­phenes, a new thio­phene monomer containing rhodanine has been prepared. In the presence of FeCl3, thio­phene monomers can be polymerized by C—C bond formation between the 2- and 5-positions of two subsequent thio­phene monomers, resulting in an extended π-conjugated system. We present here the synthesis and crystal structure of N-(4-oxo-2-sulfanyl­idene-1,3-thia­zolidin-3-yl)-2-(thio­phen-3-yl)acetamide, 3[link].

2. Structural commentary

Crystals of the title compound belong to the triclinic space group P[\overline{1}] with two independent mol­ecules (A and B) per asymmetric unit (Fig. 1[link]). In both mol­ecules, the thio­phene ring is disordered over two positions by a rotation of approximately 180° around the C5—C3 or C15—C13 bond for mol­ecules A and B, respectively [occupancy factors = 0.6727 (17) and 0.3273 (17) for mol­ecule A, and 0.7916 (19) and 0.2084 (19) for mol­ecule B]. In the current discussion, only the major components will be considered. The 1,3-thia­zolidine ring is almost planar (r.m.s. deviation = 0.020 Å for ring S2/N2/C7–C9 and 0.010 Å for ring S12/N12/C17–C19) with the N3-substitiuents N1 [0.141 (1) Å] and N11 [0.100 (1) Å] situated in the same plane (deviations from plane given in parenthesis). Both thio­phene rings are also planar as expected (r.m.s. deviation = 0.011 Å for ring S1A/C1A–C4A and 0.002 Å for ring S11A/C11A–C14A), with the substituents C5 [−0.065 (2) Å] and C15 [0.001 (1) Å] coplanar. In mol­ecule A, the heterocyclic rings make an angle of 79.7 (2)°; in mol­ecule B, this angle is 66.8 (2)°. Also, the amide group and the 1,3-thia­zolidine ring are oriented almost perpendicular to each other. In mol­ecule A, the plane through the atoms of the amide group (N1/C6/O1) makes an angle of 76.32 (8)° with the best plane through the 1,3-thia­zolidine ring; for mol­ecule B, this angle is 83.88 (6)°. Both mol­ecules in the asymmetric unit are linked by an N1—H1⋯O11 hydrogen bond (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1A/C1A–C4A and S11A/C11A–C14A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O11 0.824 (19) 1.973 (19) 2.7923 (16) 173.1 (18)
N11—H11⋯O1i 0.819 (19) 2.189 (19) 2.8436 (16) 137.1 (16)
N11—H11⋯O2ii 0.819 (19) 2.519 (18) 3.0965 (16) 128.6 (15)
C5—H5A⋯O12iii 0.99 2.46 3.3901 (19) 156
C9—H9A⋯O2iv 0.99 2.53 3.2443 (19) 129
C9—H9B⋯S13ii 0.99 2.81 3.6570 (17) 144
C15—H15A⋯O2ii 0.99 2.37 3.2862 (19) 154
C9—H9ACg1iv 0.99 2.73 3.276 (3) 115
C19—H19ACg2iii 0.99 2.77 3.480 (2) 129
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y, -z+1.
[Figure 1]
Figure 1
View of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii. The minor component of the disordered thio­phene rings is shown in pale yellow.

3. Supra­molecular features

The crystal packing is governed by hydrogen bonding. Chains of mol­ecules are formed along the a-axis direction by alternating N1—H1⋯O11 and N11—H11⋯O1 hydrogen bonds (Table 1[link] and Fig. 2[link]). The inter­action of adjacent chains through N11—H11⋯O2 hydrogen bonds results in two different types of ring structures, each containing four mol­ecules: (i) a ring structure of graph-set motif R44(18) showing also additional C—H⋯O and C—H⋯S inter­actions (Table 1[link] and Fig. 3[link]), and (ii) a ring structure with graph-set motif R42(14) (Fig. 4[link]). The packing shows a number of additional C—H⋯O, C—H⋯S and weak C—H⋯π inter­actions (Table 1[link]). The crystal packing contains no voids.

[Figure 2]
Figure 2
Part of the crystal packing of the title compound, showing a chain of mol­ecules along the a axis formed by N—H⋯O hydrogen-bond inter­actions a and b [see Table 1[link]; symmetry codes: (i) x − 1, y, z; (ii) x + 1, y, z].
[Figure 3]
Figure 3
Ring of graph-set motif R44(18) formed by N—H⋯O hydrogen-bond inter­actions a and c [see Table 1[link]; symmetry code: (i) −x + 1, −y, −z + 1].
[Figure 4]
Figure 4
Ring of graph-set motif R42(14) formed by N—H⋯O hydrogen-bond inter­actions b and c [see Table 1[link]; symmetry codes: (i) x − 1, y, z; (ii) −x, −y, −z + 1; (iii) −x + 1, −y, −z + 1].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing an N-substituted 2-thioxo-1,3-thia­zolidin-4-one ring gave 26 hits (169 hits when substituents at the 5-position are also allowed). In all cases, the 1,3-thia­zolidine ring can be considered to be planar, as the largest deviation from the best plane through the ring atoms was only 0.070 Å [for the complex bis­(rhodanine)copper(I) iodide; refcode VICJUM; Moers et al., 1986[Moers, F. G., Smits, J. M. M. & Beurskens, P. T. (1986). J. Crystallogr. Spectrosc. Res. 16, 101-106.]]. The substituent at the N3 position is situated in the 1,3-thia­zolidine plane, with a largest deviation of 0.174 Å for the case with –NH2 as substituent (refcode EDEPUZ01; Jabeen et al., 2007[Jabeen, S., Palmer, R. A., Potter, B. S., Helliwell, M., Dines, T. J. & Chowdhry, B. Z. (2007). J. Chem. Crystallogr. 39, 151-156.]).

Rotational disorder in 3-CH2-thio­phene fragments is frequently observed (25 structures of the 67 fragments present in the CSD).

5. Synthesis and crystallization

The reaction scheme to synthesize the title compound, 3, is given in Fig. 5[link].

[Figure 5]
Figure 5
Reaction scheme for the title compound.

5.1. Synthesis of methyl 2-(thio­phen-3-yl)acetate, 1

Methyl thio­phene-2-acetate, 1 (5 mmol), was added to an excess of hydrazine hydrate (40 mmol) in ethanol (20 ml). The mixture was refluxed for 6 h. The reaction mixture was allowed to cool. The resulting precipitate was filtered and recrystallized from ethanol solution to give 0.57 g (yield 74%) of hydrazide 2 in the form of white crystals (m.p. 343 K). IR (Nicolet Impact 410 FTIR, KBr, cm−1): 3323, 3068 (νNH), 3068, 2957 (νCH), 1641 (νC=O), 1526 (νC=C thio­phene). 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 7.22 (dd, 1H, 4J = 1.0, 5J = 2.0, H2), 7.01 (d, 1H, 5J = 5.0, H4), 7.43 (dd, 1H, 2J = 3.0, 4J = 4.5, H5), 3.32 (s, 2H, H6), 9.14 (s, 1H, H8), 4.19 (s, 2H, H9). 13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, δ (ppm)]: 122.06 (C2), 135.95 (C3),128.62 (C4), 125.59 (C5), 35.10 (C7), 169.17 (C8). Calculation for C6H8O2N2S: M = 172 au.

5.2. Synthesis of 2-(thio­phen-3-yl)acetohydrazide, 2

Methyl thio­phene-2-acetate, 1 (5 mmol), was added to an excess of hydrazine hydrate (40 mmol) in ethanol (20 ml). The mixture was refluxed for 6 h. The reaction mixture was allowed to cool. The resulting precipitate was filtered and recrystallized from ethanol solution to give 0.57 g (yield 74%) of hydrazide 2 in the form of white crystals (m.p. 343 K). IR (Nicolet Impact 410 FTIR, KBr, cm−1): 3323, 3068 (νNH), 3068, 2957 (νCH), 1641 (νC=O), 1526 (νC=C thio­phene). 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 7.22 (dd, 1H, 4J = 1.0, 5J = 2.0, H2), 7.01 (d, 1H, 5J = 5.0, H4), 7.43 (dd, 1H, 2J = 3.0, 4J = 4.5, H5), 3.32 (s, 2H, H6), 9.14 (s, 1H, H8), 4.19 (s, 2H, H9). 13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, δ (ppm)]: 122.06 (C2), 135.95 (C3),128.62 (C4), 125.59 (C5), 35.10 (C7), 169.17 (C8). Calculation for C6H8O2N2S: M = 172 au.

5.3. Synthesis of N-(4-oxo-2-sulfanyl­idene-1,3-thia­zolidin-3-yl)-2-(thio­phen-3-yl)acetamide, 3

A mixture of hydrazide 2 (10 mmol) and thio­carbonyl­bis­thio­glycolic acid (10 mmol) in ethanol (5 ml) was refluxed for 8 h. After cooling, the resulting precipitate was filtered off, dried and recrystallized from ethanol solution to give 1.66 g (yield 61%) of 3 as a pale-yellow crystals (m.p. 372 K). IR (Nicolet Impact 410 FTIR, KBr, cm−1): 3442, 3292, 3226 (νNH), 3148, 2965, 2921 (νCH), 1727,1684 (νC=O), 1614, 1532 (νC=C thio­phene), 1244, 1177 (νC=S). Calculation for C9H8O2N2S3: M = 272 au.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Both thio­phene rings are disordered over two positions by a rotation of approximately 180° around the C5—C3 or C15—C13 bond for mol­ecules A and B, respectively. The final occupancy factors are 0.6727 (17) and 0.3273 (17) for mol­ecule A, and 0.7916 (19) and 0.2084 (19) for mol­ecule B. Bond lengths and angles in the disordered thio­phene rings were restrained to target values derived from mean values observed in 3-CH2-thio­phene fragments in the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The same anisotropic displacement parameters were used for equivalent atoms in the disordered thio­phene rings (e.g. EADP C1A C1B). The H atoms attached to atoms N1 and N11 were found in the difference density Fourier map and refined freely. The other H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms, with C—H distances of 0.95 (aromatic) and 0.99 Å (CH2). In the final cycles of refinement, four outliers were omitted.

Table 2
Experimental details

Crystal data
Chemical formula C9H8N2O2S3
Mr 272.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.6205 (3), 10.8252 (3), 11.5073 (3)
α, β, γ (°) 97.836 (2), 102.720 (2), 95.047 (2)
V3) 1149.42 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.63
Crystal size (mm) 0.22 × 0.07 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 37647, 6098, 4985
Rint 0.042
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.03
No. of reflections 6098
No. of parameters 323
No. of restraints 40
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.25
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS1997 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT v8.34A (Bruker, 2013); data reduction: SAINT v8.34A (Bruker, 2013); program(s) used to solve structure: SHELXS1997 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

N-(4-Oxo-2-sulfanylidene-1,3-thiazolidin-3-yl)-2-(thiophen-3-yl)acetamide top
Crystal data top
C9H8N2O2S3Z = 4
Mr = 272.35F(000) = 560
Triclinic, P1Dx = 1.574 Mg m3
a = 9.6205 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8252 (3) ÅCell parameters from 9925 reflections
c = 11.5073 (3) Åθ = 3.1–30.6°
α = 97.836 (2)°µ = 0.63 mm1
β = 102.720 (2)°T = 100 K
γ = 95.047 (2)°Block, colourless
V = 1149.42 (6) Å30.22 × 0.07 × 0.04 mm
Data collection top
Bruker APEX-II CCD
diffractometer
4985 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 29.0°, θmin = 2.9°
Tmin = 0.691, Tmax = 0.746h = 1313
37647 measured reflectionsk = 1414
6098 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.3868P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6098 reflectionsΔρmax = 0.38 e Å3
323 parametersΔρmin = 0.25 e Å3
40 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.7012 (6)0.0875 (6)0.1304 (5)0.0435 (14)0.6727 (17)
H1A0.6276810.0190900.0982790.052*0.6727 (17)
C1B0.8309 (14)0.1396 (12)0.0779 (11)0.0435 (14)0.3273 (17)
H1B0.8654050.1091020.0094490.052*0.3273 (17)
C2A0.7136 (6)0.1688 (5)0.2354 (6)0.0292 (11)0.6727 (17)
H2A0.6485720.1611270.2861040.035*0.6727 (17)
C2B0.8979 (13)0.2418 (14)0.1659 (11)0.0292 (11)0.3273 (17)
H2B0.9821110.2918110.1612130.035*0.3273 (17)
C30.83043 (16)0.26481 (14)0.26249 (13)0.0229 (3)
C4A0.9131 (5)0.2528 (5)0.1785 (4)0.0196 (7)0.6727 (17)
H4A0.9986390.3061400.1832860.024*0.6727 (17)
C4B0.7015 (13)0.1835 (11)0.2382 (11)0.0196 (7)0.3273 (17)
H4B0.6342140.1869790.2874970.024*0.3273 (17)
C50.87295 (17)0.36183 (14)0.37536 (13)0.0244 (3)
H5A0.7863860.3948600.3943220.029*
H5B0.9371590.4328030.3626510.029*
C60.94939 (15)0.30218 (12)0.47922 (12)0.0195 (3)
C70.99694 (15)0.26354 (14)0.76650 (13)0.0219 (3)
C80.91801 (15)0.08293 (13)0.61312 (13)0.0211 (3)
C90.99968 (17)0.02374 (14)0.71264 (13)0.0255 (3)
H9A1.0820110.0124630.6884820.031*
H9B0.9367970.0443730.7315330.031*
N10.87242 (13)0.28734 (11)0.56472 (11)0.0205 (2)
H10.784 (2)0.2785 (16)0.5452 (15)0.023 (4)*
N20.92535 (12)0.21256 (11)0.64903 (10)0.0200 (2)
O11.06854 (11)0.26997 (10)0.48825 (10)0.0263 (2)
O20.85315 (11)0.03015 (10)0.51434 (10)0.0263 (2)
S1A0.84226 (13)0.12988 (10)0.06504 (10)0.0260 (2)0.6727 (17)
S1B0.6811 (3)0.0788 (3)0.1107 (3)0.0260 (2)0.3273 (17)
S21.06254 (4)0.14561 (4)0.84299 (3)0.02640 (9)
S31.01734 (5)0.41087 (4)0.82790 (4)0.03324 (10)
C11A0.4107 (4)0.3665 (5)0.8615 (4)0.0348 (9)0.7916 (19)
H11A0.3531310.4247220.8906760.042*0.7916 (19)
C12A0.3757 (4)0.2893 (6)0.7510 (5)0.0260 (8)0.7916 (19)
H12A0.2877240.2886560.6937470.031*0.7916 (19)
C11B0.6014 (12)0.3318 (14)0.9163 (10)0.0348 (9)0.2084 (19)
H11B0.6759660.3658690.9852630.042*0.2084 (19)
C12B0.6096 (19)0.238 (3)0.819 (2)0.0260 (8)0.2084 (19)
H12B0.6932460.1981340.8155660.031*0.2084 (19)
C130.48263 (16)0.20962 (13)0.72904 (12)0.0209 (3)
C14A0.5992 (5)0.2286 (6)0.8247 (5)0.0279 (11)0.7916 (19)
H14A0.6809760.1849970.8267020.033*0.7916 (19)
C14B0.3780 (19)0.274 (3)0.7503 (19)0.0279 (11)0.2084 (19)
H14B0.2858340.2669980.6971310.033*0.2084 (19)
C150.46840 (16)0.11790 (13)0.61472 (12)0.0216 (3)
H15A0.3785550.0597460.5987780.026*
H15B0.5501700.0676570.6235550.026*
C160.46640 (14)0.19004 (12)0.51108 (12)0.0173 (3)
C170.31832 (14)0.24127 (13)0.24248 (12)0.0192 (3)
C180.33768 (14)0.41284 (13)0.40333 (13)0.0190 (3)
C190.33812 (17)0.48314 (13)0.29957 (13)0.0247 (3)
H19A0.4284950.5405670.3152570.030*
H19B0.2566180.5336250.2884670.030*
N110.33329 (13)0.20086 (11)0.44504 (10)0.0173 (2)
H110.261 (2)0.1832 (16)0.4689 (15)0.025 (4)*
N120.32383 (12)0.28276 (10)0.36245 (10)0.0168 (2)
O110.57399 (10)0.23773 (10)0.48702 (9)0.0240 (2)
O120.34760 (11)0.45633 (9)0.50671 (9)0.0247 (2)
S11A0.58246 (9)0.33791 (8)0.93937 (6)0.0371 (2)0.7916 (19)
S11B0.4286 (6)0.3711 (5)0.8833 (4)0.0371 (2)0.2084 (19)
S120.32221 (5)0.36801 (4)0.16587 (3)0.02777 (9)
S130.30889 (4)0.09510 (3)0.17993 (3)0.02742 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.037 (2)0.057 (3)0.038 (3)0.0079 (19)0.0078 (18)0.012 (2)
C1B0.037 (2)0.057 (3)0.038 (3)0.0079 (19)0.0078 (18)0.012 (2)
C2A0.0221 (16)0.040 (3)0.0266 (15)0.0060 (14)0.0066 (12)0.0074 (15)
C2B0.0221 (16)0.040 (3)0.0266 (15)0.0060 (14)0.0066 (12)0.0074 (15)
C30.0264 (7)0.0246 (7)0.0184 (7)0.0087 (6)0.0044 (5)0.0041 (5)
C4A0.0234 (17)0.0195 (14)0.0152 (15)0.0055 (11)0.0024 (12)0.0019 (10)
C4B0.0234 (17)0.0195 (14)0.0152 (15)0.0055 (11)0.0024 (12)0.0019 (10)
C50.0303 (8)0.0230 (7)0.0212 (7)0.0101 (6)0.0067 (6)0.0028 (5)
C60.0185 (7)0.0173 (6)0.0204 (7)0.0017 (5)0.0028 (5)0.0019 (5)
C70.0181 (7)0.0271 (7)0.0210 (7)0.0045 (6)0.0049 (5)0.0035 (5)
C80.0162 (6)0.0232 (7)0.0246 (7)0.0002 (5)0.0080 (5)0.0026 (5)
C90.0300 (8)0.0213 (7)0.0251 (7)0.0012 (6)0.0061 (6)0.0049 (6)
N10.0147 (6)0.0262 (6)0.0206 (6)0.0072 (5)0.0024 (5)0.0033 (5)
N20.0177 (6)0.0224 (6)0.0195 (6)0.0038 (5)0.0034 (4)0.0027 (4)
O10.0170 (5)0.0314 (6)0.0313 (6)0.0057 (4)0.0068 (4)0.0042 (4)
O20.0220 (5)0.0260 (5)0.0268 (5)0.0008 (4)0.0025 (4)0.0017 (4)
S1A0.0297 (4)0.0297 (4)0.0182 (3)0.0060 (3)0.0044 (2)0.0029 (2)
S1B0.0297 (4)0.0297 (4)0.0182 (3)0.0060 (3)0.0044 (2)0.0029 (2)
S20.0324 (2)0.02659 (19)0.02008 (18)0.00490 (15)0.00387 (14)0.00602 (14)
S30.0405 (2)0.02536 (19)0.0278 (2)0.01014 (17)0.00280 (17)0.00329 (15)
C11A0.0280 (16)0.0542 (18)0.029 (2)0.0119 (13)0.0103 (14)0.0206 (16)
C12A0.0257 (11)0.029 (2)0.0267 (10)0.0055 (10)0.0130 (9)0.0047 (11)
C11B0.0280 (16)0.0542 (18)0.029 (2)0.0119 (13)0.0103 (14)0.0206 (16)
C12B0.0257 (11)0.029 (2)0.0267 (10)0.0055 (10)0.0130 (9)0.0047 (11)
C130.0285 (7)0.0181 (6)0.0170 (6)0.0015 (5)0.0070 (5)0.0039 (5)
C14A0.0390 (17)0.0221 (15)0.0190 (12)0.0073 (14)0.0020 (12)0.0030 (11)
C14B0.0390 (17)0.0221 (15)0.0190 (12)0.0073 (14)0.0020 (12)0.0030 (11)
C150.0268 (7)0.0170 (6)0.0185 (7)0.0021 (5)0.0009 (5)0.0018 (5)
C160.0194 (6)0.0150 (6)0.0161 (6)0.0041 (5)0.0032 (5)0.0022 (5)
C170.0172 (6)0.0217 (7)0.0184 (6)0.0033 (5)0.0042 (5)0.0017 (5)
C180.0144 (6)0.0186 (6)0.0237 (7)0.0043 (5)0.0048 (5)0.0004 (5)
C190.0307 (8)0.0192 (7)0.0242 (7)0.0064 (6)0.0048 (6)0.0041 (5)
N110.0161 (6)0.0194 (6)0.0174 (5)0.0016 (4)0.0053 (4)0.0044 (4)
N120.0178 (5)0.0164 (5)0.0162 (5)0.0035 (4)0.0042 (4)0.0016 (4)
O110.0159 (5)0.0321 (6)0.0250 (5)0.0045 (4)0.0059 (4)0.0054 (4)
O120.0264 (5)0.0228 (5)0.0248 (5)0.0022 (4)0.0098 (4)0.0029 (4)
S11A0.0573 (5)0.0334 (3)0.0176 (3)0.0122 (3)0.0034 (2)0.0020 (2)
S11B0.0573 (5)0.0334 (3)0.0176 (3)0.0122 (3)0.0034 (2)0.0020 (2)
S120.0389 (2)0.02616 (19)0.01882 (18)0.00436 (16)0.00618 (15)0.00631 (14)
S130.0352 (2)0.02192 (18)0.02263 (18)0.00242 (15)0.00702 (15)0.00483 (13)
Geometric parameters (Å, º) top
C1A—H1A0.9500C5—C61.514 (2)
C1B—H1B0.9500C6—N11.3730 (18)
C1A—C2A1.370 (8)C6—O11.2141 (17)
C2A—H2A0.9500C7—N21.3878 (18)
C1B—C2B1.395 (13)C7—S21.7339 (15)
C2B—H2B0.9500C7—S31.6303 (15)
C2B—C31.410 (11)C8—C91.494 (2)
C2A—C31.412 (6)C8—N21.3988 (18)
C4A—H4A0.9500C8—O21.2065 (17)
C4B—H4B0.9500C9—H9A0.9900
C4A—S1A1.707 (4)C9—H9B0.9900
C1A—S1A1.747 (7)C9—S21.8102 (15)
C4B—S1B1.690 (11)N1—H10.825 (18)
C1B—S1B1.672 (11)N1—N21.3874 (16)
C11A—H11A0.9500C13—C14A1.366 (4)
C11A—C12A1.378 (6)C13—C14B1.323 (14)
C12A—H12A0.9500C13—C151.5086 (18)
C11B—H11B0.9500C15—H15A0.9900
C11B—C12B1.430 (16)C15—H15B0.9900
C12B—H12B0.9500C15—C161.5096 (19)
C12A—C131.442 (4)C16—N111.3613 (17)
C12B—C131.395 (15)C16—O111.2190 (17)
C14A—H14A0.9500C17—N121.3802 (17)
C14B—H14B0.9500C17—S121.7310 (14)
C11A—S11A1.773 (4)C17—S131.6326 (14)
C14A—S11A1.694 (4)C18—C191.501 (2)
C14B—S11B1.680 (15)C18—N121.4073 (17)
C11B—S11B1.726 (12)C18—O121.1982 (16)
C3—C4A1.380 (5)C19—H19A0.9900
C3—C4B1.407 (12)C19—H19B0.9900
C3—C51.509 (2)C19—S121.8121 (15)
C5—H5A0.9900N11—H110.819 (18)
C5—H5B0.9900N11—N121.3797 (16)
C4A—S1A—C1A92.8 (2)C8—C9—H9B110.3
S1A—C1A—H1A125.5C8—C9—S2107.29 (10)
C2A—C1A—H1A125.5H9A—C9—H9B108.5
S1B—C1B—H1B125.0S2—C9—H9A110.3
C2B—C1B—H1B125.0S2—C9—H9B110.3
C1A—C2A—H2A122.6C6—N1—H1119.8 (12)
C1B—C2B—H2B122.7C6—N1—N2116.15 (11)
C1A—C2A—C3114.8 (4)N2—N1—H1112.4 (12)
C1B—C2B—C3114.5 (8)C7—N2—C8118.28 (12)
S1A—C4A—H4A124.2N1—N2—C7121.89 (12)
C1B—S1B—C4B94.1 (5)N1—N2—C8119.59 (11)
S1B—C4B—H4B124.1C7—S2—C993.85 (7)
C2A—C1A—S1A109.0 (4)C14B—C13—C15122.9 (6)
C2B—C1B—S1B109.9 (7)C13—C15—H15A109.9
C14A—S11A—C11A93.1 (2)C3—C2A—H2A122.6
C12A—C11A—H11A126.1C3—C2B—H2B122.7
S11A—C11A—H11A126.1C3—C4A—H4A124.2
C11A—C12A—H12A122.6C3—C4B—H4B124.1
C14B—S11B—C11B94.8 (6)C13—C15—H15B109.9
S11B—C11B—H11B127.0C3—C4A—S1A111.5 (2)
C12B—C11B—H11B127.0C3—C4B—S1B111.7 (6)
C11B—C12B—H12B123.3C13—C15—C16108.99 (11)
C11A—C12A—C13114.9 (3)H15A—C15—H15B108.3
S11A—C14A—H14A123.6C16—C15—H15A109.9
S11B—C14B—H14B124.3C16—C15—H15B109.9
C12A—C11A—S11A107.8 (3)N11—C16—C15115.08 (12)
C12B—C11B—S11B106.0 (8)O11—C16—C15123.93 (12)
C4A—C3—C2A111.8 (2)O11—C16—N11120.98 (12)
C4B—C3—C2B109.4 (6)N12—C17—S12109.87 (10)
C4A—C3—C5122.36 (18)N12—C17—S13125.87 (11)
C4B—C3—C5120.4 (4)S13—C17—S12124.26 (8)
C2A—C3—C5125.5 (2)N12—C18—C19109.81 (11)
C2B—C3—C5130.2 (4)O12—C18—C19127.34 (13)
C3—C5—H5A109.8O12—C18—N12122.85 (13)
C3—C5—H5B109.8C18—C19—H19A110.2
C14A—C13—C12A111.3 (3)C18—C19—H19B110.2
C14B—C13—C12B114.2 (8)C18—C19—S12107.46 (10)
C14A—C13—C15124.3 (2)H19A—C19—H19B108.5
C12B—C13—C15122.8 (6)S12—C19—H19A110.2
C12A—C13—C15124.4 (2)S12—C19—H19B110.2
C3—C5—C6109.31 (11)C16—N11—H11121.5 (12)
H5A—C5—H5B108.3C16—N11—N12117.50 (11)
C6—C5—H5A109.8N12—N11—H11117.0 (12)
C6—C5—H5B109.8C17—N12—C18118.85 (11)
N1—C6—C5114.18 (12)N11—N12—C17121.30 (11)
O1—C6—C5123.98 (13)N11—N12—C18119.39 (11)
O1—C6—N1121.84 (13)C17—S12—C1993.94 (7)
N2—C7—S2109.78 (10)C13—C12A—H12A122.6
N2—C7—S3126.68 (11)C13—C12B—C11B113.4 (10)
S3—C7—S2123.53 (9)C13—C12B—H12B123.3
N2—C8—C9110.62 (12)C13—C14A—H14A123.6
O2—C8—C9126.72 (14)C13—C14B—H14B124.3
O2—C8—N2122.66 (14)C13—C14A—S11A112.9 (3)
C8—C9—H9A110.3C13—C14B—S11B111.5 (9)
C2B—C1B—S1B—C4B0.0 (13)N2—C8—C9—S24.36 (14)
C12A—C11A—S11A—C14A0.2 (6)O1—C6—N1—N211.93 (19)
C2A—C1A—S1A—C4A0.2 (5)O2—C8—C9—S2175.56 (12)
C12B—C11B—S11B—C14B2 (2)O2—C8—N2—C7176.99 (13)
S1B—C1B—C2B—C33.4 (18)O2—C8—N2—N18.4 (2)
S1A—C1A—C2A—C31.4 (6)S2—C7—N2—C80.09 (15)
S11B—C11B—C12B—C132 (3)S2—C7—N2—N1174.54 (10)
S11A—C11A—C12A—C130.0 (7)S3—C7—N2—C8179.36 (11)
C1B—C2B—C3—C4B5.7 (17)S3—C7—N2—N16.2 (2)
C1A—C2A—C3—C4A2.9 (7)S3—C7—S2—C9178.31 (10)
C1A—C2A—C3—C5176.5 (4)C12A—C13—C15—C1665.3 (4)
C1B—C2B—C3—C5177.4 (9)C12B—C13—C15—C16106.2 (18)
C2A—C3—C5—C676.8 (3)C14A—C13—C15—C16114.1 (4)
C4B—C3—C5—C684.8 (6)C14B—C13—C15—C1670.8 (19)
C4A—C3—C5—C696.2 (4)C13—C14B—S11B—C11B2 (2)
C11B—C12B—C13—C14B0 (3)C13—C14A—S11A—C11A0.4 (5)
C11A—C12A—C13—C14A0.3 (6)C13—C15—C16—N1196.18 (14)
C11A—C12A—C13—C15179.8 (4)C13—C15—C16—O1182.80 (16)
C11B—C12B—C13—C15176.9 (15)C15—C13—C14B—S11B178.4 (10)
C2A—C3—C4A—S1A2.9 (6)C15—C13—C14A—S11A179.9 (2)
C2B—C3—C4B—S1B5.5 (12)C15—C16—N11—N12169.47 (11)
C2B—C3—C5—C698.6 (10)C16—N11—N12—C1795.69 (15)
C12A—C13—C14A—S11A0.4 (5)C16—N11—N12—C1876.45 (15)
C12B—C13—C14B—S11B1 (3)C18—C19—S12—C170.76 (11)
C3—C4A—S1A—C1A1.8 (4)C19—C18—N12—C172.19 (17)
C3—C4B—S1B—C1B3.3 (10)C19—C18—N12—N11174.53 (11)
C3—C5—C6—N1110.03 (14)N12—C17—S12—C191.91 (11)
C3—C5—C6—O170.25 (18)N12—C18—C19—S120.57 (14)
C5—C3—C4B—S1B177.2 (4)O11—C16—N11—N129.54 (18)
C5—C3—C4A—S1A176.8 (2)O12—C18—C19—S12179.28 (12)
C5—C6—N1—N2168.34 (12)O12—C18—N12—C17177.67 (13)
C6—N1—N2—C7104.36 (15)O12—C18—N12—N115.33 (19)
C6—N1—N2—C870.01 (16)S12—C17—N12—C182.78 (15)
C8—C9—S2—C73.86 (11)S12—C17—N12—N11174.96 (10)
C9—C8—N2—C72.94 (17)S13—C17—N12—C18177.43 (10)
C9—C8—N2—N1171.64 (12)S13—C17—N12—N115.25 (19)
N2—C7—S2—C92.39 (11)S13—C17—S12—C19178.29 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1A/C1A–C4A and S11A/C11A–C14A rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.824 (19)1.973 (19)2.7923 (16)173.1 (18)
N11—H11···O1i0.819 (19)2.189 (19)2.8436 (16)137.1 (16)
N11—H11···O2ii0.819 (19)2.519 (18)3.0965 (16)128.6 (15)
C5—H5A···O12iii0.992.463.3901 (19)156
C9—H9A···O2iv0.992.533.2443 (19)129
C9—H9B···S13ii0.992.813.6570 (17)144
C15—H15A···O2ii0.992.373.2862 (19)154
C9—H9A···Cg1iv0.992.733.276 (3)115
C19—H19A···Cg2iii0.992.773.480 (2)129
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1.
 

Acknowledgements

LVM thanks VLIR–UOS (project ZEIN2014Z182) for financial support.

References

First citationBarbarella, G., Melucci, M. & Sotgiu, G. (2005). Adv. Mater. 17, 1581–1593.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121–128.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJabeen, S., Palmer, R. A., Potter, B. S., Helliwell, M., Dines, T. J. & Chowdhry, B. Z. (2007). J. Chem. Crystallogr. 39, 151–156.  CrossRef Google Scholar
First citationMoers, F. G., Smits, J. M. M. & Beurskens, P. T. (1986). J. Crystallogr. Spectrosc. Res. 16, 101–106.  CrossRef CAS Google Scholar
First citationNguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263.  Google Scholar
First citationOno, M., Hayashi, S., Matsumura, K., Kimura, H., Okamoto, Y., Ihara, M., Takahashi, R., Mori, H. & Saji, H. (2011). ACS Chem. Neurosci. 2, 269–275.  CrossRef CAS PubMed Google Scholar
First citationOrr, W. L. & White, C. M. (1990). Editors. Geochemistry of Sulfur in fossil fuels. Washington, DC: American Chemical Society.  Google Scholar
First citationSantagati, A., Modica, M., Santagati, M., Garuso, A. & Cutuli, V. (1994). Pharmazie, 49, 64–65.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTomašić, T. & Mašič, L. P. (2012). Expert Opin. Drug Discov. 7, 549–560.  PubMed Google Scholar
First citationVu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds